Identification of the Middle Triassic Oceanic Crust of the Sumdo in the Tibet Plateau and Its Constraints on the Evolution of the Sumdo Paleo-Tethys Ocean
-
摘要: 松多绿片岩分布于拉萨地块中部的松多地区,因对其时代及构造属性研究程度一直较低,严重制约了对松多古特提斯洋演化的认识.在详细野外地质调查基础上,对松多附近的绿片岩进行了LA-ICP-MS锆石U-Pb同位素测试,以及锆石Hf同位素分析,并开展了岩石学和全岩地球化学研究.在松多绿片岩中获得锆石U-Pb年龄约为232 Ma,为中三叠世,代表了绿片岩的原岩成岩时代.其锆石εHf(t)平均为3.6,显示弱亏损地幔的特征.岩石学和地球化学研究揭示,绿片岩原岩具有拉斑质基性岩特征,在球粒陨石标准化稀土元素配分曲线和原始地幔标准化多元素蛛网图中均为平坦型,与N-MORB相似.在各类判别图解上,也都落入N-MORB区域,表明松多绿片岩原岩可能为松多古特提斯洋壳残片.松多中三叠世绿片岩的识别,说明松多古特提斯洋可能在中三叠世时还存在洋盆.Abstract: The Sumdo green schist is distributed in the Sumdo area in the segment of the Lhasa block. Because of the low level of research on its age and tectonic characteristics, it has seriously constrained our understanding of the evolution of the Sumdo Paleo-Tethys Ocean. Based on the detailed field geological survey, petrology, whole-rock geochemistry, LA-ICP-MS zircon U-Pb isotope and zircon Hf isotope analysis were carried out on the green schist. The zircon U-Pb age is approximately 232 Ma in the Sumdo green schist, which is the Middle Triassic, representing the protolith's crystallization of the green schist. The εHf(t) of zircons is 3.6 on average, showing the characteristics of a weakly depleted mantle. Petrology and geochemistry studies reveal that the protolith of green schist has characteristics of tholeiite, which appears as a flat curve in the chondrite-normalized REE patterns and primitive mantle-normalized trace element spidergrams, similar to N-MORB attributes. In all kinds of discriminative diagrams, they all fall into the N-MORB field, indicating that the protolith of Sumdo green schist may be an oceanic crust fragment from the Sumdo Paleo-Tethys Ocean. The identification of the Middle Triassic green schist in Sumdo indicates the Sumdo Paleo-Tethys Ocean may hold oceanic basin during the Middle Triassic.
-
Key words:
- Sumdo Paleo-Tethys Ocean /
- green schist /
- geochemistry /
- zircon U-Pb chronology /
- zircon Hf isotope
-
图 1 西藏松多地区大地构造位置图和地质简图
a.西藏松多地区地质图; b.冈底斯东段构造简图, 据Zhu et al. (2010)修改; BNSZ.班公湖-怒江板块缝合带; SNMZ.狮泉河-纳木错混杂岩带; LMF.洛巴堆-米拉山断裂带; IYZSZ.印度-雅鲁藏布江板块缝合带
Fig. 1. Geotectonic location and geological map of Sumdo, Tibet
图 4 岩石类型判别图解
a. SiO2-Nb/Y图, 据Winchester and Floyd(1977); b. Th/Yb-Zr/Y图, 据Ross and Bédard (2009)
Fig. 4. Diagram of discriminating rock type
图 5 绿片岩球粒陨石标准化稀土元素配分模式图和原始地幔标准化微量元素蛛网图
榴辉岩数据引自Li et al.(2009); N-MORB和E-MORB数据引自Sun and McDonough (1989); 球粒陨石和原始地幔数据引自Sun and McDonough (1989)
Fig. 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element spidergrams for the green schist
图 7 绿片岩锆石U-Pb年龄谐和图和稀土元素球粒陨石标准化配分曲线
a. ST15-1锆石U-Pb年龄谐和图; b. ST15-1锆石稀土元素球粒陨石标准化配分曲线; c. ST15-2锆石U-Pb年龄谐和图; d. ST15-2锆石稀土元素球粒陨石标准化配分曲线; 球粒陨石和原始地幔数据引自Sun and McDonough(1989)
Fig. 7. U-Pb concordant diagram of zircons from the green schist and chondrite-normalized REE patterns diagram
图 8 绿片岩原岩源区判别图解
a. Nb-Zr图解, 据Le Roex et al. (1983); b. La/Sm-Sm图解, Aldanmaz (2000)
Fig. 8. Source region discrimination diagram of green schist
图 11 绿片岩构造判别图解
a.Th/Yb-Nb/Yb判别图, 据Pearce(2008); N-MORB.正常大洋中脊玄武岩; E-MORB.富集大洋中脊玄武岩; OIB.洋岛玄武岩; b.Nb×2-Zr/4-Y判别图, 据Meschede(1986);板内碱性玄武岩落在AⅠ和AⅡ区,板内拉斑玄武岩落在AⅡ和C区,P-MORB落在B区;N-MORB落在D区,火山弧玄武岩落在C和D区; 榴辉岩数据引自Li et al. (2009)
Fig. 11. Structural discrimination diagram of green schist
表 1 松多绿片岩(ST15)全岩地球化学测试结果
Table 1. Whole-rock geochemical test results of Sumdo green schist (ST15)
