Composition Variations of Mesozoic and Cenozoic Basalts in Northern Great Xing'an Range: Implications for Thermal Evolution of Mantle
-
摘要: 近年来,东北地区地幔热演化过程的相关研究相对较少,而揭示东北地区地幔热演化过程的有效手段就是研究东北地区玄武岩的成分变异特征.系统总结并对比了大兴安岭北段早白垩世玄武质岩石和新生代玄武质岩石的化学成分变异,以便揭示研究区中生代晚期-新生代的地幔热演化过程.大兴安岭北段早白垩世玄武岩在化学上属于拉斑玄武岩系列,以亏损Nb、Ta、Ti等高场强元素为特征,它们的La/Nb和La/Ta比值分别介于1.8~5.6和30~87,暗示岩浆起源于岩石圈地幔;它们的初始87Sr/86Sr值、εNd(t)和εHf(t)值分别介于0.704 5~0.706 9、-1.52~+3.60和+1.74~+7.77,表明岩浆源区属于弱亏损-弱富集的岩石圈地幔;早白垩世玄武质岩石的Sr-Nd-Pb同位素成分指示岩浆源区是由DM和EMⅡ型地幔端元混合而成,并经历了俯冲流体的交代.表明大兴安岭北段早白垩世玄武质岩浆源区为受早期俯冲流体交代的岩石圈地幔.新生代超钾质和钾质玄武岩具有Nb-Ta的弱负异常,87Sr/86Sr值为0.704 7~0.705 7、εNd(t)值为-6.3~-0.8,而地幔捕掳体具有Sr-Nd同位素亏损特征;钠质玄武岩具有Nb-Ta的正异常,较超钾质和钾质玄武岩具有低的87Sr/86Sr(0.703 5~0.704 2)以及高的εNd(t)值(+3.4~+6.6),类似MORB的同位素组成,这些特征说明大兴安岭北段新生代玄武质岩石起源于软流圈地幔.综上所述,大兴安岭北段早白垩世和新生代玄武质岩石成分的差异不仅指示其岩浆源区从岩石圈地幔转变为软流圈地幔,更为重要的是它揭示了研究区地幔的热演化过程——从早白垩世高的地温梯度到新生代低的地温梯度的转变.这一过程也是岩石圈从中生代晚期到新生代逐渐增厚的过程.结合区域构造演化,可以得出大兴安岭北段早白垩世的玄武质岩浆作用与岩石圈伸展、减薄形成的裂陷作用相关,而新生代玄武质岩浆作用则与陆内裂谷作用相关.Abstract: Recently, few researches have been made on the thermal evolution of the mantle in Northeast China. An effective means to solve this issue is to study the variation characteristics in composition of basalts in Northeast China. In this paper, it summarizes and discusses the composition variations of the Mesozoic and Cenozoic basalts in the northern Great Xing'an Range, with the aim of revealing the thermal evolution of the mantle within the study area. The Early Cretaceous basalts in the northern Great Xing'an Range geochemically belong to tholeiitic series, which are characterized by depletion in high field strength elements (e.g., Nb, Ta and Ti).Their La/Nb and La/Ta ratios range from 1.8 to 5.6 and from 30 to 87, respectively, implying the basaltic magmas originated from the partial melting of the lithospheric mantle. Their initial 87Sr/86Sr ratios of 0.704 5-0.706 9, εNd(t) values of -1.52-+3.60 and εHf(t) values of +1.74-+7.77 further indicate that the magma source is weakly depleted-weakly enriched lithospheric mantle. Additionally, the Sr-Nd-Pb isotope compositions of the Early Cretaceous basalts suggest that their magmatic sources are characterized by mixing between DM and EMⅡ modified by subduction-derived fluids.Taking the above-mentioned into consideration, it is suggested that the Early Cretaceous basaltic magma was derived from partial melting of a lithospheric mantle metasomated by subduction-related fluids.The Cenozoic ultrapotassic and potassic basalts have weakly negative Nb-Ta anomalies, 87Sr/86Sr ratios of 0.704 7-0.705 7 and εNd(t) values of -6.3 to -0.8 whereas the mantle xenoliths entrained by Cenozoic ultrapotassic and potassic basalts show the depleted Sr-Nd isotopic characteristics. The Cenozoic sodium basalts have positive Nb-Ta anomalies, and lower 87Sr/86Sr ratios of 0.703 5-0.704 2 and higher εNd(t) values of +3.4-+6.6 than those of the ultrapotassic and potassic basalts, similar to those of MORB. These geochemical features suggest that the Cenozoic basaltic magmas in the northern Great Xing'an Range were primarily produced by melting of asthenospheric mantle. The composition variations of the Early Cretaceous and Cenozoic basalts in the northern Great Xing'an Range not only indicate that the basaltic magma sources had changed from lithospheric to asthenospheric mantle, but also reveal the thermal evolution of the mantle in the study area, i.e., high geothermal gradient in the late Early Cretaceous changed to low geothermal gradient in the Cenozoic. Combined with the regional tectonic evolution, it is concluded that the Early Cretaceous basaltic magmatism in the northern Great Xing'an Range is related to the taphrogeny caused by the lithospheric extension and thinning, while the Cenozoic basaltic magmatism is related to the intracontinental rifting.
