In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis
-
摘要: 位于招远-莱州金成矿带中西部的金翅岭金矿床是胶东地区典型的石英脉型高品位金矿,但其成矿流体来源和矿床成因一直存在争议.在详细的矿相学和黄铁矿显微结构研究基础上,利用LA-ICP-MS技术原位分析与成矿有关黄铁矿的微量元素特征,结合原位硫同位素分析成矿流体来源,为进一步认识矿床成因提供制约.成矿阶段的黄铁矿划分为2种类型(PyI和PyII),PyI产在石英-黄铁矿阶段,PyII产在石英-多金属硫化物阶段,伴随大量可见金的出现.根据背散射的核-边结构,PyII可细分为含有较多硫化物的核部PyIIa和表面较为干净的边部PyIIb,但二者有明显溶蚀结构.LA-ICP-MS分析结果显示PyI含有一定量的Au(< 0.015×10-6~2.18×10-6,均值0.62×10-6)和As(78.98×10-6~857×10-6,均值542×10-6),但Pb、Zn等其他元素含量较低.核部PyIIa和PyI微量元素分布特征较为相似,但Au(< 0.015×10-6~0.59×10-6,均值0.11×10-6)和As(0.62×10-6~198×10-6,均值35.81×10-6)的含量相对下降.边部PyIIb较核部PyIIa明显富集Au(< 0.015×10-6~19.71×10-6,均值5.91×10-6)和As(399×10-6~18 153×10-6,均值6 412×10-6),且Au与As表现出良好的正相关性.PyI和核部PyIIa原位δ34S的分布范围较为一致,集中在3.0‰~4.9‰;而边部PyIIb的原位δ34S值较高(5.2‰~6.6‰).根据黄铁矿结构、微量元素和硫同位素特征,推断在主成矿期富34S和富Au-As的热液流体加入形成了边部PyIIb且与核部的PyIIa发生了交代作用,同时大量可见金直接从热液中沉淀形成.该研究表明多期次富Au-As成矿流体的注入可能是高品位石英脉矿床形成的主要机制.Abstract: The Jinchiling gold deposit,located in the central and western part of Zhaoyuan-Laizhou gold metallogenic belt,is a typical lode gold deposit hosted in Late Jurassic Linglong granitoids in the Jiaodong region. The source of its ore-forming fluids and ore genesis,however,are still in debate. Based on the detailed study of mineralogy and microstructure of pyrite,trace elements and sulfur isotopes of gold bearing pyrite are analyzed by LA-(MC)-ICP-MS to constrain the source of ore-forming fluids and ore genesis. Two types (PyI and PyII) of gold-bearing pyrite can be identified. PyI is hosted in the quartz-pyrite stage,and PyII occurs in the quartz-polymetallic sulfide stage,which is associated with abundant visible gold. BSE images show that PyII commonly has core-rim texture. The PyIIa core contains many sulfide inclusions,whereas PyIIb rim is relatively clean. LA-ICP-MS analyses show that PyI contains medium contents of Au (< 0.015×10-6-2.18×10-6,mean 0.62×10-6) and As (78.98×10-6-857×10-6,mean 542×10-6),but very low contents of other metal elements (Pb and Zn). PyIIa has trace elements similar to those of PyI,but lower Au (< 0.015×10-6-0.59×10-6,mean 0.11×10-6) and As (0.62×10-6-198×10-6,mean 35.81×10-6). However,PyIIb has significantly high Au (< 0.015×10-6-19.71×10-6,mean 5.91×10-6) and As (399×10-6-18 153×10-6,mean 6 412×10-6),which shows a positive correlation. In addition,PyI and PyIIa have consistent in situ δ34S values,ranging from 3.0‰ to 4.9‰,whereas PyIIb is higher (5.2‰-6.6‰). Our data thus suggest that a new pulse of Au-As enriched ore-formed fluids were input into the mineralizing vein system during quartz-polymetallic sulfide stage,inducing the metasomatism of PyIIa and deposition of abundant visible gold. Our study hence implies that multiple phases of ore-forming fluids may be involved in the formation of high-grade lode gold deposits in Jiaodong.
