Evaluation of Phreatic Evaporation in Manas River Basin Plain by Bromine Tracing Method
-
摘要: 潜水蒸发是干旱内陆盆地区地下水的主要排泄方式,但其定量评价存在很大的不确定性,是水均衡分析和水资源评价的难点.在新疆玛纳斯河流域平原区,以溴离子为示踪剂于2017年5月在不同土地利用类型区试验点投溴化钠,分别于2017年8月和2018年8月采样测定溴离子垂向分布,根据溴离子垂向运移速率确定潜水蒸发速率.试验点溴离子的浓度在垂向剖面上的分布呈现单峰形态且峰值上移,根据其峰值上移距离计算得出非沙漠区年平均潜水蒸发量为33.59 mm;不同土地利用类型潜水蒸发由强至弱依次为棉田、荒地、林地和沙漠,年平均蒸发量分别为41.71 mm、34.01 mm、11.28 mm、8.58 mm.溴离子示踪法评价潜水蒸发量的结果与前人相符;潜水蒸发速率与土地利用类型、包气带岩性、土壤体积含水量和潜水埋深有关,岩层粘粒含量越高、含水量越高、越靠近细土平原低地势区,潜水蒸发作用越强.Abstract: The phreatic evaporation is the main discharge way of groundwater in arid inland basins,but its quantitative evaluation has great uncertainty,which leads to the difficulty of water balance analysis and water resources evaluation. In the plain area of the Manas River Basin in Xinjiang,saturated sodium bromide was applied at different sites in different land use types as a tracer in May 2017, and soil samples were collected in August 2017 and August 2018 for measuring bromide concentration. The evaporation rate of the phreatic water is determined based on the vertical migration of the bromide peaks. The vertical profiles of bromide ion concentration profiles show mainly a single peak moved upward. According to the upward moving distance of the peak,the annual average phreatic evaporation in the non-desert area is calculated as 33.59 mm. The evaporations of different land use types from strong to weak were cotton field,uncultivated land,forest and desert,and the annual average evaporations were 41.71 mm,34.01 mm,11.28 mm,8.58 mm,respectively. The results of bromide ion tracing method for evaluating the evaporation of phreatic water are consistent with the relevant literature. The phreatic evaporation rates are related to the land use type,the lithology of the aeration zone,the volumetric water content of the soil and the phreatic depth. The higher the clay content of the rock formation is,the higher the water content is,the closer to the low-lying area of the fine soil plain,the stronger phreatic evaporation is.
-
Key words:
- bromide ion tracer /
- Manas River Basin /
- phreatic evaporation /
- hydrogeology
-
表 1 溴示踪计算潜水蒸发速率
Table 1. The phreatic evaporation rates estimated by bromide tracing
土地利用类型 编号 P+I (mm) 时间间隔(d) 上移深度(cm) θ Er (mm/d) E (mm) 沙漠 M-02 42 365 7.3 12.96 0.025 9 9.45 沙漠 M-03 42 365 0.5 12.33 0.001 7 0.62 沙漠 M-04 42 365 7.5 26.32 0.054 1 19.75 沙漠 M-19 42 365 6.0 17.90 0.029 4 10.73 沙漠 M-20 42 365 10.0 4.86 0.013 3 4.85 沙漠 M-24 42 365 5.5 11.00 0.016 6 6.06 棉田 M-14 336 365 15.0 36.18 0.148 7 54.28 棉田 M-16 336 365 9.8 29.71 0.079 8 29.13 林地 M-18 106 365 4.5 30.28 0.037 3 13.61 林地 M-21 106 365 4.2 21.30 0.024 5 8.94 荒地 M-06 106 365 5.0 30.73 0.042 1 15.37 荒地 M-07 106 365 38.0 25.54 0.265 9 97.05 荒地 M-11 106 365 14.5 13.75 0.054 6 19.93 荒地 M-12 106 365 15.2 35.94 0.149 7 54.64 荒地 M-17 106 365 5.0 35.13 0.048 1 17.56 荒地 M-23 106 365 21.5 30.29 0.178 4 65.12 荒地 M-25 106 365 10.0 12.23 0.033 5 12.23 荒地 M-32 106 365 5.5 27.75 0.041 8 15.26 注:P+I为试验期降雨量与灌溉量之和(mm),E为潜水平均年蒸发量(mm). 表 2 斯皮尔曼相关系数