样品号 ST15H1 ST15H2 ST15H3 ST15H4 SiO2 50.83 44.81 49.03 41.61 TiO2 1.92 2.10 1.96 3.43 Al2O3 13.87 15.80 14.80 14.67 Fe2O3T 10.52 13.29 10.18 17.94 MnO 0.21 0.19 0.22 0.27 MgO 5.99 7.46 6.53 6.06 CaO 9.35 9.45 9.90 7.88 Na2O 4.24 4.55 4.51 3.20 K2O 0.51 0.71 0.49 1.76 P2O5 0.19 0.29 0.21 0.48 LOl 1.75 1.61 1.56 2.21 total 99.38 100.27 99.39 99.51 Li 12.55 11.69 8.46 25.84 Sc 49.08 50.48 49.82 56.22 Ti 12 272 12 556 12 766 23 540 V 389 415 416.16 614 Cr 97.56 108 104 43.56 Co 76.00 61.94 75.00 67.22 Ni 114 74.54 86.62 34.26 Cu 66.04 31.80 73.68 28.32 Zn 117 119 116 198 Ga 19.35 19.57 20.48 25.65 Rb 9.19 12.22 8.73 33.78 Sr 122 109 116 163 Y 36.16 37.26 40.38 66.84 Zr 114 113 120 251 Nb 3.04 2.804 2.91 6.82 Cs 0.34 0.39 0.28 1.15 Ba 54.24 61.02 48.58 124 La 4.72 4.24 4.67 9.47 Ce 15.06 13.60 15.04 30.14 Pr 2.54 2.34 2.54 5.11 Nd 12.25 11.24 12.27 24.04 Sm 4.08 3.85 4.09 7.84 Eu 1.27 1.23 1.29 2.30 Gd 4.80 4.64 4.99 8.80 Tb 0.81 0.78 0.85 1.47 Dy 5.44 5.3 5.68 9.75 Ho 1.17 1.16 1.23 2.08 Er 3.30 3.34 3.59 5.93 Tm 0.48 0.49 0.53 0.87 Yb 3.03 3.06 3.29 5.41 Lu 0.46 0.47 0.51 0.81 Hf 2.75 2.67 2.83 5.72 Ta 0.19 0.16 0.21 0.43 Pb 0.81 0.46 0.65 1.09 Th 0.24 0.17 0.18 0.45 U 0.13 0.17 0.09 0.24 注:主量元素单位为%,微量元素单位为10-6. 表 2 松多绿片岩锆石(ST15-1和ST15-2)LA-ICP-MS原位稀土元素(10-6)分析结果
Table 2. In-situ rare earth element (10-6) analysis results of zircon LA-ICP-MS in Sumdo green schist (ST15-1 and ST15-2)
样品 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑
REEST15R1 0.01 0.74 0.05 0.63 3.64 0.05 15 14 212 88 419 104 1 066 158 2 081 ST15R2 0.05 10.88 0.29 6.40 8.84 2.75 24 16 192 69 298 68 708 96 1 500 ST15R3 0.14 13.07 0.45 8.93 15.79 4.43 35 21 240 84 353 80 837 116 1 809 ST15R4 0.00 6.85 0.06 1.08 2.11 0.45 5 4 49 19 88 21 234 33 463 ST15R5 0.23 12.44 0.15 2.65 4.24 1.26 11 8 101 39 174 42 447 63 906 ST15R6 0.06 9.80 0.35 6.28 10.59 2.68 25 17 184 67 287 67 693 95 1 465 ST15R7 0.02 18.15 0.14 1.95 4.60 0.26 11 8 94 34 140 31 304 41 688 ST15R8 0.07 13.94 0.45 5.70 12.68 2.82 28 18 206 72 308 70 719 96 1 552 ST15R9 0.22 14.45 0.45 7.32 12.61 3.41 28 18 201 71 301 69 738 99 1 562 ST15R10 0.43 54.29 0.20 1.79 4.36 1.43 15 12 168 70 356 95 1 141 187 2 106 ST15R11 0.03 7.43 0.20 4.06 6.75 2.15 18 12 134 48 205 47 515 70 1 070 ST15R12 0.13 64.09 0.48 8.27 16.70 0.89 45 30 330 114 450 93 889 114 2 154 ST15R13 0.03 13.21 0.39 6.15 10.86 2.98 27 18 208 74 320 74 777 104 1 635 ST15R14 0.01 2.41 0.03 1.00 3.58 0.07 13 10 132 50 219 51 535 77 1 093 ST15A1 0.85 68.51 1.33 9.84 10.26 6.10 56 19 238 94 445 97 940 173 2 158 ST15A2 0.11 8.59 0.07 1.69 1.30 0.38 15 5 61 22 97 22 215 43 493 ST15A3 0.05 11.13 0.46 5.12 11.15 2.45 52 18 196 74 322 68 642 116 1 517 ST15A4 0.38 21.88 0.41 3.51 16.12 1.05 85 29 345 118 472 97 773 128 2 091 ST15A5 0.06 18.17 0.08 1.68 3.34 1.40 28 11 140 54 253 56 531 100 1 197 ST15A6 0.06 12.62 0.48 7.24 13.28 3.81 61 23 248 92 405 87 802 146 1 901 ST15A7 440.50 1 705.95 273.01 1 321.98 337.79 29.99 328 56 355 72 197 31 241 35 5 424 ST15A8 0.01 8.56 0.03 0.29 1.21 0.37 6 2 33 15 78 19 210 49 423 ST15A9 0.05 14.46 0.19 3.56 6.23 1.77 35 13 156 61 278 60 568 105 1 301 ST15A10 0.11 10.72 0.44 6.22 10.44 3.38 54 19 225 82 367 77 735 136 1 727 表 3 松多绿片岩(ST15-1和ST15-2)LA-ICP-MS锆石U-Th-Pb测试结果
Table 3. LA-ICP-MS zircon U-Pb test results of pine poly green schist (ST15-1 and ST15-2)
点号 Pb
(10-6)Th
(10-6)U
(10-6)Th/
