• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石榴子石U-Pb定年在矽卡岩矿床中的应用:以鄂东南高椅山硅灰石(-铜)矿床为例

    张小波 张世涛 陈华勇 刘俊安 程佳敏 初高彬 李莎莎

    张小波, 张世涛, 陈华勇, 刘俊安, 程佳敏, 初高彬, 李莎莎, 2020. 石榴子石U-Pb定年在矽卡岩矿床中的应用:以鄂东南高椅山硅灰石(-铜)矿床为例. 地球科学, 45(3): 856-868. doi: 10.3799/dqkx.2019.061
    引用本文: 张小波, 张世涛, 陈华勇, 刘俊安, 程佳敏, 初高彬, 李莎莎, 2020. 石榴子石U-Pb定年在矽卡岩矿床中的应用:以鄂东南高椅山硅灰石(-铜)矿床为例. 地球科学, 45(3): 856-868. doi: 10.3799/dqkx.2019.061
    Zhang Xiaobo, Zhang Shitao, Chen Huayong, Liu Jun'an, Cheng Jiamin, Chu Gaobin, Li Shasha, 2020. Application of Garnet U-Pb Dating in the Skarn Deposit: A Case Study of Gaoyishan Wo (-Cu) Deposit in Southeast Hubei Province. Earth Science, 45(3): 856-868. doi: 10.3799/dqkx.2019.061
    Citation: Zhang Xiaobo, Zhang Shitao, Chen Huayong, Liu Jun'an, Cheng Jiamin, Chu Gaobin, Li Shasha, 2020. Application of Garnet U-Pb Dating in the Skarn Deposit: A Case Study of Gaoyishan Wo (-Cu) Deposit in Southeast Hubei Province. Earth Science, 45(3): 856-868. doi: 10.3799/dqkx.2019.061

    石榴子石U-Pb定年在矽卡岩矿床中的应用:以鄂东南高椅山硅灰石(-铜)矿床为例

    doi: 10.3799/dqkx.2019.061
    基金项目: 

    自然资源部公益性行业科研专项 201511035

    中国地质调查局国土资源大调查项目 12120114037701

    详细信息
      作者简介:

      张小波(1984-), 男, 硕士, 从事区域地质调查及找矿研究

      通讯作者:

      张世涛

    • 中图分类号: P597

    Application of Garnet U-Pb Dating in the Skarn Deposit: A Case Study of Gaoyishan Wo (-Cu) Deposit in Southeast Hubei Province

    • 摘要: 石榴子石原位U-Pb定年是近年来新发展的低铀矿物同位素定年方法,目前在矿床中成功应用的实例较少,尤其是在非金属矿床中更为罕见.基于详细的岩相学观察,在鄂东南高椅山硅灰石(-铜)矿床中厘定出两期石榴子石,分别为第一期深棕色石榴子石Grt1和第二期浅棕色石榴子石Grt2.电子探针成分分析(EMPA)表明,两期石榴子石均属于钙铁榴石-钙铝榴石固溶体系列,其中Grt1相对富Fe(Adr62.4Gro36.5~Adr94.4Gro0),而Grt2相对富Al(Adr32.6Gro66.4~Adr40.2Gro58.6).对Grt1和Grt2石榴子石进行LA-ICP-MS U-Pb定年,获得T-W下交点206Pb/238U年龄分别为142.5±2.0 Ma(2σ,MSWD=1.30,n=38)和136.0±14.0 Ma(2σ,MSWD=0.42,n=17),与矿区内广泛出露的石英二长闪长岩锆石206Pb/238U加权平均年龄(139.8±1.5 Ma;2σ,MSWD=0.10,n=22)在误差范围内一致,证明二者之间存在密切的成因联系.高椅山Grt1石榴子石具有较高的U含量和较低的普通铅含量,此为U-Pb同位素测年成功的主要因素.