Table 2. Spearman correlation coefficients
P+I(mm) 上移深度
(cm)θ Er(mm/d) P+I(mm) 1.000 0.283 0.672** 0.658** 上移深度(cm) 0.283 1.000 0.140 0.696** θ 0.672** 0.140 1.000 0.711** Er (mm/d) 0.658** 0.696** 0.711** 1.000 注:**表示在置信度(双测)为0.01时,相关性显著. 表 3 新疆潜水蒸发量计算结果比较
Table 3. Comparison of the phreatic evaporations of Xinjiang derived from different methods
参考文献 地点 评价方法 蒸发量(mm) 平均值(mm) 赵玉杰,2012 新疆昌吉 蒸渗仪 10.81~65.40 39.53 孙宝林等,2005 三工河流域 拟合曲线 15.35~35.85 刘芳和魏守忠,2012 三工河流域 拟合曲线 52.99~79.14 周金龙等,2003 新疆平原区 24.74~31.98 -
[1] Bai H.W., Liu Y.F., Jin M.G.. 2017. Generalization of Aquifer Group by Cumulative Transmissivity Method. Earth Science, 42(5): 813-820 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705017 [2] Fan W.B., Wu P.T., Ma F.M.. 2012. Socio-Economic Impacts of Under-Film Drip Irrigation Technology and Sustainable Assessment: A Case in the Manas River Basin, Xinjiang, China. Acta Ecologica Sinica, 32(23): 7559-7567 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c693fb2fc77d7217923b54999fb71181&encoded=0&v=paper_preview&mkt=zh-cn [3] Gomboš M., Pavelková D., Kandra B., et al. 2018. Impact of Soil Texture and Position of Groundwater Level on Evaporation from the Soil Root Zone. Water Resources in Slovakia: Part I, 69: 167-181.https://doi.org/10.1007/698_2017_181 http://cn.bing.com/academic/profile?id=ef2ea84e6f0fc74fe9564338f7a58244&encoded=0&v=paper_preview&mkt=zh-cn [4] Grünberger O., MacAigne P., Michelot J. L., et al. 2008. Salt Crust Development in Paddy Fields Owing to Soil Evaporation and Drainage: Contribution of Chloride and Deuterium Profile Analysis. Journal of Hydrology, 348(1-2): 110-123. https://doi.org/10.1016/j.jhydrol.2007.09.039 http://cn.bing.com/academic/profile?id=3d014184d2417122729dd36e900e1f70&encoded=0&v=paper_preview&mkt=zh-cn [5] Huo S.Y.. 2015. Research on the Effect of Water Table Decline on Vertical Groundwater Recharge: A Case Study in the North China Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [6] Kong F.Z., Wang X.Z.. 1997. Preliminary Study on Calculation of Phreatic Evaporation with Soil Water Suction. Hydrology, 17(3): 44-47 (in Chinese). https://www.sciencedirect.com/science/article/pii/S0013795208003190 [7] Lhomme J. P., Guilioni L.. 2010. On the Link between Potential Evaporation and Regional Evaporation from a CBL Perspective. Theoretical and Applied Climatology, 101(1-2): 143-147. https://doi.org/10.1007/s00704-009-0211-0 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6ef5997706bc54aaba892cfc3cd7a59 [8] Li H., Liang X., Liu Y.F., et al. 2017. Application of Hydrogen and Oxygen Stable Isotopes for Determining Water Sources Used by Cotton in Xinjiang Arid Region. Earth Science, 42(5): 843-852 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705020 [9] Li J.R., Wang Y.H., Tang X.L., et al. 2018. The