Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia
-
摘要: 农业作为通辽科尔沁地区的传统产业,是当地重要经济产业之一.了解土壤微生物群落结构和功能及其影响因素对农作物种植、污染土地修复等具有重要意义.采用Illumina Miseq高通量测序技术、FAPROTAX.1.1功能预测平台等方法,在该区采集71个土壤样品,分析其地球化学特征和微生物群落特征并对微生物群落进行功能预测,同时探讨不同环境因子和空间因子对微生物群落的影响.结果显示:微生物群落由变形菌门(Proteobacteria)(19.77%)、奇古菌门(Thaumarchaeota)(17.85%)、酸杆菌门(Acidobacteria)(17.14%)和放线菌门(Actinobacteria)(15.58%)等构成;功能预测表明该区存在大量活跃的参与氮循环过程的微生物功能群,其中有氧氨氧化功能群为该区的优势微生物功能群.方差分解分析显示,在对微生物群落结构差异的可解释范围内环境因子比空间因子的解释量更大.Mantel检验结果显示,整体微生物群落与土壤pH、EC、TN、C/N及Mg、Na、Sr元素含量显著相关(p < 0.05).综合分析表明,pH、EC和Sr元素含量是影响通辽科尔沁地区土壤微生物群落结构和功能及多样性的主要环境因素.Abstract: As a traditional industry in the Horqin area of Tongliao City,agriculture plays a pivotal role in the development of economy. Understanding the structure and function of soil microbial communities and their influencing factors is of great significance for crop planting and remediation of contaminated land. In this study,microbial community and function composition were investigated in a total of 71 soil samples collected from the Horqin area of Tongliao City with an integrated approach including 16S rRNA gene-based Illumina Miseq high-throughput sequencing technology and FAPROTAX.1.1 functional prediction platform,followed by statistical analysis with the use of R software package. The results show that the microbial communities in the studied soils were mainly composed of Proteobacteria (19.77%),Thaumarchaeota (17.85%),Acidobacteria (17.14%),Actinobacteria (15.58%). The functional prediction indicates that a large portion of the microbial communities in the studied soils were involved in nitrogen cycling,among which aerobic ammonia oxidation function predominated. Variation partition analysis (VPA) indicates that environmental factors accounted much more for the shaping of microbial community structure in interpretable range than spatial factors. Mantel test shows that the microbial communities in the studied soils were significantly (p < 0.05) correlated with soil pH,electrical conductivity (EC),total nitrogen (TN),ratio of carbon to nitrogen,and concentration of Mg,Na and Sr elements. It is concluded that pH,EC and Sr element concentrations were important environmental factors affecting the microbial community composition,function and diversity in the soils of the Horqin area of Tongliao City.
-
Key words:
- soil /
- microbial community /
- population composition /
- function /
- environmental response /
- ecology
-
表 1 采样区71个土壤样品理化指标
Table 1. Geochemical parameters of 71 soil samples in the Tongliao area
参数 最小值 最大值 平均值 pH 6.61 9.91 7.76 EC (μS/cm) 18.63 1083 145.48 C/N 13.07 165.83 41.11 C/H 2.1 6.39 3.68 TN (%) 0.01 0.13 0.06 TC (%) 0.62 6.03 2.42 TS (%) 0.02 0.27 0.05 TH (%) 0.25 1.38 0.64 TOC (%) 0.21 2.82 0.86 Ca (mg/g) 9.7 55.1 23.8 Fe (mg/g) 13.4 35.1 20 K (mg/g) 18.4 25.6 23 Mg (mg/g) 3.5 12.1 6.5 Na (mg/g) 11 23.6 16.8 P (μg/g) 200 1 740.00 476.34 Zn (μg/g) 30 117 48.48 Mn (μg/g) 362 807 486.69 Cu (μg/g) 6.4 28.1 13.42 Ge (μg/g) 0.02 0.82 0.37 Ni (μg/g) 9.2 35.8 18.06 Pb (μg/g) 15.3 24.1 18.22 Se (μg/g) 0.06 0.23 0.1 Sr (μg/g) 208 369 260.42 As (μg/g) 3 16.7 7.76 Cd (μg/g) 0.03 0.2 0.11 Cr (μg/g) 20 52 32.28 Ga (μg/g) 11.6 20.2 14.31 -
[1] Borcard D., Legendre P., Avois-Jacquet C., et al.2004. Dissecting the Spatial Structure of Ecological Data at Multiple Scales. Ecology, 85(7):1826-1832.https://doi.org/10.1890/03-3111 doi: 10.1890-03-3111/ [2] Brockett B. F. T., Prescott C. E., Grayston S. J.. 2012. Soil Moisture is the Major Factor Influencing Microbial Community Structure and Enzyme Activities across Seven Biogeoclimatic Zones in Western Canada. Soil Biology and Biochemistry, 44(1): 9-20. https://doi.org/10.1016/j.soilbio.2011.09.003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0532e75a979fc1cf813ed8009af109f [3] Chaer G., Fernandes M., Myrold D., et al. 2009. Comparative Resistance and Resilience of Soil Microbial Communities and Enzyme Activities in Adjacent Native Forest and Agricultural Soils. Microbial Ecology, 58(2): 