-
Key words:
- northern Great Xing'an Range /
- Early Cretaceous /
- Cenozoic /
- basalts /
- thermal evolution of the mantle /
- petrology
-
图 1 大兴安岭北段中-新生代玄武质岩石分布
据Wu et al.(2011); Xu et al.(2013)
Fig. 1. Distribution of the Mesozoic-Cenozoic basalts in the northern Great Xing'an Range
图 2 大兴安岭北段中生代玄武质岩石的TAS图解(a)和SiO2-K2O图解(b)
图a据Le Bas et al.(1986); 图b据Peccerillo and Taylor, 1976; 数据来源:未发表数据;Fan et al.(2003);Zhang et al.(2008);葛文春等(1999, 2000);林强等(2003);孟恩等(2011);徐美君等(2011);阴影区代表大兴安岭北段新生代玄武质岩石,引自Zhang et al.(1995); Chen et al.(2007); Ho et al.(2013); Kuritani et al.(2013); Sun et al.(2014); Zhao et al.(2014); Li et al.(2018)
Fig. 2. Plots of TAS (a) and SiO2 versus K2O (b) for the Mesozoic basalts in the northern Great Xing'an Range
图 3 大兴安岭北段中生代玄武质岩石的Sm/Nd-εHf(t)图解
数据来源见图 2
Fig. 3. Plot of Sm/Nd-εHf(t) for the Mesozoic basalts in the northern Great Xing'an Range
图 4 大兴安岭北段中生代玄武质岩石的Hark图解
数据来源见图 2,不包括塔河玄武岩
Fig. 4. Hark diagrams for the Mesozoic basalts in the northern Great Xing'an Range
图 5 大兴安岭北段中生代玄武质岩石的La-La/Sm图解
数据来源见图 2,不包括塔河玄武岩
Fig. 5. Plot of La-La/Sm for the Mesozoic basalts in the northern Great Xing'an Range
图 6 大兴安岭北段中-新生代玄武质岩石球粒陨石标准化稀土元素配分图(a); 原始地幔标准化微量元素蛛网图(b)
图a中标准化数值据Boynton (1984); 图b中标准化数值据Sun and McDonough (1989); 中生代玄武质岩石数据来源见图 2;新生代玄武质岩石数据为平均值, 来源:Zhang et al.(1995); Chen et al.(2007); Ho et al.(2013); Kuritani et al.(2013); Sun et al.(2014); Zhao et al.(2014); Liu et al.(2017)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element spidergrams (b) for the Mesozoic-Cenozoic basalts in the northern Great Xing'an Range
图 7 大兴安岭北段中-新生代玄武质岩石的εNd(t)-εHf(t)(a)和(87Sr/86Sr)i-εNd(t)(b)图解
A.新生代超钾质-钾质玄武岩;B.新生代钠质玄武岩;BSE.全硅酸盐地球值;MORB.洋脊玄武岩;OIB.大洋岛屿玄武岩;IAB.岛弧玄武岩;全球阵列参考线εHf(t)=1.36εNd(t)+2.95,引自Vervoort and Blichert-Toft (1999);Basin and Range.美国盆岭地区新生代火山岩,引自Hawkesworth et al.(1995)和Rogers et al.(1995);PM.原始地幔;EMI.I型富集地幔,EMII.II型富集地幔,引自Zindle and Hart (1986)
Fig. 7. Plots of εNd(t)-εHf(t) (a) and (87Sr/86Sr)i-εNd(t)(b) for the Mesozoic-Cenozoic basalts in the northern Great Xing'an Range
图 8 大兴安岭北段中-新生代玄武质岩石全岩Sr-Nd-Pb同位素协变图
图例见图 7;A.新生代超钾质-钾质玄武岩;B.新生代钠质玄武岩;HIMU.高238U/204Pb值地幔;EMI、EMII、MORB数据来自GEOROC
Fig. 8. Variations of Sr-Nd-Pb isotopic compositions for the Mesozoic-Cenozoic basalts in the northern Great Xing'an Range
图 9 大兴安岭北段中生代玄武质岩石的SiO2-Zr/Y(a)和SiO2-Sr图解(b)
图例见图 7;美国盆岭地区新生代火山岩和日本岛弧火山岩引自Hawkesworth et al.(1995)和Rogers et al.(1995)
Fig. 9. Plots of SiO2-Zr/Y (a) and SiO2-Sr (b) for the Mesozoic basalts in the northern Great Xing'an Range
表 1 大兴安岭北段早白垩世玄武质岩石定年结果
Table 1. Geochronological data for the Early Cretaceous basalts in the northern Great Xing'an Range
样品号 采样位置 岩性 年龄(Ma) 测年方法 文献 12ER21 50°09′40″N 120°11′58″E 玄武安山岩 119±1 40Ar-39Ar 未发表数据 ER1 49°59′57″N 120°06′50″E 粗安岩 128±2 LA-ICPMS 徐美君等,2011 ER3 50°19′57″N 120°15′01″E 玄武粗安岩 125±3 LA-ICPMS 徐美君等,2011 ER5-1 50°26′01″N 120°00′54″E 安山岩 114±3 LA-ICPMS 徐美君等,2011 ER19-1 50°42′37″N 120°12′52″E 玄武安山岩 127±1 LA-ICPMS 徐美君等,2011 MZ10-1 49°23′56″N 117°25′21″E 辉石安山岩 125±2 LA-ICPMS 孟恩等,2011 MZ21-1 49°26′42″N 117°02′31″E 橄榄玄武岩 129±2 LA-ICPMS 孟恩等,2011 14ER19-1 51°43′05″N 120°44′43″E 玄武安山岩 132±2 SIMS Zhao et al., 2016 14ER20-1 51°43′05″N 120°44′43″E 玄武安山岩 126±2 SIMS Zhao et al., 2016 FW04-420 