Re-Os Dating of Molybdenite from Gangqiongla Quartz-Vein Type Mo-Cu Deposit in Tibet and Its Geological Significance
-
摘要: 西藏岗穷拉钼铜矿床是近年在冈底斯带东段新发现的石英脉型钼铜矿.本次研究对岗穷拉矿床8件石英-辉钼矿脉样品中辉钼矿进行Re-Os同位素精确定年.测试结果表明,辉钼矿的模式年龄加权平均值为22.6±0.2 Ma(MSWD=1.3),等时线年龄为24.1±1.3 Ma(MSWD=1.1),二者在误差范围内基本一致,代表了岗穷拉矿床的成矿年龄,该年龄明显早于区域上南冈底斯带斑岩型钼铜矿的成矿时代(集中在17~12 Ma).辉钼矿中Re含量在239.1×10-6~314.7×10-6之间,指示成矿物质可能主要为幔源.结合区域上渐新世-早中新世大规模成矿作用的资料,岗穷拉钼铜矿可能为印度大陆与欧亚大陆碰撞造山过程中晚碰撞与后碰撞转换阶段成矿作用的产物.Abstract: The Gangqiongla Mo-Cu deposit is a newly discovered quartz vein type Mo-Cu deposit in the eastern Gangdise metallogenic belt. This paper first presents the Re-Os geochronology of molybdenite in the Gangqiongla quartz vein Mo-Cu deposit. Eight molybdenite samples from the quartz vein molybdenite yielded a weighted average age of 22.6±0.2 Ma(MSWD=1.3)and an isochron age of 24.1±1.3 Ma (MSWD=1.1), which is interpreted to represent the age of main stage ore, and is earlier than the age ranging from 17 Ma to 12 Ma of other porphyry Cu-Mo mineralization in the southern Gangdise metallogenic belt. The Re contents on molybdenite samples range from 239.1×10-6 to 314.7×10-6, suggesting that mantle materials more or less contribute to the main stage mineralization. Based on the Oligocene-Early Miocene regional mineralization data, the formation of Gangqiongla Mo-Cu deposit was associated with the Early Miocene transition stage from collision to extension between the India and Eurasia continents.
-
Key words:
- quartz vein Mo-Cu deposit /
- molybdenite /
- Re-Os dating /
- Gangqiongla /
- Tibet /
- isotope
-
图 1 冈底斯成矿带地质简图与主要矿产分布图(a)及岗穷拉矿床地质图(b)
Fig. 1. Geological map of Gangdise metallogenic belt and distribution map of major minerals (a) and geological map of Gangqiongla deposit (b)
表 1 岗穷拉矿床辉钼矿Re-Os同位素测年结果
Table 1. Re-Os isotopic data of molybdenites from Gangqiongla deposit
样品
编号样重
(g)Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma) 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ 测定值 1σ JC07 0.010 97 245.9 2.2 0.064 7 0.047 3 154.5 1.4 57.51 0.59 22.33 0.35 JC08 0.010 20 239.1 2.3 0.008 9 0.034 1 150.3 1.4 55.81 0.45 22.28 0.33 JC09 0.010 51 278.1 3.1 0.018 3 0.088 7 174.8 1.9 66.37 0.92 22.79 0.44 JC10 0.010 55 249.7 2.0 0.008 5 0.032 6 156.9 1.2 59.49 0.50 22.75 0.32 JC11 0.010 45 314.7 3.2 0.113 0 0.140 0 197.8 2.0 75.19 0.76 22.81 0.37 JC12 0.010 87 292.9 2.4 0.019 4 0.064 9 184.1 1.5 69.56 0.64 22.68 0.33 JC13 0.010 18 271.0 2.4 0.017 7 0.110 4 170.3 1.5 63.94 0.64 22.53 0.35 JC14 0.011 27 267.5 2.6 0.033 1 0.023 6 168.2 1.6 63.19 0.59 22.55 0.35 注:辉钼矿模式年龄t计算方法为:t=λ-1ln(1+187Os/187Re),λ为187Re的衰变常数1.666×10-11 a-1(±1.02%);测试报告编号(QTNL2013052). 表 2 冈底斯成矿带主要矿床成岩与成矿时代表
Table 2. The dating result of deposits in Gangdise metallogenic belt
序号 矿区 矿种 岩矿石 测年方法 年龄(Ma) 成矿环境 资料来源 1 雄村 铜金矿 辉钼矿 Re-Os 173 俯冲期 唐菊兴等,2010 2 龙根 铅锌矿 花岗斑岩 锆石U-Pb 61.4 主碰撞 段志明等,2014 3 查格勒 铅锌矿 花岗斑岩 锆石U-Pb 63.2 主碰撞 黄瀚霄等,2012 4 斯弄多 铅锌矿 云母 Ar-Ar 61-63 主碰撞 Li et a.,2019 5 拿若松多 铅锌矿 花岗斑岩 锆石U-Pb 62.5 主碰撞 Ji et al., 2014 6 新嘎果 铅锌矿 黑云母花岗岩 锆石U-Pb 56.5 主碰撞 Wang et al., 2016 7 勒青拉 铅锌矿 花岗闪长斑岩 锆石U-Pb 60.8 主碰撞 Wang et al., 2016 8 龙马拉 铅锌矿 黑云二长岩 锆石U-Pb 55.7 主碰撞 Wang et al., 2015b 9 蒙亚啊 铅锌矿 辉钼矿 Re-Os 63.6 主碰撞 Wang et al., 2015b 10 列廷冈 铅锌矿 辉钼矿 Re-Os 62.3 主碰撞 杨毅等,2014 11 亚圭拉 铅锌矿 石英斑岩 锆石U-Pb 62.4 主碰撞 黄克贤等,2012 12 明则 钼矿 辉钼矿 Re-Os 30.3 晚碰撞 闫学义等,2010 13 努日 钨铜矿 辉钼矿 Re-Os 23.6 晚碰撞 闫学义等,2010 14 冲木达 铜金矿 花岗岩 锆石U-Pb 27.7 晚碰撞 莫济海等,2008 15 汤不拉 铜矿 辉钼矿 Re-Os 20.9 后碰撞 王保弟等,2010 16 鸡公村 钼矿 辉钼矿 Re-Os 21.8 后碰撞 张苏坤等,2013 17 甲玛 铜多金属矿 辉钼矿 Re-Os 15.3 后碰撞 Ying et al., 2014 18 驱龙 铜多金属矿 辉钼矿 Re-Os 16.4 后碰撞 孟祥金等,2003 19 拉抗俄 铜钼矿 辉钼矿 Re-Os 13.1 后碰撞 Leng et al., 2016 20 冲江 铜钼矿 辉钼矿 Re-Os 14.8 后碰撞 郑有业等,2004 -
