Characteristics of Thermal Maturity of Graptolite-Bearing Shales in Wufeng-Longmaxi Formations on Northern Margin of Xuefeng Mountain
-
摘要: 五峰组-龙马溪组含笔石富有机质页岩是中国目前最成功和最重要的页岩气勘探目标.由于缺乏镜质体,该地层的成熟度一直存在争议.以雪峰山西侧北缘富含笔石的五峰组-龙马溪组页岩为例,采用笔石表皮体反射率来表征其成熟度特征.该套页岩笔石含量丰富,以非粒状笔石表皮体为主,其具有二轴晶光性特征,最大反射率(GRmax)和双反射率之间表现出正相关关系,成熟度越高的笔石表皮体表现出更强的各向异性.同时,该套地层中也含有丰富的沥青颗粒,其随机反射率与笔石表皮体的最大和随机反射率也呈现了正相关性,其各向异性更弱,但其成因复杂,且颗粒细小,测定较困难,因此,相对而言,作为热成熟指标,笔石表皮体反射率更占优势.雪峰山西侧北缘五峰组-龙马溪组含笔石页岩的成熟度较高,EqVRo值均为3.10%以上,达到了过成熟阶段,是页岩气勘探的有利区.Abstract: The maturity of the Wufeng-Longmaxi Formation organic-rich shales with graptolites, which is now one of the most successful and important shale gas exploration targets in China, has been controversial due to the lack of vitrinite. In this paper, taking this formation shale located on the northern margin of Xuefeng Mountain as an example, the graptolite reflectance is used to represent the maturity characteristics. It is concluded that this shale is rich in graptolite, mainly composed of non-granular graptolites which have biaxial optical characteristics, and its maximum reflectance (GRmax) and bireflectance are positive. In addition, the higher the maturity of the graptolites, the greater the anisotropy of graptolite reflectance. At the same time, this formation is also rich in asphalt particles, and its random reflectance value is also positively correlated with the maximum and random reflectance of the graptolites, and its anisotropy is weaker than the former. However, the reflectance of asphalt particles is difficult to measure because of its complicated formation factor and smaller size. Relatively speaking, the graptolite reflectance is more dominant as a thermal maturity indicator. The Wufeng-Longmaxi Formation shales located on the northern margin of Xuefeng Mountain is a favorable area for shale gas exploration because of its high maturity. The equivalent vitrinite reflectance values (EqVRo) of this shale has reached more than 3.10%, reaching the over-mature stage.
-
Key words:
- shale gas /
- graptolite reflectance /
- Wufeng-Longmaxi Formations /
- thermal evolution /
- petroleum geology
-
图 2 JY1井龙马溪组综合柱状图中TOC等指数变化与笔石带的对照
Fig. 2. Composite column chart of Longmaxi Formation with a correlation between TOC index and graptolite biozones in the Well JY1
图 4 雪峰山西侧北缘五峰组-龙马溪组页岩典型显微组分照片(油浸,反射白光,×50)
a.断续状分布笔石表皮体与固体沥青(TB18);b.断续线状分布笔石表皮体,可见黄铁矿充填几丁虫体(XLD-48); c.笔石表皮体(XLD-56); d.分段笔石表皮体(XLD-74); e.笔石表皮体与固体沥青(J101-4083-V); f.纺锤层结构的笔石表皮体,局部沥青浸染(J101-4083-H); g.断续线状笔石表皮体(J102-3124-V); h.含纺锤层结构的笔石表皮体(J102-3124-H)
Fig. 4. Graptolite fragments in Wufeng-Longmaxi shales (oil immersion, polarized light, ×50)
图 6 研究区五峰组-龙马溪组页岩笔石表皮体双反射率十字图解
据Kilby(1988); a=Rmax; b=Rint; c=Rmin
Fig. 6. Reflectance crossplots and relevant cross-sections across GRIS
表 1 样品信息
Table 1. Sample information
序号 样品编号 地点 深度(m) 层位 岩性 TOC(%) 1 TB-18 田坝剖面 -- S1l 黑色页岩 5.11 2 TB-20 田坝剖面 -- S1l 黑色页岩 2.81 3 XLD-48 湖南龙山 1 488.8 S1l-LM5段 硅质页岩 1.09 4 XLD-56 湖南龙山 1 493.2 S1l-LM5段 硅质页岩 0.86 5 XLD-74 湖南龙山 1 502.7 S1l-WF2段 硅质页岩 3.67 6 J101-4079 湖北远安 4 079 龙一段3小层 黑色页岩 2.63 7 J101-4083-V* 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 8 J101-4083-H** 湖北远安 4 083 龙一段2小层 黄灰色硅质页岩 1.06 9 J102-3114 湖北远安 3 114 龙一段2小层 灰黑色泥页岩 2.53 10 J102-3124-V* 湖北远安 3 124 O3w 灰黑色页岩 3.72 11 J102-3124-H** 湖北远安 3 124 O3w 灰黑色页岩 3.72 注:V*为垂直层理方向的切片,H**为平行层理方向的切片. 表 2 样品成熟度的校正