       

    • 图  1  鄂东南地区岩浆岩及多金属矿床分布

      舒全安等(1992)张世涛等(2018)修改

      Fig.  1.  The distribution of magmatic rocks and polymetallic deposits in Southeast Hubei Province

      图  2  鄂东南高椅山矽卡岩型硅灰石(-铜)矿床地质图

      Fig.  2.  Geological map of the Gaoyishan Wo (-Cu) skarn deposit

      图  3  高椅山硅灰石(-铜)矿床石英二长闪长岩手标本及显微特征

      a.石英二长闪长岩(手标本照片);b.石英二长闪长岩具二长结构,主要由斜长石、钾长石、角闪石和石英组成(正交偏光显微照片);c.石英二长闪长岩中的榍石,主要呈半自形-他形粒状与角闪石、斜长石、钾长石等矿物共生(单偏光显微照片);d.石英二长闪长岩中的磷灰石,主要呈自形粒状被包裹在角闪石和钾长石中(单偏光显微照片). Pl.斜长石;Kfs.钾长石;Hb.角闪石;Qtz.石英;Ttn.榍石;Ap.磷灰石;Mt.磁铁矿

      Fig.  3.  Hand specimen and photomicrograph of the quartz diorite in the Gaoyishan Wo (-Cu) deposit

      图  4  高椅山硅灰石(-铜)矿床蚀变矿化期次

      Fig.  4.  Alteration and mineral paragenesis of the Gaoyishan Wo (-Cu) deposit

      图  5  高椅山硅灰石(-铜)矿床典型蚀变类型及矿物组合特征

      a.矽卡岩阶段的硅灰石和石榴子石,石榴子石可以分为第一期深棕色石榴子石(Grt1)和第二期浅棕色石榴子石(Grt2)(手标本照片);b.矽卡岩阶段的两期石榴子石(背散射电子图像);c.矽卡岩阶段的石榴子和透辉石,透辉石主要呈细粒状被包裹在石榴子石中(单偏光显微照片);d.矽卡岩阶段的透辉石呈细粒状分布在大理岩中方解石颗粒的间隙(正交偏光显微照片);e.退化蚀变阶段的绿帘石交代Grt2浅棕色石榴子石(手标本照片);f.退化蚀变阶段的绿帘石交代Grt2石榴子石及透辉石,又被石英-硫化物阶段的石英交代(单偏光显微照片);g.退化蚀变阶段的绿帘石和阳起石(单偏光显微照片);h.退化蚀变阶段的透闪石、蛇纹石和赤铁矿组合(正交偏光显微照片);i.(大理岩中)石英-硫化物阶段的绿泥石和石英交代绿帘石,又可见磷灰石被绿帘石交代(单偏光显微照片);j.石英-硫化物阶段的斑铜矿呈弥散状、不规则状等交代硅灰石-石榴子石-透辉石矽卡岩,石榴子石可分为核部的深棕色石榴子石(Grt1)和边部的浅棕色石榴子石(Grt2)(手标本照片);k.石英-硫化物阶段的斑铜矿-蓝辉铜矿-黄铁矿呈不规则状交代硅灰石矽卡岩(反射光照片);l、m.石榴子石(Grt2)局部发生绿帘石化蚀变,然后被黄铜矿交代,晚期有方解石交代Grt2石榴子石和黄铜矿(l为单偏光显微照片,m为反射光照片). Wo.硅灰石;Di.透辉石;Cal.方解石;Ep.绿帘石;Qtz.石英;Act.阳起石;Hm.赤铁矿;Tr.透闪石;Srp.蛇纹石;Ap.磷灰石;Chl.绿泥石;Bn.斑铜矿;Dg.蓝辉铜矿;Py.黄铁矿;Ccp.黄铜矿

      Fig.  5.  Typical alteration and mineral assemblages in the Gaoyishan Wo (-Cu) deposit

      图  6  高椅山硅灰石(-铜)矿床石榴子石三角分类图解

      底图据Meinert et al.(2005). Gro.钙铝榴石;Adr.钙铁榴石;Alm.铁铝榴石;Py.镁铝榴石;Spe.锰铝榴石;Uv.钙铬榴石

      Fig.  6.  Triangular classification diagram of garnet in the Gaoyishan Wo (-Cu) deposit