414-424. https://doi.org/10.1007/s00248-009-9508-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87fdf61b563f4f8a0584733c4948f18d [4] Chen M.L., Zeng Q.C., Huang Y.M., et al. 2018. Effects of the Farmland-to-Forest/Grassland Conversion Program on the Soil Bacterial Community in the Loess Hilly Region. Environmental Science, 39(4): 1824-1832 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201804044 [5] Chu H. Y., Fierer N., Lauber C. L., et al. 2010. Soil Bacterial Diversity in the Arctic is not Fundamentally Different from that Found in other Biomes. Environmental Microbiology, 12(11): 2998-3006. https://doi.org/10.1111/j.1462-2920.2010.02277.x [6] Chu H. Y., Lin X. G., Fujii T., et al. 2007. Soil Microbial Biomass, Dehydrogenase Activity, Bacterial Community Structure in Response to Long-Term Fertilizer Management.Soil Biology and Biochemistry, 39(11): 2971-2976. https://doi.org/10.1016/j.soilbio.2007.05.031 [7] Degrune F., Dufrêne M., Colinet G., et al. 2015. A Novel Subphylum Method Discriminates Better the Impact of Crop Management on Soil Microbial Community. Agronomy for Sustainable Development, 35(3): 1157-1166. https://doi.org/10.1007/s13593-015-0291-4 [8] Ding Z.L., Wu J.P., You A.Q., et al.2017.Effects of Heavy Metals on Soil Microbial Community Structure and Diversity in the Rice (Oryza Sativa L. subsp. Japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) Rhizosphere. Soil Science & Plant Nutrition, 63(1):75-83. https://doi.org/10.1080 /00380768.2016.1247385 [9] Edgar R. C.. 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods, 10(10): 996-998. https://doi.org/10.1038/nmeth.2604 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231145773/ [10] Fierer N., Bradford M. A., Jackson R. B.. 2007. Toward an Ecological Classification of Soil Bacteria. Ecology, 88(6): 1354-1364. https://doi.org/10.1890/05-1839 doi: 10.1890-05-1839/ [11] Garbeva P., Postma J., van Veen J. A., et al. 2006. Effect of Above-Ground Plant Species on Soil Microbial Community Structure and Its Impact on Suppression of Rhizoctonia Solani AG3. Environmental Microbiology, 8(2): 233-246. https://doi.org/10.1111/j.1462-2920.2005.00888.x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a758f5903563a1eab7cbe29e78d52bb [12] Guan X. Y., Wang J. F., Zhao H., et al. 2013. Soil Bacterial Communities Shaped by Geochemical Factors and Land Use in a Less-Explored Area, Tibetan Plateau. BMC Genomics, 14(1): 820. https://doi.org/10.1186/1471-2164-14-820 [13] Isobe K., Koba K., Suwa Y., et al. 2012. High Abundance of Ammonia-Oxidizing Archaea in Acidified Subtropical Forest Soils in Southern China after Long-Term N Deposition. FEMS Microbiology Eco-logy, 80(1): 193-203. https://doi.org/10.1111/j.1574-6941.2011.01294.x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7aca8b3c486924085ab2c033448b4459 [14] Jiang H.C., Hang L.Q., Deng Y., et al.2014.Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China. Applied and Environmental Microbiology, 80(18):5593-5602.https://doi.org/10.1128/aem.01617-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c3c209e7e343f50cb08195de03794a0 [15] Kennedy A. C., Smith K. L.. 1995. Soil Microbial Diversity and the Sustainability of Agricultural Soils. Plant and Soil, 170(1): 75-86. https://doi.org/10.1007/bf02183056 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_4241b49ddefcd4e7b3340e0fbe6d9562 [16] Khan S., El-Latif Hesham A., Qiao M., et al. 2010. Effects of Cd and Pb on Soil Microbial Community Structure and Activities. Environmental Science and Pollution Research, 17(2): 288-296. https://doi.org/10.1007/s11356-009-0134-4 doi: 10.1016-j.ecoleng.2011.07.002/ [17] Lauber C.L., Hamady M., Knight R., et al.2009.Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied Environmental Microbiology, 75(15):5111-5120.https://doi.org/10.1128/aem.00335-09 doi: 10.1128-AEM.00335-09/ [18] Lauber C. L., Strickland M. S., Bradford M. A., et al. 2008. The Influence of Soil Properties on the Structure of Bacterial and Fungal Communities across Land-Use Types. Soil Biology and Biochemistry, 40(9): 2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59bd9fb69b2ee0a0f7d22a2f6e0d75d6 [19] Li N., Shao T. Y., Zhu T. S., et al. 2018. Vegetation Succession Influences Soil Carbon Sequestration in Coastal Alkali-Saline Soils in Southeast China. Scientific Reports, 8(1):9728-9739.https://doi.org/10.1038/s41598-018-28054-0 [20] Liu Y., Huang Y.M., Zeng Q.C.. 2016. Soil Bacterial Communities under Different Vegetation Types in the Loess Plateau. Environmental Science, 37(10): 3931-3938 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201610035 [21] Louca S., Parfrey L. W., Doebeli M.. 2016. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science, 353(6305): 1272-1277. https://doi.org/10.1126/science.aaf4507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f05c6bb2e6feefcc778ff870b43476a [22] Lynch M. D. J., Neufeld J. D.. 2015. Ecology and Exploration of the Rare Biosphere. Nature Reviews Microbiology, 13(4): 217-229. https://doi.org/10.1038/nrmicro3400 [23] Ma Z.Z., Qiao S.S., Cao M.W., et al. 2018.Environmental Selection and Dispersal Limitation Drive the Assemblage of Bacterial Community in Temperate Forest Soils. Chinese Journal of Applied Ecology, 29(4): 1179-1189 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yystxb201804019 [24] Martiny J. B., Bohannan B.J., Brown J.H., et al. 2006.Microbial Biogeography: Putting Microorganisms on the Map. Nature Reviews. Microbiology, 4(2): 102-112. https://doi.org/10.1038/nrmicro1341 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bf3d74a0fb5c4b90c8e46eb4b560fc0a [25] Marusenko Y., Bates S.T., Anderson I., et al. 2013. Ammonia-Oxidizing Archaea and Bacteria are Structured by Geography in Biological Soil Crusts across North American Arid Lands. Ecological Processes, 2(1):9-19. https://doi.org/10.1186/2192-1709-2-9 [26] Pereira C.S., Lopes I., Abrantes I., et al.2019.Salinization Effects on Coastal Ecosystems: A Terrestrial Model Ecosystem Approach. Philosophical Transactions of the Royal Society B:Biological Sciences, 374(1764):20180251. https://doi.org/10.1098/rstb.2018.0251 [27] Qi L., Li Y.L., Zhao W., et al. 2018. Effect of Avena Sativa L. on Soil Enzyme Activity and Microbe Functional Diversity under Strontium Pollution. Acta Ecologica Sinica, 38(13): 4888-4896 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_eff7ec6f64ead86411810ab6de60daa2 [28] Shen C. C., Xiong J. B., Zhang H. Y., et al. 2013. Soil pH Drives the Spatial Distribution of Bacterial Communities along Elevation on Changbai Mountain. Soil Biology and Biochemistry, 57: 204-211. https://doi.org/10.1016/j.soilbio.2012.07.013 [29] Stopnisek N., Bodenhausen N., Frey B., et al.2014.Genus-wide Acid Tolerance Accounts for the Biogeographical Distribution of Soil Burkholderia Populations. Environmental Microbiology, 16(6):1503-1512.https://doi.org/10.1111/1462-2920.12211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3320fa16cc5b60c79d328e3e3ae7b1e3 [30] Tang J., Ding X., Wang L.M., et al. 2012. Effects of Wetland Degradation on Bacterial Community in the Zoige Wetland of Qinghai-Tibetan Plateau (China). World Journal of Microbiology and Biotechnology, 28(2): 649-657. https://doi.org/10.1007/s11274-011-0858-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d008553d9eb8ae19f365295109aed9d6 [31] Tang Y., Liu Y.C., Yang J., et al. 2018. Gene Diversity Involved in Kalvin Pathway of Carbon Fixation and Its Response to Environmental Variables in Surface Sediments of the Northern Qinghai-Tibetan Plateau Lakes. Earth Science, 43(S1): 19-30 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1003 [32] Uddin M., Chen J. W., Qiao X. L., et al. 2019.Bacterial Community Variations in Paddy Soils Induced by Application of Veterinary Antibiotics in Plant-Soil Systems. Ecotoxicology and Environmental Safety, 167: 44-53. https://doi.org/10.1016/j.ecoenv.2018.09.101 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffab20446ac91d45e4f1d1079c8a3aca [33] Wang X., Chen C., Wang J.L.. 2017. Phytoremediation of Strontium Contaminated Soil by Sorghum Bi-Color (L.) Moench and Soil Microbial Community-Level Physiological Profiles (CLPPs).Environmental Science and Pollution Research, 24(8): 7668-7678. https://doi.org/10.1007/s11356-017-8432-8 [34] Wei F.S., Yang G.Z., Jiang D.Z., et al. 1991. Basic Statistics and Characteristics of Soil Element Background Value in China. Environmental Monitoring in China, 7(1): 1-6 (in Chinese). [35] Xu Y., Wang H.M., Xiang X., et al.2019.Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China.Journal of Earth Science, 30(2):397-406. https://doi.org/10.1007/s12583-018-0982-2 http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201902015 [36] Zhang L.M., He J.Z.. 2012. A Novel Archaeal Phylum: Thaumarchaeota: A Review. Acta Microbiologica Sinica, 52(4): 411-421 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2292581 [37] Zhang Y.M., Wu G., Jiang H.C.. 2018. Research Progress on Microorganisms Driving Carbon Cycle in Hot Spring. Earth Science, 43(S1): 31-41 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1006810414600362 [38] Zhang Y. M., Wu G., Jiang H. C., et al. 2018. Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs. Frontiers in Microbiology, 9:2096. https://doi.org/10.3389/fmicb.2018.02096 [39] Zhao A.J., Hu T.X., Chen X.H.. 2009. Multiple-Scale Spatial Analysis of Community Structure in a Mountainous Mixed Evergreen-Deciduous Broad-Leaved Forest, Southwest China. Biodiversity Science, 17(1): 43-50 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8f2e64c39236cf52f1ca1283f30c029e [40] Zhao J., Zhang R. F., Xue C., et al. 2014. Pyrosequencing Reveals Contrasting Soil Bacterial Diversity and Community Structure of Two Main Winter Wheat Cropping Systems in China. Microbial Ecology, 67(2): 443-453. https://doi.org/10.1007/s00248-013-0322-0 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36526d24a86bfe57f22dc8b0730abe6b [41] Zhao M., Yin C.S., Li C.W., et al. 2018. Using Miseq Sequencing to Analyze Seasonal Soil Microbial Community Dynamics in Reclaimed Scirpus Mariqueter Coastal Wetlands. Journal of Shanghai Ocean University, 27(5): 718-727 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/shscdxxb201805009 [42] Zhu L.Y., Ding M.Y., Huang G.N., et al. 2018. Microbial Community Structure and the Correlation between Environmental Factors and Community Structure in Sandy Soil of Tongliao in Inner Mongolia. Science Technology and Engineering, 18(20): 347-352 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201820052 [43] 陈孟立, 曾全超, 黄懿梅, 等. 2018.黄土丘陵区退耕还林还草对土壤细菌群落结构的影响.环境科学, 39(4): 1824-1832. http://d.old.wanfangdata.com.cn/Periodical/hjkx201804044 [44] 刘洋, 黄懿梅, 曾全超. 2016.黄土高原不同植被类型下土壤细菌群落特征研究.环境科学, 37(10): 3931-3938. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201610035 [45] 马转转, 乔沙沙, 曹苗文, 等. 2018.环境选择和扩散限制驱动温带森林土壤细菌群落的构建.应用生态学报, 29(4): 1179-1189. http://d.old.wanfangdata.com.cn/Periodical/yystxb201804019 [46] 亓琳, 李艳玲, 赵威, 等. 2018.锶污染下燕麦对土壤酶活性和微生物群落功能多样性的影响.生态学报, 38(13): 4888-4896. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201813034 [47] 唐阳, 刘永超, 杨渐, 等. 2018.青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素.地球科学, 43(S1): 19-30. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1003 [48] 魏复盛, 杨国治, 蒋德珍, 等. 1991.中国土壤元素背景值基本统计量及其特征.中国环境监测, 7(1): 1-6. http://www.cnki.com.cn/Article/CJFDTotal-IAOB199101000.htm [49] 张丽梅, 贺纪正. 2012.一个新的古菌类群:奇古菌门(Thaumarchaeota).微生物学报, 52(4): 411-421. http://www.cnki.com.cn/Article/CJFDTotal-WSXB201204003.htm [50] 张艳敏, 吴耿, 蒋宏忱. 2018.热泉中驱动碳循环的微生物研究进展.地球科学, 43(S1): 31-41. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1004 [51] 赵安玖, 胡庭兴, 陈小红. 2009.西南山地阔叶混交林群落空间结构的多尺度特征.生物多样性, 17(1): 43-50. http://d.old.wanfangdata.com.cn/Periodical/swdyx200901005 [52] 赵萌, 印春生, 厉成伟, 等. 2018. Miseq测序分析围垦后海三棱藨草湿地土壤微生物群落多样性的季节变化.上海海洋大学学报, 27(5): 718-727. http://d.old.wanfangdata.com.cn/Periodical/shscdxxb201805009 [53] 朱立月, 丁美月, 黄冠南, 等. 2018.内蒙古通辽市砂质土壤中微生物群落结构及其与环境因子的关系.科学技术与工程, 18(20): 347-352. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201820052 -
肖玉娜附表.docx