U同位素比值 同位素年龄(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ ST15R1 96.74 42.35 309.73 0.14 0.581 3 0.012 0 0.070 6 0.001 1 465.3 7.7 439.9 6.4 ST15R2 64.18 466.15 349.74 1.33 0.259 3 0.008 0 0.036 2 0.000 6 234.1 6.5 229.3 3.6 ST15R3 57.421 389.76 291.93 1.34 0.258 3 0.006 6 0.037 1 0.000 6 233.3 5.3 234.8 3.6 ST15R4 38.458 176.73 195.21 0.91 0.260 9 0.006 9 0.037 7 0.000 6 235.4 5.5 238.7 3.6 ST15R5 58.973 449.69 305.14 1.47 0.257 3 0.006 1 0.036 8 0.000 6 232.5 4.9 233.2 3.5 ST15R6 52.834 342.63 284.02 1.21 0.256 9 0.007 9 0.036 6 0.000 6 232.2 6.4 231.8 3.6 ST15R7 192.77 126.14 179.49 0.71 2.628 6 0.041 7 0.209 1 0.003 0 1 308.7 11.7 1 224.1 16.1 ST15R8 81.13 545.34 387.93 1.41 0.262 0 0.006 4 0.037 4 0.000 6 236.3 5.1 236.8 3.5 ST15R9 65.48 433.06 336.47 1.29 0.257 8 0.007 0 0.036 4 0.000 6 232.9 5.6 230.7 3.5 ST15R10 324.36 1 830.74 1 891.25 0.97 0.258 8 0.004 6 0.037 0 0.000 5 233.7 3.7 234.2 3.3 ST15R11 39.595 233.38 217.24 1.08 0.261 3 0.010 6 0.035 7 0.000 6 235.7 8.6 225.9 3.7 ST15R12 415.36 263.65 341.64 0.77 2.939 8 0.044 6 0.230 6 0.003 2 1 392.2 11.5 1 337.9 17.1 ST15R13 85.34 582.87 433.66 1.34 0.247 4 0.006 1 0.035 5 0.000 5 224.4 4.9 224.7 3.2 ST15R14 116.12 113.06 391.11 0.29 0.412 6 0.007 8 0.056 8 0.000 8 350.8 5.6 356 4.9 ST15A1 330.21 3 164.4 2 121.22 1.49 0.260 18 0.012 61 0.036 64 0.000 6 234.8 10.2 232 3.7 ST15A2 1 133.18 146.32 415.77 0.35 10.375 5 0.134 73 0.467 77 0.005 69 2 468.9 12.1 2 473.8 24.9 ST15A3 63.41 431.4 346.68 1.24 0.257 97 0.042 37 0.036 49 0.001 46 233 34.2 231 9.1 ST15A4 322.78 201.56 256.46 0.79 2.558 1 0.044 12 0.209 83 0.002 61 1 288.8 12.6 1 227.9 13.9 ST15A5 72.05 23.87 68.62 0.35 0.262 68 0.039 06 0.037 25 0.001 35 236.8 31.4 235.8 8.4 ST15A6 61.62 459.46 356.16 1.29 0.256 16 0.016 48 0.036 48 0.000 68 231.6 13.3 231 4.2 ST15A7 61.14 217.49 281.09 0.77 0.865 85 0.027 22 0.036 15 0.000 62 633.3 14.8 228.9 3.8 ST15A8 44.97 163.96 276.07 0.59 0.252 36 0.032 29 0.036 14 0.001 08 228.5 26.2 228.9 6.7 ST15A9 78.23 535.2 468.04 1.14 0.251 6 0.020 88 0.036 07 0.000 69 227.9 16.9 228.4 4.3 ST15A10 58.72 420.99 346.1 1.22 0.255 31 0.028 21 0.036 6 0.000 96 230.9 22.8 231.7 5.9 表 4 松多绿片岩锆石(ST15-1)Lu-Hf同位素组成
Table 4. The Lu-Hf isotope composition of zircon of green schist (ST15-1) in sumdo
点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM(Ma) fLu/Hf ST15-1 229.3 0.070 160 0.002 640 0.282 733 0.000 018 -1.4 3.3 0.6 769 -0.92 ST15-2 234.8 0.085 231 0.003 219 0.282 685 0.000 026 -3.1 1.6 0.9 855 -0.90 ST15-3 238.7 0.060 783 0.002 223 0.282 792 0.000 024 0.7 5.6 0.9 674 -0.93 ST15-4 236.8 0.091 874 0.003 397 0.282 738 0.000 028 -1.2 3.5 1.0 779 -0.90 ST15-5 234.2 0.056 043 0.001 992 0.282 748 0.000 029 -0.9 4.0 1.0 734 -0.94 -
[1] Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [3] Baker, J. A., Menzies, M. A., Thirlwall, M. F., et al., 1997. Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen:Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization. Journal of Petrology, 38(10):1359-1390. https://doi.org/10.1093/petroj/38.10.1359 [4] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [5] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [6] Chang, Z. S., Vervoort, J. D., McClelland, W. C., et al., 2006. U-Pb Dating of Zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(5):1-14. https://doi.org/10.1029/2005gc001100 [7] Chen, S.Y., 2010. The Development of Sumdo Suture in the Lhasa Block, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [8] Chen, S. Y., Yang, J. S., Li, Y., et al., 2009. Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau:An Ophiolite Unit. Journal of Earth Science, 20(2):332-347. https://doi.org/10.1007/s12583-009-0028-x [9] Chen, S. Y., Yang, J. S., Luo, L. Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet, China:Petrochemical Evidence. Geological Bulletin of China, 26(10):1327-1339 (in Chinese with English abstract). [10] Chen, S. Y., Yang, J. S., Xu, X. Z., et al., 2008. Study of Lu-Hf Geochemical Tracing and LA-ICPMS U-Pb Isotopic Dating of the Sumdo Eclogite from the Lhasa Block, Tibet. Acta Petrologica Sinica, 24(7):1528-1538 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010 [11] Chen, Y., Ye, K., 2013. Exhumation of Subducted Oceanic Crust:Key Issues and Discussion. Acta Petrologica Sinica, 29(5):1461-1478 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305001 [12] Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):977-990 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.703 [13] Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4):1482-1499. https://doi.org/10.1016/j.gr.2014.09.017 [14] Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155:341-359. https://doi.org/10.1016/j.lithos.2012.09.011 [15] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3-4):387-411. https://doi.org/10.1130/b30446.1 [16] Fodor, R. V., Vetter, S. K., 1984. Rift-Zone Magmatism:Petrology of Basaltic Rocks Transitional from CFB to MORB, Southeastern Brazil Margin. Contributions to Mineralogy and Petrology, 88(4):307-321. https://doi.org/10.1007/bf00376755 [17] Ford, C. E., Russell, D. G., Craven, J. A., et al., 1983. Olivine-Liquid Equilibria:Temperature, Pressure and Composition Dependence of the Crystal/Liquid Cation Partition Coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 24(3):256-266. https://doi.org/10.1093/petrology/24.3.256 [18] Gao, J. F., Lu, J. J., Lai, M. Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Science Edition), 39(6):844-850 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200306014 [19] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [20] Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12):4300-4318 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.142 [21] Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [22] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391. https://doi.org/10.1039/c2ja30078h [23] Le Roex, A. P., Dick, H. J. B., Erlank, A. J., et al., 1983. Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 Degrees East. Journal of Petrology, 24(3):267-318. https://doi.org/10.1093/petrology/24.3.267 [24] Li, H. Q., 2009. The Geological Significance of Indosinian Orogenesis Occurred in Lhasa Terrane (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [25] Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphic Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12):3753-3765 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712005 [26] Li, Z. L., Yang, J. S., Xu, Z. Q., et al., 2009. Geochemistry and Sm-Nd and Rb-Sr Isotopic Composition of Eclogite in the Lhasa Terrane, Tibet, and Its Geological Significance. Lithos, 109(3-4):240-247. https://doi.org/10.1016/j.lithos.2009.01.004 [27] Lin, P. N., Stern, R. J., Bloomer, S. H., 1989. Shoshonitic Volcanism in the Northern Mariana