-
Key words:
- As-bearing pyrite /
- pyrite texture /
- trace element /
- in situ sulfur isotope /
- Jinchiling gold deposit /
- geochemistry /
- ore deposit
-
图 2 金翅岭地区地质特征简图(a)、金翅岭金矿矿区矿脉分布(b)和9B勘探线剖面图(c)
图a和c据杨柳(2014)修改;图b据杜高峰等(2012)修改
Fig. 2. Simplified geological map of the Jinchiling region (a), the distribution of ore-bodies (b) and cross section of No. 9B exploration line (c) in the Jinchiling gold deposit
图 3 金翅岭矿床矿脉接触关系及典型热液蚀变
a.早期黄铁矿-石英穿插在钾化的围岩;b.产在基性脉岩中的黄铁绢英岩化被石英-黄铁矿脉和石英-多金属硫化物脉穿插;c.围岩发生钾化和黄铁绢英岩化,构造膨大的位置被石英-黄铁矿细脉和多金属硫化物脉充填;d.钾长石发生强烈的绢云母化;e.硅化、黄铁矿化,钾长石发生绢云母化;f.强烈的绢云母化、黄铁矿化及绿泥石化.Py.黄铁矿;Q.石英;Kfs.钾长石;Ser.绢云母;Chl.绿泥石;Gn.方铅矿;Sph.闪锌矿
Fig. 3. The cross cutting relationships of ore-bodies and typical hydrothermal alteration in the Jinchiling gold deposit
图 5 不同成矿阶段典型载金黄铁矿的显微结构
a.产在石英-黄铁矿阶段的黄铁矿(PyI),表面见有石英或者方铅矿等包体,发育裂隙;b、c.石英-黄铁矿阶段的粗粒黄铁矿(PyI),背散射下较为均一;d~i.产在石英-多金属硫化物阶段的黄铁矿(PyII).图e~f及h~i发育明显的核-边结构,核部PyIIa有较多的硫化物包体(方铅矿等)、石英包体或者孔洞,边部PyIIb发育一定的生长环带(图i),核-边之间可见微细包体金(图e)且边界清晰而不规则,具有溶蚀边现象. Py.黄铁矿;Gn.方铅矿;Sph.闪锌矿;Ccp.黄铜矿;Q.石英;Au.金
Fig. 5. Reflected-light and backscattered electron (BSE) micrographs of the typical gold-bearing pyrite in the different stages of mineralization
表 1 金翅岭金矿床金成矿阶段黄铁矿LA-ICP-MS微量元素(10-6)分析结果
Table 1. Trace element (10-6) results for the mineralization stage of pyrites from Jinchiling gold deposit
样品编号 Py产状 Au As Ag Co Ni Cu Zn Pb Sb Te 检测限 0.015 0.412 0.048 0.012 0.136 0.414 1.045 0.01 0.024 0.233 JCL-501 PyI 1.55 814 0.07 nd — 1.20 — 3.76 0.55 nd JCL-502 PyI 0.40 451 0.51 13.68 12.35 4.25 — 31.84 3.39 — JCL-503 PyI 0.17 669 — 6.69 7.08 0.57 — 4.77 0.59 — JCL-504 PyI 0.64 840 nd 0.61 0.18 — — 0.07 nd 0.29 JCL-505 PyI — 325 — 72.79 30.83 0.49 — 0.19 — nd JCL-506 PyI 2.18 857 — 0.05 — 1.02 — 12.01 0.99 — JCL-507 PyI — 301 — 22.01 3.36 — — 0.30 0.04 — JCL-508 PyI 0.03 78.98 0.15 12.56 10.53 0.74 58.58 7.00 0.08 1.20 JCL-2002 PyIIa 0.34 1.63 4.49 0.03 0.93 207 16 406 33.11 4.33 nd JCL-2003 PyIIa 0.59 3.38 18.75 0.05 2.16 1709 16 847 48.63 2.82 — JCL-2004 PyIIa 0.26 1.11 14.33 0.03 2.44 268 16 449 40.05 3.62 nd JCL-2010 PyIIa 0.09 29.73 1.60 nd nd 15.35 303 25.11 2.41 — JCL-2012 PyIIa 0.16 0.62 14.69 — 0.27 52.89 4 053 46.83 6.33 nd JCL-2013 PyIIa 0.33 64.70 6.04 nd 0.14 27.67 3 611 31.44 4.65 nd JCL-2701 PyIIa 0.25 59.01 8.17 0.16 4.20 485 3 479 1167 0.82 3.48 JCL-2702 PyIIa 0.16 — 4.76 0.02 — 45.73 2 299 10.38 0.15 0.67 JCL-2704 PyIIa 0.29 3.77 5.72 0.05 0.13 3.61 6.05 23.03 1.58 5.40 JCL-2706 PyIIa nd 8.67 nd 0.87 1.32 nd — 0.20 — nd JCL-2707 PyIIa 0.02 10.68 nd 2.48 4.87 0.64 — 0.10 nd nd JCL-2708 PyIIa — 154 — 0.31 0.67 — — 1.13 0.04 — JCL-2709 PyIIa 0.03 3.88 0.09 0.04 0.56 2.13 1.45 