[1] Chen, L., Qin, K. Z., Li, G. M., et al., 2015. Zircon U-Pb Ages, Geochemistry, and Sr-Nd-Pb-Hf Isotopes of the Nuri Intrusive Rocks in the Gangdese Area, Southern Tibet:Constraints on Timing, Petrogenesis, and Tectonic Transformation. Lithos, 212-215:379-396. https://doi.org/10.1016/j.lithos.2014.11.014 [2] Chen, L., Qin, K. Z., Li, J. X., et al., 2011. Fluid Inclusions and Hydrogen, Oxygen, Sulfur Isotopes of Nuri Cu-W-Mo Deposit in the Southern Gangdese, Tibet. Resource Geology, 62(1):42-62. https://doi.org/10.1111/j.1751-3928.2011.00179.x [3] Duan, Z. M., Li, G. M., Li, Y. X., et al., 2014. Geochronology and Geochemical Characteristics of Ore-Bearing Porphyry in Longgen Lead-Zinc Deposit of Middle-Gangdese Metallogenic Belt, Tibet. Mineral Deposits, 33(3):625-638 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201403012 [4] Fei, C. G., Wen, C. Q., Wang, C. S., et al., 2010. Zircon SHRIMP U-Pb Age of Porphyry Granite in the Dongzhongla Lead-Zinic Deposit, Maizhokunggar County, Tibet. Geology in China, 37(2):470-476 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201002021 [5] Foster, J. G., Lambert, D. D., Frick, L. R., et al., 1996. Re-Os Isotopic Evidence for Genesis of Archaean Nickel Ores from Uncontaminated Komatiites. Nature, 382(6593):703-706. https://doi.org/10.1038/382703a0 [6] Hou, Z. Q., Yang, Z. S., Xu, W. Y., et al., 2006a. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4):337-358 (in Chinese with English abstract). [7] Hou, Z. Q., Pan, G. T., Wang, A. J., et al., 2006b. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineralization in Late-Collisional Transformation Setting. Mineral Deposits, 25(5):521-543 (in Chinese with English abstract). [8] Hou, Z. Q., Qu, X. M., Yang, Z. S., et al., 2006c. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6):629-651 (in Chinese with English abstract). [9] Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribution of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet. Mineralium Deposita, 48(2):173-192. https://doi.org/10.1007/s00126-012-0415-6 [10] Huang, H. X., Li, G. M., Zeng, Q. G., et al., 2012. Geochronology of the Chagele Pb-Zn Deposit in Tibet and Its Significance. Geology in China, 39(3):750-759 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203016 [11] Huang, K. X., Zheng, Y. C., Zhang, S., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet. Acta Petrologica et Mineralogica, 31(3):348-360 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203005 [12] Huang, Y., Ding, J., Li, G. M., et al., 2015. U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance. Acta Geologica Sinica, 89(1):99-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201501008 [13] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2014. The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet. Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001 [14] Lang, X. H., Tang, J. X., Chen, Y. C., et al., 2010. Re-Os Dating of Molybdenite from Orebody No.