Arc:2. Large-Ion Lithophile and Rare Earth Element Abundances:Evidence for the Source of Incompatible Element Enrichments in Intraoceanic Arcs. Journal of Geophysical Research:Solid Earth, 94(B4):4497-4514. https://doi.org/10.1029/jb094ib04p04497 [28] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [29] Ludwing, K. R., 2003. User's Manual for Isoplot/Ex, Version 3.00[M]//A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [30] Meng, Y. K., 2016. Tectonic Evolution of the Southern Region in the Middle Gangdese Batholite, Southern Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [31] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [32] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [33] Peng, Z. X., Mahoney, J., Hooper, P., et al., 1994. A Role for Lower Continental Crust in Flood Basalt Genesis? Isotopic and Incompatible Element Study of the Lower Six Formations of the Western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1):267-288. https://doi.org/10.1016/0016-7037(94)90464-2 [34] Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland:Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3-4):231-254. https://doi.org/10.1016/s0009-2541(01)00363-1 [35] Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2):83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004 [36] Rollinson, H. R., 1993. Using Geochemical Data Evaluation, Presentation, Interpretation. Longman Geochemistry Society, London. [37] Ross, P. S., Bédard, J. H., 2009. Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 46(11):823-839. https://doi.org/10.1139/e09-054 [38] Saccani, E., Photiades, A., Beccaluva, L., 2008. Petrogenesis and Tectonic Significance of Jurassic IAT Magma Types in the Hellenide Ophiolites as Deduced from the Rhodiani Ophiolites (Pelagonian Zone, Greece). Lithos, 104(1-4):71-84. https://doi.org/10.1016/j.lithos.2007.11.006 [39] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [40] Thompson, R. N., Morrison, M. A., Hendry, G. L., et al., 1984. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis:An Elemental Approach[and Discussion]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 310(1514):549-590. https://doi.org/10.1098/rsta.1984.0008 [41] Wang, B., Xie, C. M., Fan, J. J., et al., 2019. Genesis and Tectonic Setting of Middle Permian OIB-Type Mafic Rocks in the Sumdo Area, Southern Lhasa Terrane. Lithos, 324-325:429-438. https://doi.org/10.1016/j.lithos.2018.11.015 [42] Wang, B., Xie, C. M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11):2076-2081 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711017 [43] Wilson, M., 1989. Review of Igneous Petrogenesis:Aglobal Tectonic Approach. Terra Nova, 1(2):218-222. https://doi.org/10.1111/j.1365-3121.1989.tb00357.x [44] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [45] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [46] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [47] Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet, China. Geological Bulletin of China, 26(10):1340-1355 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710012 [48] Yang, J., Wang, J. R., Zhang, Q., et al., 2016. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB. Progress in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201601006 [49] Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1783-1792 (in Chinese with English abstract). [50] Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Mesozoic High-Pressure Metamorphism within the Lhasa Block, Tibet and Implications for Regional Tectonics. Earth Science Frontiers, 16(2):140-151. https://doi.org/10.1016/s1872-5791(08)60079-2 [51] Zhai, Q. G., Wang, J., Li, C., et al., 2010. SHRIMP U-Pb Dating and Hf Isotopic Analyses of Middle Ordovician Meta-Cumulate Gabbro in Central Qiangtang, Northern Tibetan Plateau. Chinese Science(Series D), 40(5):565-573 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201005004 [52] Zhang, D. D., Zhang, L. F., Zhao, Z. D., et al., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2):116-126 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010 [53] Zhang, Q., 1990. The Correct Use of the Basalt Discrimination Diagram. Acta Petrologica Sinica, 6(2):87-94 (in Chinese). [54] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension- And Arc-Type Magmatism in Southern Tibet:Paleogeographic Implications. Geological Society of America Bulletin, 122(7-8):979-993. https://doi.org/10.1130/b30062.1 [55] 陈松永, 2010.西藏拉萨地块中古特提斯缝合带的厘定(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012318.htm [56] 陈松永, 杨经绥, 罗立强, 等, 2007.西藏拉萨地块MORB型榴辉岩的岩石地球化学特征.地质通报, 26(10):1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011 [57] 陈松永, 杨经绥, 徐向珍, 等, 2008.西藏拉萨地块松多榴辉岩的锆石Lu/Hf同位素研究及LA-ICPMS U-Pb定年.岩石学报, 24(7):1528-1538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807010 [58] 陈意, 叶凯, 2013.俯冲洋壳的折返及其相关问题讨论.岩石学报, 29(5):1461-1478. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305001 [59] 程晨, 夏斌, 郑浩, 等, 2018.西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义.地球科学, 43(4):977-990. http://earth-science.net/WebPage/Article.aspx?id=3778 [60] 高剑峰, 陆建军, 赖鸣远, 等, 2003.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报(自然科学版), 39(6):844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014 [61] 国显正, 贾群子, 李金超, 等, 2018.东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义.地球科学, 43(12):4300-4318. http://earth-science.net/WebPage/Article.aspx?id=4058 [62] 李化启, 2009.拉萨地体中的印支期造山作用及其地质意义(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/article/cdmd-82501-2010024366.htm [63] 李鹏, 张聪, 刘晓瑜, 等, 2017.西藏新达多地区榴辉岩的变质过程研究及其对古特提斯俯冲带演化的限定意义.岩石学报, 33(12):3753-3765. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712005 [64] 孟元库, 2016.藏南冈底斯中段南缘构造演化(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056636.htm [65] 王斌, 解超明, 李才, 等, 2017.青藏高原松多地区温木朗蛇绿岩的发现及其地质意义.地质通报, 36(11):2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017 [66] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [67] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [68] 徐向珍, 杨经绥, 李天福, 等, 2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMPU-Pb年龄及锆石中的包裹体.地质通报, 26(10):1340-1355. doi: 10.3969/j.issn.1671-2552.2007.10.012 [69] 杨婧, 王金荣, 张旗, 等, 2016.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. doi: 10.11867/j.issn.1001-8166.2016.01.0066 [70] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1783-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200612001 [71] 翟庆国, 王军, 李才, 等, 2010.青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征.中国科学(D辑), 40(5):565-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005005 [72] 张丁丁, 张立飞, 赵志丹, 2011.西藏松多榴辉岩变质作用研究.地学前缘, 18(2):116-126. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102010 [73] 张旗, 1990.如何正确使用玄武岩判别图.岩石学报, 6(2):87-94. doi: 10.3321/j.issn:1000-0569.1990.02.010