34.70 0.29 0.67 JCL-2710 PyIIa nd 1.90 0.08 — — 1.82 844 0.46 0.03 — JCL-2803 PyIIa nd 3.60 nd 0.17 2.27 — 1.16 0.09 — — JCL-2804 PyIIa nd 127 0.18 nd 0.60 24.32 4.96 7.76 — — JCL-2805 PyIIa nd 1.04 — 0.04 1.16 — — 0.03 nd — JCL-2806 PyIIa 0.10 98.32 4.70 1.52 7.21 3.34 — 10 295 7.36 6.79 JCL-2807 PyIIa 0.03 95.19 0.37 1.60 2.70 2.95 — 13.30 1.13 1.54 JCL-2809 PyIIa nd 198 0.006 0.16 0.25 — — nd nd 0.40 JCL-2810 PyIIa 0.27 4.87 5.70 0.05 0.62 729 12 384 25.04 2.25 1.32 JCL-2811 PyIIa nd 3.97 nd nd nd nd — nd — nd JCL-3501 PyIIa 0.03 13.73 0.84 0.56 26.71 81.29 1.67 1.68 0.05 nd JCL-3504 PyIIa 0.04 41.66 1.85 0.19 76.35 14.10 1.86 10.92 0.17 0.72 JCL-3505 PyIIa 0.03 4.28 0.33 5.16 1.12 7.06 1758 1.83 0.27 3.62 JCL-3506 PyIIa nd 37.00 nd 1.06 70.97 nd 3.37 0.07 nd — JCL-3507 PyIIa 0.11 9.61 0.40 0.69 46.54 0.90 — 1.64 0.06 0.54 JCL-3508 PyIIa 0.02 21.39 0.19 2.73 49.36 0.71 — 0.85 — — JCL-2001 PyIIb 0.14 1 192 nd 0.71 0.39 — — 0.09 — nd JCL-2005 PyIIb 6.15 7 003 0.21 0.09 1.55 4.89 1.07 4.84 0.60 nd JCL-2006 PyIIb 19.71 7 816 0.78 0.02 0.08 16.01 1.22 101 0.46 — JCL-2007 PyIIb 0.57 2 167 0.35 0.12 2.22 3.29 111 19.88 2.93 — JCL-2008 PyIIb 13.49 14 668 0.17 2.03 2.51 4.15 1.20 1.46 0.29 nd JCL-2009 PyIIb 4.32 10 625 0.89 1.77 1.30 11.29 — 14.55 1.86 nd JCL-2011 PyIIb 5.21 7 169 12.03 — — 96.71 1 893 54.56 5.15 nd JCL-2015 PyIIb 14.67 18 153 0.06 13.77 0.57 6.87 — 0.51 0.08 — JCL-2705 PyIIb 0.70 468 0.20 0.57 0.15 2.80 3.49 26.66 0.58 1.10 JCL-3502 PyIIb — 7 169 nd 0.03 0.31 — — 0.03 nd 0.88 JCL-3503 PyIIb 0.08 875 0.30 0.03 1.94 1.23 2.32 7.30 0.41 66.34 注:“—”表示低于检测限;“nd”表示未测出. 表 2 金翅岭金矿床金成矿阶段黄铁矿激光原位硫同位素分析结果
Table 2. Sulfur isotope data of mineralization stage of pyrites from the Jinchiling gold deposit
样品编号 成矿阶段 黄铁矿产状 δ34S值(‰) JCL-501 石英-黄铁矿 PyI 4.5 JCL-502 石英-黄铁矿 PyI 4.4 JCL-503 石英-黄铁矿 PyI 4.5 JCL-504 石英-黄铁矿 PyI 4.4 JCL-505 石英-黄铁矿 PyI 4.5 JCL-506 石英-黄铁矿 PyI 4.5 JCL-507 石英-黄铁矿 PyI 4.8 JCL-508 石英-黄铁矿 PyI 4.8 JCL-2007 多金属硫化物-核 PyIIa 4.9 JCL-2008 多金属硫化物-核 PyIIa 4.7 JCL-2009 多金属硫化物-核 PyIIa 4.4 JCL-2703 多金属硫化物-核 PyIIa 4.5 JCL-2704 多金属硫化物-核 PyIIa 4.5 JCL-2705 多金属硫化物-核 PyIIa 3.7 JCL-2801 多金属硫化物-核 PyIIa 3.7 JCL-2802 多金属硫化物-核 PyIIa 3.8 JCL-2803 多金属硫化物-核 PyIIa 3.0 JCL-2804 多金属硫化物-核 PyIIa 3.0 JCL-2805 多金属硫化物-核 PyIIa 3.3 JCL-2806 多金属硫化物-核 PyIIa 3.6 JCL-2807 多金属硫化物-核 PyIIa 4.2 JCL-2808 多金属硫化物-核 PyIIa 4.0 JCL-3501 多金属硫化物-核 PyIIa 4.3 JCL-3502 多金属硫化物-核 PyIIa 4.2 JCL-3503 多金属硫化物-核 PyIIa 3.5 JCL-3504 多金属硫化物-核 PyIIa 3.4 JCL-3505 多金属硫化物-核 PyIIa 4.0 JCL-2001 多金属硫化物-边 PyIIb 5.8 JCL-2002 多金属硫化物-边 PyIIb 5.6 JCL-2003 多金属硫化物-边 PyIIb 5.9 JCL-2004 多金属硫化物-边 PyIIb 6.6 JCL-2005 多金属硫化物-边 PyIIb 5.3 JCL-2006 多金属硫化物-边 PyIIb 5.4 JCL-2701 多金属硫化物-边 PyIIb 5.2 JCL-2702 多金属硫化物-边 PyIIb 5.3 -