Spatial-Temporal Characteristics of Land Use Change in the Manas River Basin and Influencing Factors. Chinese Journal of Soil Science, 49(1): 61-68 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trtb201801009 [10] Liu F., Wei S.Z.. 2012. Analysis of Phreatic Evaporation in the Plain Area of Sangong River Basin, Xinjiang. Groundwater, 34(5):143-144 (in Chinese). doi: 10.1007/s11802-006-0029-7 [11] Mao X.M., Yang S.X., Lei Z.D., et al. 1997. Numerical Simulation of Ground Water Evaporation from Bare Soil in Yerqiang River Basin. Advances in Water Science, 8(4):313-320 (in Chinese with English abstract). [12] Meissner R., Rupp H., Seyfarth M.. 2008. Advances in Out Door Lysimeter Techniques. Water, Air & Soil Pollution: Focus, 8(2): 217-225. https://doi.org/10.1007/s11267-007-9166-2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f9d250107b7a80480d84055190b9a12 [13] Scanlon B.R., Healy R.W., Cook P.G.. 2002. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeology Journal, 10(1): 18-39. https://doi.org/10.1007/s10040-002-0200-1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1b763d19fc42392ca4f6163cfeecda5 [14] Shang S.H., Mao X.M.. 2010. Research Progress on Evaporation from Phreatic Water. Advances in Science and Technology of Water Resources, 30(4): 85-89, 94 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a10c6090e607432dad15f885da7b3996&encoded=0&v=paper_preview&mkt=zh-cn [15] Sharma M. L., Hughes M. W.. 1985. Groundwater Recharge Estimation Using Chloride, Deuterium and Oxygen—18 Profiles in the Deep Coastal Sands of Western Australia. Journal of Hydrology, 81(1-2): 93-109. https://doi.org/10.1016/0022-1694(85)90169-6 [16] Shi Y.Y., Ma G.J., Wang Y.Y., et al. 2018. Present Situation and Development Trend of Ecological Water Requirement for Vegetation in Desert: A Case Study of Minqin County. Journal of Water Resources and Water Engineering, 29(2): 34-38, 44 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201802006 [17] Sun B.L., Wei S.Z., Ma J., et al. 2005. Phreatic Evaporation Characteristics and Regulation in the Alluvial Plain Area of the Sangong River Basin, Xinjiang. Groundwater, 27(5): 352-353 (in Chinese). [18] Tan X.C., Yang J.Z., Song X.H., et al. 2013. Estimation of Groundwater Recharge in North China Plain. Advances in Water Science, 24(1): 73-81 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/skxjz201301010 [19] Wang B. G., Jin M. G., Nimmo J. R., et al. 2008. Estimating Groundwater Recharge in Hebei Plain, China under Varying Land Use Practices Using Tritium and Bromide Tracers. Journal of Hydrology, 356(1-2): 209-222. https://doi.org/10.1016/j.jhydrol.2008.04.011 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7e85d2ef3900016d8dedaa4478f9603 [20] Wu Q.H.. 2013. Quantifying Preferential Flow for the Soil Water Infiltration (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [21] Wu Q.H., Zhang W., Lin W.J., et al. 