      图  7  高椅山硅灰石(-铜)矿床石英二长闪长岩锆石和矽卡岩石榴子石LA-ICP-MS U-Pb年龄谐和图及稀土元素球粒陨石标准化配分曲线

      球粒陨石标准化数据引自Boynton et al. (1984)

      Fig.  7.  LA-ICP-MS U-Pb concordia diagrams and chondrite-normalized REE patterns of zircon in the quartz diorites and garnet in the skarns from the Gaoyishan Wo (-Cu) deposit

      图  8  高椅山硅灰石(-铜)矿床石榴子石代表性LA-ICP-MS信号图

      Fig.  8.  Representative time-resolved signals obtained by depth profile analyses of garnet from the Gaoyishan Wo (-Cu) deposit

      图  9  高椅山硅灰石-铜矿床石榴子石U与ΣREE(a、d)、LREE(b、e)及HREE(c、f)含量的相关关系

      Fig.  9.  The relations between U and ΣREE (a, d), U and LREE (b, e) and U and HREE (c, f) in the Gaoyishan Wo-Cu deposit

    • [1] Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam.
      [2] Cai, M. H., Chen, K. X., Qu, W. J., et al. 2006. Geological Characteristics and Re-Os Dating of Hehuaping Tin-Polymetallic Deposit, Southern Hunan Province. Mineral Deposits, 25(3): 263-268 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200603005
      [3] Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172: 1-11. https://doi.org/10.1007/s00410-017-1389-2
      [4] Deng, X. D., Li, J. W., Zhou, M. F., et al., 2015. In-Situ LA-ICPMS Trace Elements and U-Pb Analysis of Titanite from the Mesozoic Ruanjiawan W-Cu-Mo Skarn Deposit, Daye District, China. Ore Geology Reviews, 65: 990-1004. https://doi.org/10.1016/j.oregeorev.2014.08.011
      [5] DeWolf, C. P., Zeissler, C. J., Halliday, A. N., et al., 1996. The Role of Inclusions in U-Pb and Sm-Nd Garnet Geochronology: Stepwise Dissolution Experiments and Trace Uranium Mapping by Fission Track Analysis. Geochimica et Cosmochimica Acta, 60(1): 121-134. https://doi.org/10.1016/0016-7037(95)00367-3
      [6] Ding, L, X., Huang, G, C., Xia, J. L., 2016. Genesis of Yangxin Complex in Southeastern Hubei: Evidence of LA-ICP-MS Zircon U-Pb Age and Hf Isotope. Geological Journal of China Universities, 22(3): 443-458 (in Chinese with English abstract).
      [7] Fu, Y., Sun, X. M., Lin, H., et al., 2015. Geochronology of the Giant Beiya Gold-Polymetallic Deposit in Yunnan Province, Southwest China and Its Relationship with the Petrogenesis of Alkaline Porphyry. Ore Geology Reviews, 71: 138-149. https://doi.org/10.1016/j.oregeorev.2015.05.016
      [8] Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: A LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033
      [9] Gulson, B. L., Jones, M. T., 1992. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites. Geology, 20(4): 355-358. https://doi.org/10.1130/0091-7613(1992)0200355:cpfddo>2.3.co; 2 doi: 10.1130/0091-7613(1992)0200355:cpfddo>2.3.co;2
      [10] Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      [11] Jamtveit, B., Hervig, R. L., 1994. Constraints on Transport and Kinetics in Hydrothermal Systems from Zoned Garnet Crystals. Science, 263(5146): 505-508. https://doi.org/10.1126/science.263.5146.505
      [12] Li, D. F., Fu, Y., Sun, X. M., 2018. Onset and Duration of Zn-Pb Mineralization in the Talate Pb-Zn (-Fe) Skarn Deposit, NW China: Constraints from Spessartine U-Pb Dating. Gondwana Research, 63: 117-128. https://doi.org/10.1016/j.gr.2018.05.013
      [13] Li, J. W., Deng, X. D., Zhou, M. F., et al., 2010a. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56-67. https://doi.org/10.1016/j.chemgeo.2009.11.005