[1] Barker, S. L. L., Hickey, K. A., Cline, J. S., et al., 2009. Unlocking Invisible Gold: Use of Nanosims to Evaluate Gold, Trace Elements, and Sulfur Isotopes in Pyrite From Carlin-Type Gold Deposit. Economic Geology, 104(7): 897-904. https://doi.org/10.2113/econgeo.104.7.897 [2] Bi, S. J., Li, J. W., Zhou, M. F., et al., 2011. Gold Distribution in As-Deficient Pyrite and Telluride Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling District, Southern North China Craton. Mineralium Deposita, 46(8): 925-941. https://doi.org/10.1007/s00126-011-0359-2 [3] Bralia, A., Sabatini, G., Troja, F., 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3):353-374. https://doi.org/10.1007/bf00206365 [4] Chen, L., Liu, Y. S., Hu, Z. C., et al., 2011. Accurate Determinations of Fifty-Four Major and Trace Elements in Carbonate by LA-ICP-MS Using Normalization Strategy of Bulk Components as 100%. Chemical Geology, 284(3-4): 283-295. https://doi.org/10.1016/j.chemgeo.2011.03.007 [5] Cook, N. J., Ciobanu, C. L., Mao, J. W., 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121. https://doi.org/10.1016/j.chemgeo.2009.02.020 [6] Cook, N. J., Spry, P. G., Vokes, F. M., 1998. Mineralogy and Textural Relationships among Sulphosalts and Related Minerals in the Bleikvassli Zn-Pb-(Cu) Deposit, Nordland, Norway. Mineralium Deposita, 34(1): 35-56. https://doi.org/10.1007/s001260050184 [7] Deditius, A. P., Reich, M., Kesler, S. E., et al., 2014. The Coupled Geochemistry of Au and as in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644-670. https://doi.org/10.1016/j.gca.2014.05.045 [8] Deditius, A. P., Utsunomiya, S., Reich, M., et al., 2011. Trace Metal Nanoparticles in Pyrite. Ore Geology Reviews, 42(1): 32-46. https://doi.org/10.1016/j.oregeorev.2011.03.003 [9] Du, G. F., Zou, H. Y., Yang, L., et al., 2012. Characteristics of Ore-Forming Fluid from the Jinchiling Gold Deposit in Shandong Province. Geology and Exploration, 48(4): 677-684 (in Chineres with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201204002 [10] Feng, K., Fan, H. R., Hu, F. F., et al., 2018. Involvement of Anomalously As-Au-Rich Fluids in the Mineralization of the Heilan'gou Gold Deposit, Jiaodong, China: Evidence from Trace Element Mapping and In-Situ Sulfur Isotope Composition. Journal of Asian Earth Sciences, 160: 304-321. https://doi.org/10.1016/j.jseaes.2017.12.023 [11] Fleet, M. E., Chryssoulis, S. L., MacLean, P. J., et al., 1993. Arsenian Pyrite from Gold Deposits: Au and As Distribution Investigated by SIMS and EMP, and Color Staining and Surface Oxidation by XPS and LIMS. The