2014. The Estimation of Groundwater Recharge and Preferential Flow Based on the Applied Tracers: A Case Study of Luancheng and Hengshui Areas in Hebei Province. Acta Geoscientica Sinica, 35(4): 495-502 (in Chinese with English abstract). [22] Yang X.L., Zeng J.C., Mao W., et al. 2018. Using Tracer to Study Salt Leaching from Root Zones in Hetao Irrigation District. Journal of Irrigation and Drainage, 37(7): 83-90 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ggps201807012 [23] Zhao Y.J.. 2012. A Study on the Influence Factors and Calculation Method for Phreatic Water in Xinjiang Plain Area (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract). [24] Zhou J.L., Dong X.G., Wang B.. 2003. Study on Phreatic Evaporation in Xinjiang Plain Area. Geotechnical Investigation and Surveying, 31(5): 23-27 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gckc200305007 [25] 白宏伟, 刘延锋, 靳孟贵. 2017.含水岩组概化的累积导水系数法.地球科学, 42(5): 813-820. doi: 10.3799/dqkx.2017.069 [26] 范文波, 吴普特, 马枫梅. 2012.膜下滴灌技术生态-经济与可持续性分析:以新疆玛纳斯河流域棉花为例.生态学报, 32(23): 7559-7567. http://d.old.wanfangdata.com.cn/Periodical/stxb201223032 [27] 霍思远. 2015.潜水位下降对入渗补给的影响研究——以华北平原为例(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1015709828.htm [28] 孔凡哲, 王晓赞. 1997.利用土壤水吸力计算潜水蒸发初探.水文, 17(3): 44-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700842969 [29] 李惠, 梁杏, 刘延锋, 等. 2017.基于氢氧稳定同位素识别干旱区棉花水分利用来源.地球科学, 42(5): 843-852. doi: 10.3799/dqkx.2017.072 [30] 李菊荣, 王延华, 唐湘玲, 等. 2018.新疆玛纳斯河流域土地利用变化特征及影响因素研究.土壤通报, 49(1):61-68. http://d.old.wanfangdata.com.cn/Periodical/trtb201801009 [31] 刘芳, 魏守忠. 2012.新疆三工河流域平原区潜水蒸发特征分析.地下水, 34(5): 143-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs201205059 [32] 毛晓敏, 杨诗秀, 雷志栋, 等. 1997.叶尔羌河流域裸地潜水蒸发的数值模拟研究.水科学进展, 8(4): 313-320. http://www.cnki.com.cn/Article/CJFDTotal-SKXJ704.002.htm [33] 尚松浩, 毛晓敏. 2010.潜水蒸发研究进展.水利水电科技进展, 30(4): 85-89, 94. http://d.old.wanfangdata.com.cn/Periodical/slsdkjjz201004020 [34] 石媛媛, 马国军, 王雅云, 等. 2018.荒漠绿洲植被生态需水研究现状及发展趋势:以民勤县为例.水资源与水工程学报, 29(2): 34-38, 44. http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201802006 [35] 孙宝林, 魏守忠, 马健, 等. 2005.新疆三工河流域冲洪积平原区潜水蒸发特征与潜水调控.地下水, 27(5): 352-353. http://d.old.wanfangdata.com.cn/Periodical/dixs200505012 [36] 谭秀翠, 杨金忠, 宋雪航, 等. 2013.华北平原地下水补给量计算分析.水科学进展, 24(1): 73-81. http://d.old.wanfangdata.com.cn/Periodical/skxjz201301010 [37] 吴庆华. 2013.基于土壤水入渗补给的优先流定量研究(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-1013233482.htm [38] 吴庆华, 张薇, 蔺文静, 等. 2014.人工示踪方法评价地下水入渗补给及其优先流程度:以河北栾城和衡水为例.地球学报, 35(4): 495-502. http://d.old.wanfangdata.com.cn/Periodical/dqxb201404018 [39] 杨雪玲, 曾季才, 毛威, 等. 2018.基于人工示踪方法的河套灌区根系层净淋滤水量研究.灌溉排水学报, 37(7): 83-90. http://d.old.wanfangdata.com.cn/Periodical/ggps201807012 [40] 赵玉杰. 2012.新疆平原区潜水蒸发影响因素与计算方法研究(硕士学位论文).乌鲁木齐: 新疆农业大学. http://cdmd.cnki.com.cn/Article/CDMD-10758-1013131825.htm [41] 周金龙, 董新光, 王斌. 2003.新疆平原区潜水蒸发研究.工程勘察, 31(5): 23-27. http://d.old.wanfangdata.com.cn/Periodical/dixs200505012