Ⅱ of the Xiongcun Porphyry Copper-Gold Metallogenic District, Xietongmen, Tibet And Its Geological Significance. Journal of Mineralogy and Petrology, 30(4):55-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201004011 [15] Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79:608-622. https://doi.org/10.1016/j.jseaes.2013.08.009 [16] Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2):163-182. https://doi.org/10.1111/rge.12091 [17] Li, G. M., Liu, B., She, H. Q., et al., 2006. Early Himalayan Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China:Evidence from Re-Os Ages of the Chongmuda Skarn-Type Cu-Au Deposit. Geological Bulletin of China, 25(12):1481-1486 (in Chinese with English abstract). [18] Li, H. F., Tang, J. X., Hu, G. Y., et al., 2019. Fluid Inclusions, Isotopic Characteristics and Geochronology of the Sinongduo Epithermal Ag-Pb-Zn Deposit, Tibet, China. Ore Geology Reviews, 107:692-706. https://doi.org/10.1016/j.oregeorev.2019.02.033 [19] Li, H. M., Ye, H. S., Wang, D. H., et al., 2009. Re-Os Dating of Molybdenites from Zhaiwa Mo Deposit in Xiong'er Mountain, Western Henan Province, and Its Geological Significance. Mineral Deposits, 28(2):133-142 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200902003 [20] Mao, J. W., Zhang, Z. C., Zhang, Z. H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12):1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9 [21] Mao, J. W., Zhang, Z. H., 1999. Re-Os Age Dating of Molybdenites in the Xiaoliugou Tungsten Deposit in the Northern Qilian Mountains and Its Signifcance. Geological Review, 45(4):412-417 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002022 [22] Meng, X. J., Hou, Z. Q., Gao, Y. F., et al., 2003. Re-Os Dating for Molybdenite from Qulong Porphyry Copper Deposit in Gangdese Metallogenic Belt, Xizang and Its Metallogenic Significance. Geological Review, 49(6):660-666 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005724 [23] Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2016. Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet. Earth Science, 41(7):1081-1098 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.090 [24] Mo, J. H., Liang, H. Y., Yu, H. X., et al., 2008. Zircon U-Pb Age of Biotite Hornblende Monzonitic Granite for Chongmuda Cu-Au(Mo) deposit in Gangdese Belt, Xizang, China and Its Implications. Geochimica, 37(3):206-212 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200803002 [25] Qu, W. J., Du, A. D., 2003. Highly Precise Re-Os Dating of Molybdenite by ICP-MS with Carius Tube Sample Digestion. Rock and Mineral Analysis, 22(4):254-262 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200304003 [26] Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientica Sinica, 37(4):461-470 (in Chinese with English abstract). [27] Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet:Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3):461-475 (in Chinese with English abstract). [28] Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Beating Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metalloganic Belt. Acta Petrologica Sinica, 26(6):1820-1832(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006016 [29] Wang, L. Q., Cheng, W. B., Tang, J. X., et al., 2016. U-Pb Geochronology, Geochemistry, and H-O-S-Pb Isotopic Compositions of the Leqingla and Xin'gaguo Skarn Pb-Zn Polymetallic Deposits, Tibet, China. Journal of Asian Earth Sciences, 115:80-96. https://doi.org/10.1016/j.jseaes.2015.09.018 [30] Wang, L. Q., Tang, J. X., Deng, J., et al., 2015a. The Longmala and Mengya'a Skarn Pb-Zn Deposits, Gangdese Region, Tibet:Evidence from U-Pb and Re-Os Geochronology for Formation during Early India-Asia Collision. International Geology Review, 57(14):1825-1842. https://doi.org/10.1080/00206814.2015.1029540 [31] Wang, R., Richards, J. P., Zhou, L. M., et al., 2015b. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews, 150:68-94. https://doi.org/10.1016/j.earscirev.2015.07.003 [32] Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet:Implication for Collision-Related Porphyry Cu-Mo±Au Mineralization. Economic Geology, 109(7):1943-1965. https://doi.org/10.2113/econgeo.109.7.1943 [33] Yan, X. Y., Huang, S. F., Du, A. D., 2010. Re-Os Ages of Large Tungsten, Copper and Molybdenum Deposit in the Zetang Orefield, Gangdisê and Marginal Strike-Slip Transforming Metallogenesis. Acta Geologica Sinica, 84(3):398-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201003008 [34] Yang, Y., Duo, J., Liu, H. F., et al., 2014. Re-Os Dating of Molybdenite from the Lietinggang Iron Polymetallic Deposit of Tibet and Its Geological Significance. Geology in China, 41(5):1554-1564 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201405012 [35] Yang, Z. M., Hou, Z. Q., White, N. C., et al., 2009. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3):133-159. https://doi.org/10.1016/j.oregeorev.2009.03.003 [36] Ying, L. J., Wang, C. H., Tang, J. X., et al., 2014. Re-Os Systematics of Sulfides (Chalcopyrite, Bornite, Pyrite and Pyrrhotite) from the Jiama Cu-Mo Deposit of Tibet, China. Journal of Asian Earth Sciences, 79:497-506. https://doi.org/10.1016/j.jseaes.2013.10.004 [37] Zhang, S. K., Zheng, Y. Y., Zhang, G. Y., et al., 2013. Geochronological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3):641-648 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201303014 [38] Zhang, Y., Sun, J. G., Xing, S. W., et al., 2013. Re-Os Dating of Molybdenite from Tianbaoshan Polymetallic Orefield in Yanbian and Its Geological Significance. Mineral Deposits, 32(2):427-435. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201302016 [39] Zhao, J. X., Qin, K. Z., Xiao, B., et al., 2016. Thermal History of the Giant Qulong Cu-Mo Deposit, Gangdese Metallogenic Belt, Tibet:Constraints on Magmatic-Hydrothermal Evolution and Exhumation. Gondwana Research, 36:390-409. https://doi.org/10.1016/j.gr.2015.07.005 [40] Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74:151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024 [41] Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet. Ore Geology Reviews, 70:510-532. https://doi.org/10.1016/j.oregeorev.2015.04.004 [42] Zheng, Y. C., Liu, S. A., Wu, C. D., et al., 2018. Cu Isotopes Reveal Initial Cu Enrichment in Sources of Giant Porphyry Deposits in a Collisional Setting. Geology, 47(2):135-138. https://doi.org/10.1130/g45362.1 [43] Zheng, Y. Y., Gao, S. B., Cheng, L. J., et al., 2004. Finding and Significances of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet. Earth Science, 29(3):333-339 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2004.03.012 [44] Zhou, J. S., Yang, Z. S., Hou, Z. Q., et al., 2017. The Geochemical Evolution of Syncollisional Magmatism and the Implications for Significant Magmatic-Hydrothermal Lead-Zinc Mineralization (Gangdese, Tibet). Lithos, 288-289:143-155. https://doi.org/10.1016/j.lithos.2017.07.004 [45] Zhou, K., Ye, H. S., Mao, J. W., et al., 2009. Geological Characteristics and Molybdenite Re-Os Isotopic Dating of Yuchiling Porphyry Mo Deposit in Western Henan Province. Mineral deposits, 28(2):170-184 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200902006 [46] 段志明, 李光明, 李应栩, 等, 2014.