Canadian Mineralogist, 31(1):1-17. [12] Fougerouse, D., Micklethwaite, S., Tomkins, A. G., et al., 2016. Gold Remobilisation and Formation of High Grade Ore Shoots Driven by Dissolution-Reprecipitation Replacement and Ni Substitution into Auriferous Arsenopyrite. Geochimica et Cosmochimica Acta, 178: 143-159. https://doi.org/10.1016/j.gca.2016.01.040 [13] Goldfarb, R. J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001 [14] Hou, M. L., Jiang, Y. H., Jiang, S. Y., et al., 2007. Contrasting Origins of Late Mesozoic Adakitic Granitoids from the Northwestern Jiaodong Peninsula, East China: Implications for Crustal Thickening to Delamination. Geological Magazine, 144(4): 619-631. https://doi.org/10.1017/s0016756807003494 [15] Huang, D. Y., 1994. Sulfur Isotope Studies of the Metallogenic Series of Gold Deposits in Jiaodong (Eastern Shandong) Area. Mineral Deposits, 13(1): 75-87 (in Chinese with English abstract). [16] Jahn, B. M., Liu, D., Wan, Y., et al., 2008. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 308(3): 232-269. https://doi.org/10.2475/03.2008.03 [17] Large, R. R., Danyushevsky, L., Hollit, C., et al., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104(5): 635-668. https://doi.org/10.2113/gsecongeo.104.5.635 [18] Li, X. H., Fan, H. R., Yang, K. F., et al., 2018.Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton: Implication for Ore-Forming Processes. Contributions to Mineralogy and Petrology, 173(9): 1-20. https://doi.org/10.1007/s00410-018-1501-2 [19] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [20] Mikucki, E. J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1-5): 307-321. https://doi.org/10.1016/s0169-1368(97)00025-5 [21] Mills, S. E., Tomkins, A. G., Weinberg, R. F., et al., 2015. Implications of Pyrite Geochemistry for Gold Mineralisation and Remobilisation in the Jiaodong Gold District, Northeast China. Ore Geology Reviews, 71(8): 150-168. https://doi.org/10.1016/j.oregeorev.2015.04.022 [22] Morey, A. A., Tomkins, A. G., Bierlein, F. P., et al., 2008. Bimodal Distribution of Gold in Pyrite and Arsenopyrite: Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Economic Geology, 103(3): 599-614. https://doi.org/10.2113/gsecongeo.103.3.599 [23] Mumin, A. H., Fleet, M. E., Chryssoulis, S. L., 1994. Gold Mineralization in As-Rich Mesothermal Gold Ores of the Bogosu-Prestea Mining District of the Ashanti Gold Belt, Ghana: Remobilization of "Invisible" Gold. Mineralium Deposita, 29(6):445-460. https://doi.org/10.1007/bf00193506 [24] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [25] Pokrovski, G. S., Tagirov, B. R., Schott, J., et al., 2009. A New View on Gold Speciation in Sulfur-Bearing Hydrothermal Fluids from in Situ X-Ray Absorption Spectroscopy and Quantum-Chemical Modeling. Geochimica et Cosmochimica Acta, 73(18): 5406-5427. https://doi.org/10.1016/j.gca.2009.06.007 [26] Qiu, Y. M., Groves, D. I., McNaughton, N. J., et al., 2002. Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China. Mineralium Deposita, 37(3): 283-305. https://doi.org/10.1007/s00126-001-0238-3 [27] Reich, M., Deditius, A., Chryssoulis, S., et al., 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104: 42-62. https://doi.org/10.1016/j.gca.2012.11.006 [28] Reich, M., Kesler, S. E., Utsunomiya, S., et al., 2005. Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 [29] Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. 100th Anniversary Volume, Society of Economic Geologists, 485-522. https: //doi.org/10.5382/av100.16 [30] Sung, Y. H., Brugger, J., Ciobanu, C. L., et al., 2009. Invisible Gold in Arsenian Pyrite and Arsenopyrite from a Multistage Archaean Gold Deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 44(7): 765-791. https://doi.org/10.1007/s00126-009-0244-4 [31] Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1-2): 48-82. https://doi.org/10.1016/j.precamres.2006.09.001 [32] Vaughan, J. P., Kyin, A., 2004. Refractory Gold Ores in Archaean Greenstones, Western Australia: Mineralogy, Gold Paragenesis, Metallurgical Characterization and Classification. Mineralogical Magazine, 68(2): 255-277. https://doi.org/10.1180/0026461046820186 [33] Wang, Q. F., Deng, J., Zhao, H. S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract). [34] Wang, Y. W., Zhu, F. S., Gong, R. T., et al., 2002. Tectonic Isotope Geochemistry—Further Study on Sulfur Isotope of Jiaodong Gold Concentration Area. Gold, 23(4): 1-16 (in Chinese with English abstract). [35] Yang, K. F., Fan, H. R., Santosh, M., et al., 2012. Reactivation of the Archean Lower Crust: Implications for Zircon Geochronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry of Late Mesozoic Granitoids from Northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127. https://doi.org/10.1016/j.lithos.2012.04.035 [36] Yang, L., 2014. On the Relationship between Magmatic Rocks and Metallogeny in the Jinchiling Gold Deposit, Zhaoyuan Area, Shandong Province(Dissertation). Central South University, Changsha (in Chinese with English abstract). [37] Yang, L., Zou, H. Y., Yang, M., et al., 2012. Ore-Forming Fluid Characteristics and Genesis of Jinchiling Gold Deposit in Jiaodong. The Chinese Journal of Nonferrous Metals, 22(3): 726-732 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201203013 [38] Yang, L. Q., Deng, J., Wang, Z. L., et al., 2016. Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Economic Geology, 111(1): 105-126. https://doi.org/10.2113/econgeo.111.1.105 [39] Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2010. Postcollisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005 [40] Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22 (in Chinese with English abstract). [41] Zhang, X., 2012. Research on the Genetic Mineralogy and Genesis Model of Jinchiling Gold Deposit in Zhaoyuan Country, Shandong (Dissertation). China University of Geosicences, Beijing (in Chinese with English abstract). [42] Zhang, X., Li, S. R., Lu, J., et al., 2012.H-O, He-Ar Isotopic Compositions of Fluid Inclusions for Tracing the Source of Ore-Formation Fluids of Jinchiling Gold Deposit, Northwest Jiaodong Area. Journal of Mineralogy and Petrology, 32(1): 40-47 (in Chinese with English abstract). [43] Zhao, X. F., Li, Z. K., Zhao, S. R., et al., 2019. Early Cretaceous Regional-Scale Magmatic-Hydrothermal Metallogenic System at the Southern Margin of the North China Carton. Earth Science, 44(1): 52-68 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201901005 [44] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Scientia Sinica Terrae, 48(4):379-414 (in Chinese). [45] Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Scientia Sinica Terrae, 45(8):1153-1168 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c20249752de85e8e961b02c55d0cfda [46] 杜高峰, 邹海洋, 杨柳, 等, 2012.山东金翅岭金矿成矿流体特征.地质与勘探, 48(4):677-684. http://d.old.wanfangdata.com.cn/Periodical/dzykt201204002 [47] 黄德业, 1994.胶东金矿成矿系列硫同位素研究.矿床地质, 13(1):75-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400286654 [48] 王庆飞, 邓军, 赵鹤森, 等, 2019.造山型金矿研究进展:兼论中国造山型金成矿作用.地球科学, 44(6):2155-2186. doi: 10.3799/dqkx.2019.105 [49] 王义文, 朱奉三, 宫润谭, 等, 2002.构造同位素地球化学——胶东金矿集中区硫同位素再研究.黄金, 23(4):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj200204001 [50] 杨柳, 2014.山东招远金翅岭金矿岩浆岩与金成矿关系研究(博士学位论文).长沙: 中南大学. [51] 杨柳, 邹海洋, 杨牧, 等, 2012.胶东金翅岭金矿成矿流体特征及地质意义.中国有色金属学报, 22(3):726-732. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201203013 [52] 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259 [53] 张旭, 2012.山东招远金翅岭金矿成因矿物学与成矿模式研究(硕士学位论文).北京: 中国地质大学. [54] 张旭, 李胜荣, 卢晶, 等, 2012.山东招远金翅岭金矿床H, O, He, Ar同位素组成及其对成矿流体示踪的研究.矿物岩石, 32(1):40-47. http://d.old.wanfangdata.com.cn/Periodical/kwys201201006 [55] 赵新福, 李占轲, 赵少瑞, 等, 2019.华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统.地球科学, 44(1):52-68. doi: 10.3799/dqkx.2018.372 [56] 郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆与克拉通破坏.中国科学:地球科学, 48(4):379-414. [57] 朱日祥, 范宏瑞, 李建威, 等, 2015.克拉通破坏型金矿床.中国科学:地球科学, 45(8):1153-1168.