Deformation and Geochronological Characteristics of Gudonghe Ductile Shear Zone in Yanbian Area
-
摘要: 古洞河韧性剪切带位于兴蒙造山带东段南缘,其变形特征和时间对探讨延边地区晚古生代-中生代构造演化具有重要意义.鉴于此,对该韧性剪切带进行了锆石U-Pb年代学和显微构造解析,以期限定韧性剪切带变形时间和特征.研究结果显示,古洞河韧性剪切带具有多期变形的特征,晚期变形糜棱叶理倾向为西,倾角较缓,线理倾伏向为南西,具有由南西向北东方向右行逆冲的特征.其分形维数值为1.159~1.214,Flinn参数K值为0.19~0.31,Kruhl温度计显示变形温度为450~550℃,石英动力重结晶粒径估算的差应力值为16.83~20.09 MPa,古应变速率为10-12~10-14 s-1.古洞河韧性剪切带花岗质糜棱岩锆石U-Pb年龄为192±2 Ma,晚期变形时代应为早侏罗世,形成应与早侏罗世古太平洋板块向欧亚大陆俯冲有关.Abstract: The Gudonghe ductile shear zone, located in southern section of eastern Xing-Meng orogenic belt, is a key to understanding the Late Paleozoic-Early Mesozoic tectonic evolution in Yanbian area. In this paper, zircon U-Pb dating and microstructure analysis were done for constraining the deformation time and features of Gudonghe ductile shear zone. The results show that Gudonghe ductile shear zone represents a multi-phase suite of mylonites with dextral shear thrust characteristics and W gneissosity and SW lineation. Systematic measurement of finite strains of Quartz in later mylonites indicates that the K value is 0.19 to 0.31. And Kruhl thermometer shows that the deformation temperatures of ductile shear zone range from 450 to 550℃. Fractal analysis shows that the numbers of fractal dimension vary from 1.159 to 1.214. The paleo-stress values from dynamically recrystallized grain sizes of quartz are 16.83 to 20.09 MPa, while estimated strain rates are on the order of 10-12 to 10-14 s-1. The zircon U-Pb dating of granitic mylonite is 192±2 Ma, indicating that the deformation time of Gudonghe ductile shear zone is not earlier than Early Jurassic and the deformation features show the ductile shear zone thrust from southwest to northeast. However, the tectonic setting of Gudonghe ductile shear zone is mostly related to the subduction of paleo-Pacific beneath the Eurasian continent.
-
表 1 研究区糜棱叶理统计
Table 1. The data of mylinitic foliation in the study area
序号 倾向 倾角(°) 纬度(N) 经度(E) 1 281 33 42°21ˊ12" 129°17ˊ5" 2 294 40 42°21ˊ17" 129°17ˊ8" 3 270 15 42°23ˊ26" 129°17ˊ34" 4 275 55 42°21ˊ12" 129°15ˊ6" 5 280 50 42°22ˊ55" 129°14ˊ7" 6 260 45 42°22ˊ53" 129°14ˊ7" 7 320 27 42°21ˊ42" 129°16ˊ30" 8 270 45 42°19ˊ20" 129°12ˊ52" 9 265 25 42°20ˊ28" 129°17ˊ5" 10 265 25 42°19ˊ54" 129°16ˊ17" 11 300 55 42°18ˊ52" 129°16ˊ14" 12 315 30 42°18ˊ45" 129°15ˊ56" 13 315 33 42°19ˊ26" 129°15ˊ44" 表 2 古洞河韧性剪切带有限应变测量数据
Table 2. Data of finite-strain measurement from Gudonghe ductile shear zone
样品号 X/Y Y/Z X/Z ln(X/Y) ln(Y/Z) K= ln(X/Y)/ln(Y/Z) BJ8 1.14 2.00 2.28 0.13 0.69 0.19 BJ9 1.22 2.22 2.70 0.20 0.80 0.25 BJ13 1.33 2.50 3.30 0.28 0.91 0.31 表 3 石英动态重结晶颗粒边界的分形特征和古差力应力值
Table 3. Fractal characteristics of dynamically recrystallized quartz grain boundary in mylonites and estimation of paleo-stress
样品号 测量数 粒径分布(μm) 平均粒径(μm) 周长分布(μm) 平均周长(μm) 分形维数D 相关系数 古差力应力值 BJ8 60 25.82~209.64 82.82 211~2 534 703.55 1.216 0.943 20.09 BJ9 60 35.95~193.01 94.99 211~2 257 814.45 1.216 0.943 18.02 BJ13 59 31.89~401.00 103.56 211~3 452 884.08 1.159 0.959 16.83 注:古差力应力值根据Stipp(2003)计算. 表 5 不同方法估算的应变速率
Table 5. Estimation of strain rate by different methods
样品号 Δσ(MPa) 温度(℃) Parrish et al.(1976) Koch et al.(1989) Koch (1983) Kronenberg and Tullis(1984) Paterson and Luan(1990) Hirth et al.(2001) BJ8 20.09 450 10-15 10-14 10-14 10-12 10-13 10-16 550 10-13 10-13 10-12 10-10 10-12 10-15 BJ9 18.02 450 10-15 10-14 10-14 10-12 10-14 10-16 550 10-13 10-13 10-13 10-11 10-12 10-15 BJ13 16.83 450 10-15 10-14 10-14 10-12 10-14 10-17 550 10-13 10-13 10-13 10-11 10-12 10-15 -