      [14] Li, X. H., Li, W. X., Wang, X. C., et al., 2010b. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018
      [15] Li, J. W., Vasconcelos, P. M., Zhou, M. F., et al., 2014. Longevity of Magmatic-Hydrothermal Systems in the Daye Cu-Fe-Au District, Eastern China with Implications for Mineral Exploration. Ore Geology Reviews, 57: 375-392. https://doi.org/10.1016/j.oregeorev.2013.08.002
      [16] Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. https://doi.org/10.1007/s00126-007-0161-3
      [17] Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x
      [18] Li, R.L., Zhu, Q.Q., Hou, K.J., et al., 2012.Zircon U-Pb Dating and Hf Isotopic Compositions of Granite Porphyry and Rhyolite Porphyry from Jingniu Basin in the Middle-Lower Yangtze River Belt and Its Geological Significance. Acta Petrologica Sinica, 28(10):3347-3360 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201210021
      [19] Lima, S. M., Corfu, F., Neiva, A. M. R., et al., 2012. U-Pb ID-TIMS Dating Applied to U-Rich Inclusions in Garnet. American Mineralogist, 97(5-6): 800-806. https://doi.org/10.2138/am.2012.3930
      [20] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [21] Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(27): 2948-2956. https://doi.org/10.1007/s11434-011-4657-y
      [22] Lu, W. J., Chen, H. Y., Zhang, L., et al., 2017. Age and Geochemistry of the Intrusive Rocks from the Shaquanzi-Hongyuan Pb-Zn Mineral District: Implications for the Late Carboniferous Tectonic Setting and Pb-Zn Mineralization in the Eastern Tianshan, NW China. Lithos, 294-295: 97-111. https://doi.org/10.1016/j.lithos.2017.10.009
      [23] Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010
      [24] Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Colorado.
      [25] Mezger, K., Hanson, G. N., Bohlen, S. R., 1989. U-Pb Systematics of Garnet: Dating the Growth of Garnet in the Late Archean Pikwitonei Granulite Domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and Petrology, 101(2): 136-148. https://doi.org/10.1007/bf00375301
      [26] Seman, S., Stockli, D. F., McLean, N. M., 2017. U-Pb Geochronology of Grossular-Andradite Garnet. Chemical Geology, 460: 106-116. https://doi.org/10.1016/j.chemgeo.2017.04.020
      [27] Shu, Q. A., Chen, P. L., Cheng, J. R., et al., 1992. Geology of Iron-Copper Deposits in Eastern Hubei Province. Metallurgic Industry Press, Beijing (in Chinese with English abstract).
      [28] Smith, M. P., Henderson, P., Jeffries, T.E.R., et al., 2004. The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on Processes in a Dynamic Hydrothermal System. Journal of Petrology, 45(3): 457-484. https://doi.org/10.1093/petrology/egg087
      [29] Wafforn, S., Seman, S., Kyle, J. R., et al., 2018. Andradite Garnet U-Pb Geochronology of the Big Gossan Skarn, Ertsberg-Grasberg Mining District, Indonesia. Economic Geology, 113(3): 769-778. https://doi.org/10.5382/econgeo.2018.4569
      [30] Xie, G. Q., Mao, J. W., Zhao, H. J., 2011a. Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China. Lithos, 125(1-2): 693-710. https://doi.org/10.1016/j.lithos.2011.04.001
      [31] Xie, G. Q., Mao, J. W., Zhao, H. J., et al., 2011b. Timing of Skarn Deposit Formation of the Tonglushan Ore District, Southeastern Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt and Its Implications. Ore Geology Reviews, 43(1): 62-77. https://doi.org/10.1016/j.oregeorev.2011.05.005