Table 2. The calibration of sample maturity
样品编号 GRran
(%)GRmin
(%)GRmax
(%)GRmax-GRmin(%) GRmax平均值
(%)测点 EqVRo* TB-18 3.50 0.92 6.88 5.96 5.70 20 3.64 TB-20 3.34 0.68 6.34 5.66 5.44 20 3.47 XLD-48 2.99 0.48 5.62 5.14 4.93 20 3.10 XLD-56 3.03 0.56 5.88 5.32 4.92 20 3.14 XLD-74 3.05 0.76 6.01 5.25 5.28 20 3.16 J101-4079 3.50 0.73 6.66 5.93 5.41 20 3.64 J101-4083-V 3.89 0.55 7.84 7.29 6.29 22 4.05 J102-3114 3.52 0.60 6.09 5.49 5.38 20 3.66 J102-3124-V 3.35 0.45 6.69 6.24 5.75 21 3.48 注:*EqVRo=1.055×GRran-0.053 (GRran为随机反射率,%)( Luo et al., 2018 ). -
[1] Agapitov, I., 2014. Graptolite Shale—Worldwide Distributed Ordovician and Silurian Source Rock. Society of Petroleum Engineers, SPE-173477-STU. https://doi.org/10.2118/173477-STU [2] Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010 [3] Bertrand, R., 1990. Correlations among the Reflectances of Vitrinite, Chitinozoans, Graptolites and Scolecodonts. Organic Geochemistry, 15(6): 565-574. https://doi.org/10.1016/0146-6380(90)90102-6 [4] Borjigin, T., Shen, B.J., Yu, L.J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1):69-78. https://doi.org/10.1016/s1876-3804(17)30009-5 [5] Chen, X., Fan, J.X., Wang, W.H., et al., 2017. Stage-Progressive Distribution Pattern of the Lungmachi Black Graptolitic Shales from Guizhou to Chongqing, Central China. Science in China (Series D: Earth Sciences), 47(6): 720-732 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201706009.htm [6] Chen, X., Rong, J.Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3 [7] Chen, X., Rong, J.Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6):623-650. https://doi.org/10.1017/s0016756800004702 [8] Curtis, J.B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86:1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d [9] Dai, J.X., Zou, C.N., Dong, D.Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76: 444-463. https://doi.org/10.1016/j.marpetgeo.2016.04.027 [10] Dai, J.X., Zou, C.N., Liao, S.M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018 [11] Goodarzi, F., Eckstrand, O.R., Snowdon, L., et al., 1992. Thermal Metamorphism of Bitumen in Archean Rocks by Ultramafic Volcanic Flows. International Journal of Coal Geology, 20(1-2): 165-178. https://doi.org/10.1016/0166-5162(92)90009-l [12] Goodarzi, F., Gentzis, T., Harrison, C., et al., 1992.The Significance of Graptolite Reflectance in Regional Thermal Maturity Studies, Queen Elizabeth Islands, Arctic Canada. Organic Geochemistry, 18(3):347-357. https://doi.org/10.1016/0146-6380(92)90075-9 [13] Goodarzi, F., Norford, B.S., 1989. Variation of Graptolite Reflectance with Depth of Burial. International Journal of Coal Geology, 11(2): 127-141. https://doi.org/10.1016/0166-5162(89)90002-5 [14] Guo, T.L., Liu, R.B., 2013. Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage: Taking Longmaxi Formation in Well JY1 as an Example. Natural Gas Geoscience, 24(4):643-651 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201304000.htm [15] Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.086 [16] Jacob, H., 1989.Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1):65-79. https://doi.org/10.1016/0166-5162(89)90113-4 [17] Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. AAPG Memoir, 97: 89-119. https://doi.org/10.1306/13321447M973489 [18] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [19] Kilby, W.E., 1988. Recognition of Vitrinite with Non-Uniaxial Negative Reflectance Characteristics. International Journal of Coal Geology, 9(3): 267-285. https://doi.org/10.1016/0166-5162(88)90017-1 [20] Kilby, W.E., 1991. Vitrinite Reflectance Measurement—Some Technique Enhancements and Relationships. International Journal of Coal Geology, 19(1-4):201-218. https://doi.org/10.1016/0166-5162(91)90021-A [21] Li, Y.F., Lü, H.G., Zhang, Y., et al., 2015. U-Mo Covariation in Marine Shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and Its Implication for Identification of Watermass Restriction. Geochimica, 44(2):109-116 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201502002 [22] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Shale Lithofacies and Reservoir Space of the Wufeng–Longmaxi Formation, Sichuan Basin, China. Petroleum Exploration and Development, 39(6): 736-743. https://doi.org/10.1016/s1876-3804(12)60098-6 [23] Liang, D.G., Guo, T.L., Chen, J.P., et al., 2008.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1) :Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 13(2):1-16 (in Chinese with English abstract). [24] Luo, Q.Y., Hao, J.Y., Skovsted, C. B., et al., 2017.The Organic Petrology of Graptolites and Maturity Assessment of the Wufeng–Longmaxi Formations from Chongqing, China: Insights from Reflectance Cross-Plot Analysis. International Journal of Coal Geology, 183:161-173. https://doi.org/10.1016/j.coal.2017.09.006 [25] Luo, Q.Y., Hao, J.Y., Skovsted, C. B., et al., 2018.Optical Characteristics of Graptolite-Bearing Sediments and Its Implication for Thermal Maturity Assessment. International Journal of Coal Geology, 195:386-401. https://doi.org/10.1016/j.coal.2018.06.019 [26] Luo, Q.Y., Zhong, N.N., Dai, N., et al., 2016. Graptolite-Derived Organic Matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of Southeastern Chongqing, China: Implications for Gas Shale Evaluation. International Journal of Coal Geology, 153: 87-98. https://doi.org/10.1016/j.coal.2015.11.014 [27] Ma, Y.S., Cai, X.Y., Zhao, P.R., 2018.China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4):561-574 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003 [28] Malinconico, M.A.L., 1993. Reflectance Cross-Plot Analysis of Graptolites from the Anchi-Metamorphic Region of Northern Maine, U.S.A.. Organic Geochemistry, 20(2): 197-207. https://doi.org/10.1016/0146-6380(93)90038-D [29] Petersen, H. I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia: Correlation to Vitrinite Reflectance.International Journal of Coal Geology, 114:1-18. https://doi.org/10.1016/j.coal.2013.03.013 [30] Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54-112. https://doi.org/10.1016/j.coal.2012.02.004 [31] Teng, G.E., Shen, B.J., Yu, L.J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1):69-78 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30009-5 [32] Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence (Second Revised and Enlarged Edition). Springer-Verlag, Berlin Heidelberg, NewYork, 699. https://doi.org/10.1007/978-3-642-87813-8 [33] Wang, G. X., Zhan, R. B., Percival, I. G., 2016. New Data on Hirnantian (Latest Ordovician) Postglacial Carbonate Rocks and Fossils in Northern Guizhou, Southwest China. Canadian Journal of Earth Sciences, 53(7):660-665. https://doi.org/10.1139/cjes-2015-0197 [34] Wang, Y., Qiu, N.S., Yang, Y.F., et al., 2019. Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin. Earth Science, 44(3):953-971 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903022 [35] Wang, Y.M., Dong, D.Z., Li, X.J., et al., 2015.Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry, 35(3):12-21 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S235285401500042X [36] Xiao, X.M., Liu, D.H., Fu, J.M., 1991.The Significance of Bitumen Reflectance as a Mature Parameter of Source Rocks. Acta Sedimentologica Sinica, 9(Suppl.1):138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1991S1018.htm [37] Xiao, X.M., Liu, D.H., Fu, J.M., et al., 1997. Marine Vitrinite—An Important Hydrocarbon Source Matter in Marine Source Rocks. Acta Petrolei Sinica, 18(1):44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB701.007.htm [38] Yang, Y.F., 2016. Application of Bitumen and Graptolite Reflectance in the Silurian Longmaxi Shale, Southeastern Sichuan Basin. Petroleum Geology & Experiment, 38(4):466-472 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201604008 [39] Zeng, F.G., Cheng, K.M., Wu, C.D., 1998. Maturity of the Lower Palaeozoic in North China in Terms of Reflectivity of Marine Vitrinites.Earth Geochemistry, 26(3):21-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067388 [40] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 [41] 陈旭, 樊隽轩, 王文卉, 等, 2017.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式.中国科学(D辑:地球科学), 47(6): 720-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201706005 [42] 郭彤楼, 刘若冰, 2013.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例.天然气地球科学, 24(4): 643-651. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201304001 [43] 郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086 [44] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1): 1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [45] 李艳芳, 吕海刚, 张瑜, 等, 2015.四川盆地五峰组-龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识.地球化学, 44(2): 109-116. http://d.old.wanfangdata.com.cn/Periodical/dqhx201502002 [46] 梁狄刚, 郭彤楼, 陈建平, 等, 2008.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布.海相油气地质, 13(2): 1-16. doi: 10.3969/j.issn.1672-9854.2008.02.001 [47] 马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践.石油勘探与开发, 45(4):561-574. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003 [48] 腾格尔, 申宝剑, 俞凌杰, 等, 2017.四川盆地五峰组-龙马溪组页岩气形成与聚集机理.石油勘探与开发, 44(1): 69-78. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201701009.htm [49] 王晔, 邱楠生, 仰云峰, 等, 2019.四川盆地五峰-龙马溪组页岩成熟度研究.地球科学, 44(3): 953-971. doi: 10.3799/dqkx.2018.125 [50] 王玉满, 董大忠, 李新景, 等, 2015.四川盆地及其周缘下志留统龙马溪组层序与沉积特征.天然气工业, 35(3): 12-21. doi: 10.3787/j.issn.1000-0976.2015.03.002 [51] 肖贤明, 刘德汉, 傅家谟, 1991.沥青反射率作为烃源岩成熟度指标的意义.沉积学报, 9(增刊):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000030119 [52] 肖贤明, 刘德汉, 傅家谟, 等, 1997.海相镜质体——海相烃源岩中一种重要生烃母质.石油学报, 18(1):44-48. doi: 10.3321/j.issn:0253-2697.1997.01.008 [53] 仰云峰, 2016.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用.石油实验地质, 38(4): 466-472. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604008 [54] 曾凡刚, 程克明, 吴朝东, 1998.应用海相镜质组反射率研究华北地区下古生界成熟度.地质地球化学, 26(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067388 [55] 邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6): 641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001