[1] Di, X., Lu, X.B., Shi, Y.Q., et al., 2008. Tectonic Microlithon Division and Metamorphic, Deformational Characteristics of Epicontinental Mobile Belt, East Part of North Margin of North China Plate. Jilin Geology, 27(4): 10-15(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jldz200804003 [2] Du, Q. X., Han, Z. Z., Shen, X. L., et al., 2019. Geochronology and Geochemistry of Permo-Triassic Sandstones in Eastern Jilin Province (NE China): Implications for Final Closure of the Paleo-Asian Ocean. Geoscience Frontiers, 10(2): 683-704. https://doi.org/10.1016/j.gsf.2018.03.014 [3] Ge, X.H., 1990. Geotectonics and Tectonic Evolution of Eastern Jilin Province. Geoscience, 4(1): 107-113(in Chinese with English abstract). [4] Guan, Q.B., 2018. Permian-Early Jurassic Tectonic Evolution of Kaiyuan-Yanji Area in the Eastern Segment of the Northern Margin of the North China Block(Dissertation). Jilin University, Changchun, 20-80 (in Chinese with English abstract). [5] Guan, Q.B., Li, S.C., Zhang, C., et al., 2016. Zircon U-Pb Dating, Geochemistry and Geological Significance of the Ⅰ-Type Granites in Helong Area, the Eastern Section of the Southern Margin of Xing-Meng Orogenic Belt. Acta Petrologica Sinica, 32(9): 2690-2706(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609007 [6] Hacker, B. R., Yin, A., Christie, J. M., et al., 1990. Differential Stress, Strain Rate, and Temperatures of Mylonitization in the Ruby Mountains, Nevada: Implications for the Rate and Duration of Uplift. Journal of Geophysical Research:Solid Earth, 95(B6): 8569-8580. doi: 10.1029/JB095iB06p08569 [7] Hirth, G., Teyssier, C., Dunlap, J. W., 2001. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences, 90(1): 77-87. https://doi.org/10.1007/s005310000152 [8] Koch, P.S., 1983. Rheology and Microstructures of Experimentally Deformed Quartz Aggregates. University of California, CA, Los Angeles. [9] Koch, P. S., Christie, J. M., Ord, A., et al., 1989. Effect of Water on the Rheology of Experimentally Deformed Quartzite. Journal of Geophysical Research: Solid Earth, 94(B10): 13975-13996. https://doi.org/10.1029/jb094ib10p13975 [10] Kronenberg, A. K., Tullis, J., 1984. Flow Strengths of Quartz Aggregates: Grain Size and Pressure Effects Due to Hydrolytic Weakening. Journal of Geophysical Research: Solid Earth, 89(B6): 4281-4297. https://doi.org/10.1029/jb089ib06p04281 [11] Kruhl, J. H., Nega, M., 1996. The Fractal Shape of Sutured Quartz Grain Boundaries: Application as a Geothermometer. Geologische Rundschau, 85(1): 38-43. https://doi.org/10.1007/s005310050049 [12] Kruhl, J.H., Nega, M., Milla, H. E., 1995. The Fractal Shape of Grain Boundary Sutures: Reality, Model and Application as a Geothermometer. Conference Fractal and Dynamic Systems in Geosiences, 85(1):38 - 43. [13] Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [14] Li, M., Ren, B.F., Teng, X.J., et al., 2018. Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt. Earth Science, 43(12): 4586-4605(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812023 [15] Li, C.D., 2005. The Formation and Evolution of Huangniling Tectonic Belt in the Eastern Segment of Northern Margin of the North China Block(Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 15-100 (in Chinese with English abstract). [16] Liang, C.Y., Liu, Y.J., Meng, J.Y., et al., 2015. Strain and Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Shulan Ductile Shear Zone. Earth Science, 40(1): 