      [32] Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2018. U-Pb Age Determination of Schorlomite Garnet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 33(2): 231-239. https://doi.org/10.1039/c7ja00315c
      [33] Yuan, S. D., Peng, J. T., Hu, R. Z., et al., 2008. A Precise U-Pb Age on Cassiterite from the Xianghualing Tin-Polymetallic Deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382. https://doi.org/10.1007/s00126-007-0166-y
      [34] Zhang, D., Zhang, W. L., Wang, R. C., et al., 2015.Quartz-Vein Type Tungsten Mineralization Associated with the Indosinian (Triassic) Gaoling Granite, Miao'ershan Area, Northern Guangxi. Geological Review, 61(4):817-834 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504010
      [35] Zhang, S.T., Chen, H.Y., Han, J.S., et al., 2018.Geochronology, Geochemistry, and Mineralization of Quartz Monzodiorite and Quartz Monzodiorite Porphyry in Tonglüshan Cu-Fe-Au Deposit, Edongnan Ore District, China. Geochimica, 47(3):240-256 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx201803002
      [36] Zhang, R. Q., Lehmann, B., Seltmann, R., et al., 2017. Cassiterite U-Pb Geochronology Constrains Magmatic-Hydrothermal Evolution in Complex Evolved Granite Systems: The Classic Erzgebirge Tin Province (Saxony and Bohemia). Geology, 45(12): 1095-1098. https://doi.org/10.1130/g39634.1
      [37] Zhang, Y., Shao, Y. J., Zhang, R. Q., et al., 2018. Dating Ore Deposit Using Garnet U-Pb Geochronology: Example from the Xinqiao Cu-S-Fe-Au Deposit, Eastern China. Minerals, 8(1):1-19. https://doi.org/10.3390/min8010031
      [38] Zhao, Y. M., Lin, W. W., et al., 2012. Skarn Deposits in China. Geological Publishing House, Beijing (in Chinese with English abstract).
      [39] Zhu, Q. Q., Xie, G. Q., Jiang, Z. S., et al., 2014. Characteristics and in Situ U-Pb Dating of Hydrothermal Titanite by LA-ICP-MS of the Jingshandian Iron Skarn Deposit, Hubei Province. Acta Petrologica Sinica, 30(5): 1322-1338 (in Chinese with English abstract).
      [40] 蔡明海, 陈开旭, 屈文俊, 等, 2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质, 25(3): 263-268. doi: 10.3969/j.issn.0258-7106.2006.03.005
      [41] 丁丽雪, 黄圭成, 夏金龙, 2016.鄂东南地区阳新复式岩体成因: LA-ICP-MS锆石U-Pb年龄及Hf同位素证据.高校地质学报, 22(3): 443-458. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201603005
      [42] 李瑞玲, 朱乔乔, 侯可军, 等, 2012.长江中下游金牛盆地花岗斑岩和流纹斑岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报, 28(10):3347-3360. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210021
      [43] 舒全安, 陈培良, 程建荣, 等, 1992.鄂东铁铜矿产地质.北京:冶金工业出版社.
      [44] 张迪, 张文兰, 王汝成, 等, 2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用.地质论评, 61(4):817-834. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504010
      [45] 张世涛, 陈华勇, 韩金生, 等, 2018.鄂东南铜绿山大型铜铁金矿床成矿岩体年代学、地球化学特征及成矿意义.地球化学, 47(3):240-256. http://d.old.wanfangdata.com.cn/Periodical/dqhx201803002
      [46] 赵一鸣, 林文蔚, 等, 2012.中国矽卡岩矿床.北京:地质出版社.
      [47] 朱乔乔, 谢桂青, 蒋宗胜, 等, 2014.湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICP-MS U-Pb定年.岩石学报, 30(5): 1322-1338. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201405010.htm
    • 张小波附表.docx
    • 加载中
    图(9)
    计量
    • 文章访问数:  3292
    • HTML全文浏览量:  1054
    • PDF下载量:  110
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-07
    • 刊出日期:  2020-03-15

    目录

      /

      返回文章
      返回