中冈底斯成矿带龙根铅锌矿床含矿斑岩年代学与地球化学特征.矿床地质, 33(3):625-638. doi: 10.3969/j.issn.0258-7106.2014.03.012 [47] 费光春, 温春齐, 王成松, 等, 2010.西藏墨竹工卡县洞中拉铅锌矿床花岗斑岩锆石SHRIMP U-Pb定年.中国地质, 37(2):470-476. doi: 10.3969/j.issn.1000-3657.2010.02.021 [48] 侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [49] 侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [50] 侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [51] 黄瀚霄, 李光明, 曾庆高, 等, 2012.西藏查个勒铅锌矿床成矿时代研究及地质意义.中国地质, 39(3):750-759. doi: 10.3969/j.issn.1000-3657.2012.03.016 [52] 黄克贤, 郑远川, 张松, 等, 2012.西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义.岩石矿物学杂志, 31(3):348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005 [53] 黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. doi: 10.3969/j.issn.1006-0995.2015.01.022 [54] 郎兴海, 唐菊兴, 陈毓川, 等, 2010.西藏谢通门县雄村斑岩型铜金矿集区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义.矿物岩石, 30(4):55-61. doi: 10.3969/j.issn.1001-6872.2010.04.011 [55] 李光明, 刘波, 佘宏全, 等, 2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据.地质通报, 25(12):1481-1486. doi: 10.3969/j.issn.1671-2552.2006.12.018 [56] 李厚民, 叶会寿, 王登红, 等, 2009.豫西熊耳山寨凹钼矿床辉钼矿铼-锇年龄及其地质意义.矿床地质, 28(2):133-142. doi: 10.3969/j.issn.0258-7106.2009.02.003 [57] 毛景文, 张作衡, 1999.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义.地质论评, 45(4):412-417. doi: 10.3321/j.issn:0371-5736.1999.04.012 [58] 孟祥金, 侯增谦, 高永丰, 等, 2003.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质论评, 49(6):660-666. doi: 10.3321/j.issn:0371-5736.2003.06.015 [59] 孟元库, 许志琴, 马士委, 等, 2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7):1081-1098. http://earth-science.net/WebPage/Article.aspx?id=3320 [60] 莫济海, 梁华英, 喻亨祥, 等, 2008.西藏冲木达铜-金(钼)矿床黑云角闪二长花岗岩锆石U-Pb年龄及其意义.地球化学, 37(3):206-212. doi: 10.3321/j.issn:0379-1726.2008.03.002 [61] 屈文俊, 杜安道, 2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-饿地质年龄.岩矿测试, 22(4):254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003 [62] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08 [63] 唐菊兴, 黎风佶, 李志军, 等, 2010.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质, 29(3):461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008 [64] 王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006016 [65] 闫学义, 黄树峰, 杜安道, 2010.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用.地质学报, 84(3):398-406. doi: 10.3969/j.issn.1004-9665.2010.03.017 [66] 杨毅, 多吉, 刘鸿飞, 等, 2014.西藏列廷冈铁多金属矿床辉钼矿Re-Os定年及其地质意义.中国地质, 41(5): 1554-1564. doi: 10.3969/j.issn.1000-3657.2014.05.012 [67] 张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014 [68] 张勇, 孙景贵, 邢树文, 等, 2013.延边天宝山多金属矿田辉钼矿Re-Os同位素年龄及其地质意义.矿床地质, 32(2):427-435. doi: 10.3969/j.issn.0258-7106.2013.02.016 [69] 郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学, 29(3):333-339. doi: 10.3321/j.issn:1000-2383.2004.03.012 [70] 周珂, 叶会寿, 毛景文, 等, 2009.豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄.矿床地质, 28(2):170-184. doi: 10.3969/j.issn.0258-7106.2009.02.006