115-129(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201501008 [17] Liu, X.W., Shen, N.H., Ge, X.H., 1994. Mesozoic Collision Tectonics in Eastern Jilin and Heilongjiang Provinces, Northeast China. Journal of Changchun University of Earth Sciences, 24(4): 385-389(in Chinese with English abstract). [18] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [19] Liu, Y.X., 1989. The Characteristics and Significance for Gold Deposits of Huifahe-Gudonghe Ductile Shear Zone. Global Geology, 8(1):59-72(in Chinese). [20] Ma, X. H., Zhu, W. P., Zhou, Z. H., et al., 2017. Transformation from Paleo-Asian Ocean Closure to Paleo-Pacific Subduction: New Constraints from Granitoids in the Eastern Jilin-Heilongjiang Belt, NE China. Journal of Asian Earth Sciences, 144: 261-286. https://doi.org/10.1016/j.jseaes.2016.11.003 [21] Mercier, J. C. C., Anderson, D. A., Carter, N. L., 1977. Stress in the Lithosphere: Inferences from Steady State Flow of Rocks. Pure and Applied Geophysics PAGEOPH, 115(1-2): 199-226. https://doi.org/10.1007/bf01637104 [22] Parrish, D. K., Krivz, A. L., Carter, N. L., 1976. Finite-Element Folds of Similar Geometry. Tectonophysics, 32(3-4): 183-207. https://doi.org/10.1016/0040-1951(76)90062-7 [23] Paterson, M. S., Luan, F. C., 1990. Quartzite Rheology under Geological Conditions. Geological Society, London, Special Publications, 54(1): 299-307. https://doi.org/10.1144/gsl.sp.1990.054.01.26 [24] Poirier, J.P., 1985. Creep of Crystals. Cambridge University Press, New York. [25] Rutter, E. H., Brodie, K. H., 2004a. Experimental Grain Size-Sensitive Flow of Hot-Pressed Brazilian Quartz Aggregates. Journal of Structural Geology, 26(11): 2011-2023. https://doi.org/10.1016/j.jsg.2004.04.006 [26] Rutter, E. H., Brodie, K. H., 2004b. Experimental Intracrystalline Plastic Flow in Hot-Pressed Synthetic Quartzite Prepared from Brazilian Quartz Crystals. Journal of Structural Geology, 26(2): 259-270. https://doi.org/10.1016/s0191-8141(03)00096-8 [27] Shang, Q.Q., Ren, Y.S., Chen, C., et al., 2017. Tectonic Setting of Guandi Iron Deposit and Archean Crustal Growth of Helong Massif in NE China: Evidence from Petrogeochemistry, Zircon U-Pb Geochronology and Hf Isotope. Earth Science, 42(12): 2208-2228(in Chinese with English abstract). [28] Shao, J.B., Bi, S.Y., 1995. Geologic Features of NE Faulted Zone in the Eastern Part of Jilin Province and Its Crustal Evolution. Jilin Geology, 14(1):35-39(in Chinese with English abstract). [29] Stipp, M., 2003. The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 30(21): 2088. https://doi.org/10.1029/2003gl018444 [30] Stipp, M., Tullis, J., Scherwath, M., et al., 2010. A New Perspective on Paleopiezometry: Dynamically Recrystallized Grain Size Distributions Indicate Mechanism Changes. Geology, 38(8): 759-762. https://doi.org/10.1130/g31162.1 [31] Takahashi, M., Nagahama, H., Masuda, T., et al., 1998. Fractal Analysis of Experimentally, Dynamically Recrystallized Quartz Grains and Its Possible Application as a Strain Rate Meter. Journal of Structural Geology, 20(2-3): 269-275. https://doi.org/10.1016/s0191-8141(97)00072-2 [32] Tang, K.D., Shao, J.A., Li, J.C., et al., 2004. Nature of the Yanbian Suture Zone and Structure of Northeast Asia. Geological Bulletin of China, 23(9-10): 885-891(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200409009 [33] Twiss, R. J., 1977. Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure and Applied Geophysics PAGEOPH, 115(1-2): 227-244. https://doi.org/10.1007/bf01637105 [34] Wang, X.S., Zheng, Y.D., Yang, C.H., et al., 2001. Determination of the Deformation Temperature and Strain Rate by the Fractal Shape of Dynamically Recrystallized Quartz Grains. Acta Petrologica et Mineralogica, 20(1): 36-41(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200101005 [35] Wang, Z. W., Pei, F. P., Xu, W. L., et al., 2016. Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Zircon U-Pb-Hf Isotopes and Geochemistry of Early Paleozoic Rocks in Yanbian Region, NE China. Gondwana Research, 38: 334-350. https://doi.org/10.1016/j.gr.2016.01.004 [36] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [37] Zeng, Q.D., Dai, X.Y., Liu, S.C., 1994. Structural Deformation Sequence of the Jinchengdong Greenstone Belt. Jilin Geology, 13(1): 60-68(in Chinese with English abstract). [38] Zhang, C., 2014. The Mesozoic Tectonic Evolution of Yanbian Area in the Eastern Segment of Northern Margin of the North China Block(Dissertation). Jilin University, Changchun, 10-90(in Chinese with English abstract). [39] Zheng, Y.D., Chang, Z.Z., 1985. Finite Strain Measurement and Ductile Shear Zones. Geological Publishing House, Beijing(in Chinese). [40] Zhou, J.B., Han, J., Wilde, S.A., et al., 2013. A Primary Study of the Jilin-Heilongjiang High-Pressure Metamorphic Belt: Evidence and Tectonic Implications. Acta Petrologica Sinica, 29(2):386-398(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302004 [41] 邸新, 卢兴波, 时玉琴, 等, 2008.华北板块北缘东段陆缘活动带构造岩片划分及变质变形特征.吉林地质, 27(4): 10-15. doi: 10.3969/j.issn.1001-2427.2008.04.003 [42] 葛肖虹, 1990.吉林省东部的大地构造环境与构造演化轮廓.现代地质, 4(1): 107-113. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ199001010.htm [43] 关庆彬, 2018.华北板块北缘东段开原-延吉地区二叠纪-早侏罗世构造演化(博士学位论文).长春: 吉林大学, 20-80. [44] 关庆彬, 李世超, 张超, 等, 2016.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 32(9): 2690-2706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609007 [45] 李承东, 2005.华北地块北缘东段黄泥岭构造带形成和演化(博士学位论文).北京: 中国科学院地质与地球物理研究所, 15-100. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y805187 [46] 李敏, 任邦方, 滕学建, 等, 2018.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义.地球科学, 43(12): 4586-4605. doi: 10.3799/dqkx.2017.598 [47] 梁琛岳, 刘永江, 孟婧瑶, 等, 2015.舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算.地球科学, 40(1): 115-129. doi: 10.3799/dqkx.2015.008 [48] 刘先文, 申宁华, 葛肖虹, 1994.吉黑东部中生代两种机制的碰撞构造.长春地质学院学报, 24(4): 385-389. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ404.004.htm [49] 刘永祥, 1989.辉发河-古洞河韧性剪切带特征及其对形成金矿床的意义.世界地质, 8(1): 59-72. http://www.cnki.com.cn/Article/CJFDTotal-SJDZ198901011.htm [50] 商青青, 任云生, 陈聪, 等, 2017.延边官地铁矿构造背景与和龙地块太古宙地壳增生:来自岩石地球化学、锆石U-Pb年代学及Hf同位素证据.地球科学, 42(12): 2208-2228. doi: 10.3799/dqkx.2017.611 [51] 邵建波, 毕守业, 1995.吉林省东部主要北东向断裂带地质特征及地壳演化.吉林地质, 14(1): 35-39. http://www.cnki.com.cn/article/cjfd1995-jldz501.004.htm [52] 唐克东, 邵济安, 李景春, 等, 2004.吉林延边缝合带的性质与东北亚构造.地质通报, 23(9-10): 885-891. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409009 [53] 王新社, 郑亚东, 杨崇辉, 等, 2001.用动态重结晶石英颗粒的分形确定变形温度及应变速率.岩石矿物学杂志, 20(1): 36-41. doi: 10.3969/j.issn.1000-6524.2001.01.005 [54] 曾庆栋, 戴薪义, 刘世臣, 1994.吉林省金城洞绿岩带构造变形序列.吉林地质, 13(1): 60-68. http://www.cnki.com.cn/Article/CJFDTotal-JLDZ401.008.htm [55] 张超, 2014.华北板块北缘东段延边地区中生代构造演化(博士学位论文).长春: 吉林大学, 10-90. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267893.htm [56] 郑亚东, 常志忠, 1985.岩石有限应变测量及韧性剪切带.北京:地质出版社. [57] 周建波, 韩杰, WildeSimon, A., 等, 2013.吉林-黑龙江高压变质带的初步厘定:证据和意义.岩石学报, 29(2): 386-398. http://d.old.wanfangdata.com.cn/Conference/8159528 -
dqkx-44-10-3252-TableS1.pdf