48°16′31″N 123°38′12″E 玄武安山岩 123±2 LA-ICPMS Zhang et al., 2008 GW04257 48°09′13″N 121°14′44″E 玄武岩 128±8 LA-ICPMS Zhang et al., 2008 GW04027 48°51′11″N 121°37′27″E 玄武岩 112±2 40Ar-39Ar Zhang et al., 2008 GW04032 49°07′01″N 120°55′43″E 玄武岩 118±1 40Ar-39Ar Zhang et al., 2008 ELC04-1 50°40′04″N 122°35′57″E 玄武岩 125±1 40Ar-39Ar Wang et al., 2006 TH08 52°19′30″N 124°40′40″E 玄武岩 124±1 40Ar-39Ar Wang et al., 2006 TH24 52°39′38″N 124°19′38″E 玄武安山岩 126±1 40Ar-39Ar Wang et al., 2006 TH22 52°39′39″N 124°19′42″E 玄武岩 122±1 40Ar-39Ar Wang et al., 2006 GH07 50°19′54″N 120°14′53″E 玄武岩 123±1 40Ar-39Ar Wang et al., 2006 GH10 50°26′23″N 120°48′13″E 玄武岩 121±1 40Ar-39Ar Wang et al., 2006 YKSNQ04-4 49°12′22″N 120°36′50″E 玄武岩 116±1 40Ar-39Ar Wang et al., 2006 YKSNQ04-1 49°12′47″N 120°36′50″E 玄武安山岩 114±1 40Ar-39Ar Wang et al., 2006 ZLT04-8 48°00′18″N 122°48′23″E 玄武安山岩 122±1 40Ar-39Ar Wang et al., 2006 YKS04-3 48°50′47″N 121°34′58″E 玄武粗安岩 106±1 40Ar-39Ar Wang et al., 2006 GH04-1 50°21′32″N 120°26′49″E 粗玄岩 124±1 40Ar-39Ar Wang et al., 2006 GH04-4 50°59′17″N 121°19′16″E 玄武粗安岩 115±1 40Ar-39Ar Wang et al., 2006 JGD04-4 49°56′53″N 124°22′48″E 玄武岩 115±1 40Ar-39Ar Wang et al., 2006 -
[1] Boynton, W.V., 1984.Geochemistry of the Rare Earth Elements: Meteorite Studies.In: Henderson, P., ed., Rare Earth Element Geochemistry.Elsevier Science Publishing, Amsterdam, 63-114. https://www.sciencedirect.com/science/article/pii/B9780444421487500083 [2] Chen, H., 2017.The Role of the Pacific Subduction in the Genesis of Cenozoic Basalts in Eastern China: New Constraints from Water Content and Oxygen Isotope Composition (Dissertation).University of Science and Technology of China, Hefei (in Chinese with English abstract). [3] Chen, H., Xia, Q.K., Ingrin, J., et al., 2017.Heterogeneous Source Components of Intraplate Basalts from NE China Induced by the Ongoing Pacific Slab Subduction.Earth and Planetary Science Letters, 459:208-220. https://doi.org/10.1016/j.epsl.2016.11.030 [4] Chen, Y., Zhang, Y.X., Graham, D., et al., 2007.Geochemistry of Cenozoic Basalts and Mantle Xenoliths in Northeast China.Lithos, 96(1-2):108-126. https://doi.org/10.1016/j.lithos.2006.09.015 [5] Choi, S.H., Mukasa, S.B., Kwon, S.T., et al., 2006.Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea:Evidence for Mixing between the Two Dominant Asthenospheric Mantle Domains beneath East Asia.Chemical Geology, 232(3-4):134-151. https://doi.org/10.1016/j.chemgeo.2006.02.014 [6] Chu, Z.Y., Harvey, J., Liu, C.Z., et al., 2013.Source of Highly Potassic Basalts in Northeast China:Evidence from Re-Os, Sr-Nd-Hf Isotopes and PGE Geochemistry.Chemical Geology, 357:52-66. https://doi.org/10.1016/j.chemgeo.2013.08.007 [7] DePaolo, D.J., Daley, E.E., 2000.Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning during Continental Extension.Chemical Geology, 169(1-2):157-185.https://doi.org/10.1016/s0009-2541(00)00261-8 doi: 10.1016/S0009-2541(00)00261-8 [8] Falloon, T.J., Green, D.H., Hatton, C.J., et al., 1988.Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis.Journal of Petrology, 29(6):1257-1282. https://doi.org/10.1093/petrology/29.6.1257 [9] Fan, Q.C., Sui, J.L., Zhao, Y.W., et al., 2008.Preliminary Study on Garnet Peridotite Xenolith of Quaternary Volcanic Rocks in Middle Daxing'an Mountain Range.Acta Petrologica Sinica, 24(11):2563-2568 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200811010 [10] Fan, W.M., Guo, F., Wang, Y.J., et al., 2003.Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China.Journal of Volcanology and Geothermal Research, 121(1-2):115-135.https://doi.org/10.1016/s0377-0273(02)00415-8 doi: 10.1016-S0377-0273(02)00415-8/ [11] Fitton, J.G., James, D., Kempton, P.D., et al., 1988.The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States.Journal of Petrology, Special_Volume(1):331-349.https://doi.org/10.1093/petrology/special_volume.1.331 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005699389 [12] Ge, W.C., Lin, Q., Li, X.H., et al., 2000.Geochemical Characteristics of Basalts of the Early Cretaceous Yiliekede Formation, North Daxing'anling.Journal of Mineralogy and Petrology, 20(3):14-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200003003 [13] Ge, W.C., Lin, Q., Sun, D.Y., et al., 1999.Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle-Crust Interaction.Acta Petrologica Sinica, 15(3):396-407 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199903007.htm [14] Gou, J., Sun, D.Y., Ren, Y.S., et al., 2013.Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China:Geochronological, Geochemical and Hf Isotopic Evidence.Journal of Asian Earth Sciences, 67-68:114-137. https://doi.org/10.1016/j.jseaes.2013.02.016 [15] Guo, F., Fan, W.M., Wang, Y.J., et al., 2001.Petrogenesis of the Late Mesozoic Bimodal Volcanic Rocks in the Southern Da Hinggan Mts, China.Acta Petrologica Sinica, 17(1):161-168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200101017 [16] Hart, S.R., 1984.A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature, 309(5971):753-757. https://doi.org/10.1038/309753a0 [17] Hawkesworth, C.J., Turner, S., Gallagher, K., et al., 1995.Calc-Alkaline Magmatism, Lithospheric Thinning and Extension in the Basin and Range.Journal of Geophysical Research:Solid Earth, 100(B6):10271-10286.https://doi.org/10.1029/94jb02508 doi: 10.1029/94JB02508 [18] Ho, K.S., Ge, W.C., Chen, J.C., et al., 2013.Late Cenozoic Magmatic Transitions in the Central Great Xing'an Range, Northeast China:Geochemical and Isotopic Constraints on Petrogenesis.Chemical Geology, 352:1-18. https://doi.org/10.1016/j.chemgeo.2013.05.040 [19] Hofmann, A.W., Jochum, K.P., Seufert, M., et al., 1986.Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution.Earth and Planetary Science Letters, 79(1-2):33-45.https://doi.org/10.1016/0012-821x(86)90038-5 doi: 10.1016/0012-821X(86)90038-5 [20] Humphreys, E.R., Niu, Y.L., 2009.On the Composition of Ocean Island Basalts (OIB):The Effects of Lithospheric Thickness Variation and Mantle Metasomatism.Lithos, 112(1-2):118-136. https://doi.org/10.1016/j.lithos.2009.04.038 [21] Kuritani, T., Kimura, J.I., Ohtani, E., et al., 2013.Transition Zone Origin of Potassic Basalts from Wudalianchi Volcano, Northeast China.Lithos, 156-159:1-12. https://doi.org/10.1016/j.lithos.2012.10.010 [22] Kuritani, T., Ohtani, E., Kimura, J.I., 2011.Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation.Nature Geoscience, 4(10):713-716. https://doi.org/10.1038/ngeo1250 [23] Langmuir, C.H., Klein, E.M., Plank, T., 1992.Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges.In: Langmuir, C.H., Klein, E.M., Plank, T., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges.AGU Geophys.Monogr., Washington D.C., 71: 180-181.https: //doi.org/10.1029/gm071p0183 10.1029/gm071p0183 [24] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [25] Li, J.Y., 1998.Some New Ideas on Tectonics of NE China and Its Neighboring Areas.Geological Review, 44(4):339-347 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800070235 [26] Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [27] Li, J.Y., Niu, B.G., Song, B., 1999.Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China.Geological Publishing House, Beijing, 136 (in Chinese). [28] Li, X.T., Yan, D.P., Qiu, L., 2018.Early Cretaceous Post-Collisional Collapse of the Yidun Terrane:Geochronological and Geochemical Constraints from Calc-Alkaline to Alkaline Basalts in Xiqiu Area, Southwest China.Journal of Earth Science, 29(1):57-77.https://doi.org/10.1007/s12583-018-0825-1 http://cn.bing.com/academic/profile?id=f11500d9661aee9e1a49c1151df56b6f&encoded=0&v=paper_preview&mkt=zh-cn [29] Li, Y., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs.Lithos, 205:394-410. https://doi.org/10.1016/j.lithos.2014.07.008 [30] Li, Y., Xu, W.L., Wang, F., et al., 2017.Early-Middle Ordovician Volcanism along the Eastern Margin of the Xing'an Massif, Northeast China:Constraints on the Suture Location between the Xing'an and Songnen-Zhangguangcai Range Massifs.International Geology Review, 60(16):2046-2062.https://doi.org/10.1080/00206814.2017.1402378 [31] Lin, Q., Ge, W.C., Cao, L., et al., 2003.Geochemistry of Mesozoic Volcanic Rocks in Da Hinggan Ling:The Bimodal Volcanic Rocks.Geochimica, 32(3):208-222 (in Chinese with English abstract). https://www.researchgate.net/publication/281425583_Geochemistry_of_Mesozoic_volcanic_rocks_in_Da_Hinggan_Ling_The_bimodal_volcanic_rocks [32] Lin, Q., Ge, W.C., Sun, D.Y., et al., 1998.Tectonic Significance of Mesozoic Volcanic Rocks in Northeastern China.Scientia Geologica Sinica, 33(2):129-139 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069875 [33] Liu, J.Q., Chen, L.H., Wang, X.J., et al., 2017.The Role of Melt-Rock Interaction in the Formation of Quaternary high-MgO Potassic Basalt from the Greater Khingan Range, Northeast China.Journal of Geophysical Research:Solid Earth, 122(1):262-280.https://doi.org/10.1002/2016jb013605 doi: 10.1002/2016JB013605 [34] Liu, J.Q., Chen, L.H., Zeng, G., et al., 2016.Lithospheric Thickness Controlled Compositional Variations in Potassic Basalts of Northeast China by Melt-Rock Interactions.Geophysical Research Letters, 43(6):2582-2589.https://doi.org/10.1002/2016gl068332 doi: 10.1002/grl.v43.6 [35] Ma, X.Y., 1987.Summary of the Lithospheric Dynamics in China.Acta Geologica Sinica, 22(2):113-125 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e15c0781e92c7049b98e0b36ddb230fe&encoded=0&v=paper_preview&mkt=zh-cn [36] McKenzie, D., Bickle, M.J., 1988.The Volume and Composition of Melt Generated by Extension of the Lithosphere.Journal of Petrology, 29(3):625-679. https://doi.org/10.1093/petrology/29.3.625 [37] Meng, E., Xu, W.L., Yang, D.B., et al., 2011.Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications.Acta Petrologica Sinica, 27(4):1209-1226 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201104025 [38] Miao, L.C., Liu, D.Y., Zhang, F.Q., et al., 2007.Zircon SHRIMP U-Pb Ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin Areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains.Chinese Science Bulletin, 52(5):591-601(in Chinese). http://cn.bing.com/academic/profile?id=76b3d17fa216450c5dab017367d89ee5&encoded=0&v=paper_preview&mkt=zh-cn [39] Niu, Y.L., Wilson, M., Humphreys, E.R., et al., 2011.The Origin of Intra-Plate Ocean Island Basalts (OIB):The Lid Effect and Its Geodynamic Implications.Journal of Petrology, 52(7-8):1443-1468. https://doi.org/10.1093/petrology/egr030 [40] Olafsson, M., Eggler, D.H., 1983.Phase Relations of Amphibole, Amphibole-Carbonate, and Phlogopite-Carbonate Peridotite:Petrologic Constraints on the Asthenosphere.Earth and Planetary Science Letters, 64(2):305-315.https://doi.org/10.1016/0012-821x(83)90212-1 doi: 10.1016/0012-821X(83)90212-1 [41] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic ARC Magmas.Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 [42] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745 [43] Pei, F.P., Xu, W.L., Yang, D.B., et al., 2009.Heterogeneity of Late Mesozoic Deep Lithosphere beneath the Northeastern North China Craton:Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province, China.Acta Petrologica Sinica, 25(8):1962-1974 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=12fdfa39901287e214424b5448267c53&encoded=0&v=paper_preview&mkt=zh-cn [44] Rogers, N.W., Hawkesworth, C.J., Ormerod, D.S., 1995.Late Cenozoic Basaltic Magmatism in the Western Great Basin, California and Nevada.Journal of Geophysical Research:Solid Earth, 100(B6):10287-10301.https://doi.org/10.1029/94jb02738 doi: 10.1029/94JB02738 [45] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In: Rudnick, R.L., Gao, S., eds., Treatise on Geochemistry.Elsevier, Oxford, 1-64.https: //doi.org/10.1016/b0-08-043751-6/03016-4 [46] Sengör, A.M.C., Natal'in, B.A., 1996.Paleotectonics of Asia: Fragments of a Synthesis.In: Yin, A., Harrison, T.M., eds., The Tectonic Evolution of Asia.Cambrige University Press, New York, 486-641. [47] Shao, J.A., Zhang, W.L., 2008.The Evolving Rift Belt—Wudalianchi Volcanic Rock Belt.Earth Science Frontiers, 15(6):241-250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200806033.htm [48] Sui, J.L., Li, N., Fan, Q.C., et al., 2014.Phlogopites and Potassic Melts in Mantle Xenoliths from Nuomin Volcanic Field, Northern Great Xing'an Range.Acta Petrologica Sinica, 30(12):3587-3594 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201412009 [49] Sun, L.X., Ren, B.F., Zhao, F.Q., et al., 2013.Late Paleoproterozoic Magmatic Records in the Eerguna Massif:Evidences from the Zircon U-Pb Dating of Granitic Gneisses.Geological Bulletin of China, 32(2):341-352 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8ed856ab02bc19a3ed731d3a500f84a6&encoded=0&v=paper_preview&mkt=zh-cn [50] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [51] Sun, Y., Ying, J.F., Su, B.X., et al., 2015.Contribution of Crustal Materials to the Mantle Sources of Xiaogulihe Ultrapotassic Volcanic Rocks, Northeast China:New Constraints from Mineral Chemistry and Oxygen Isotopes of Olivine.Chemical Geology, 405:10-18. https://doi.org/10.1016/j.chemgeo.2015.04.005 [52] Sun, Y., Ying, J.F., Zhou, X.H., et al., 2014.Geochemistry of Ultrapotassic Volcanic Rocks in Xiaogulihe NE China:Implications for the Role of Ancient Subducted Sediments.Lithos, 208-209:53-66. https://doi.org/10.1016/j.lithos.2014.08.026 [53] Tang, J., Xu, W.L., Wang, F., et al., 2011.Petrogenesis of Bimodal Volcanic Rocks from Maoershan Formation in Zhangguangcai Range:Evidence from Geochronology and Geochemistry.Global Geology, 30(4):508-520 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0a44c6b5164790feeeb2ecbf58ed7881&encoded=0&v=paper_preview&mkt=zh-cn [54] Tang, J., Xu, W.L., Wang, F., et al., 2013.Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China:Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent.Precambrian Research, 224:597-611. https://doi.org/10.1016/j.precamres.2012.10.019 [55] Tang, J., Xu, W.L., Wang, F., et al., 2018.Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent:Mesozoic-Paleogene Magmatic Records in Northeast Asia.Science China Earth Sciences, 61(5):527-559. https://doi.org/10.1007/s11430-017-9174-1 [56] Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. https://doi.org/10.1016/j.chemgeo.2006.03.013 [57] Thirlwall, M.F., 1997.Pb Isotopic and Elemental Evidence for OIB Derivation from Young HIMU Mantle.Chemical Geology, 139(1-4):51-74.https://doi.org/10.1016/s0009-2541(97)00033-8 doi: 10.1016/S0009-2541(97)00033-8 [58] Thompson, R.N., Morrison, M.A., 1988.Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism:An Example from the British Tertiary Province.Chemical Geology, 68(1-2):1-15. https://doi.org/10.1016/0009-2541(88)90082-4 [59] Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica Acta, 63(3/4):533-556.https://doi.org/10.1016/s0016-7037(98)00274-9 http://cn.bing.com/academic/profile?id=41b56d06ace1cbb71abcdd377f0a891b&encoded=0&v=paper_preview&mkt=zh-cn [60] Wang, F., Zhou, X.H., Zhang, L.C., et al., 2006.Late Mesozoic Volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia.Earth and Planetary Science Letters, 251(1-2):179-198. https://doi.org/10.1016/j.epsl.2006.09.007 [61] Wang, K., Plank, T., Walker, J.D., et al., 2002.A Mantle Melting Profile across the Basin and Range, SW USA.Journal of Geophysical Research:Solid Earth, 107(B1):ECV 5-1-ECV 5-21.https://doi.org/10.1029/2001jb000209 doi: 10.1029/2001JB000209 [62] Wang, W., Tang, J., Xu, W.L., et al., 2015.Geochronology and Geochemistry of Early Jurassic Volcanic Rocks in the Erguna Massif, Northeast China:Petrogenesis and Implications for the Tectonic Evolution of the Mongol-Okhotsk Suture Belt.Lithos, 218-219:73-86. https://doi.org/10.1016/j.lithos.2015.01.012 [63] Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2017.Mantle Transition Zone-Derived EM1 Component beneath NE China:Geochemical Evidence from Cenozoic Potassic Basalts.Earth and Planetary Science Letters, 465:16-28. https://doi.org/10.1016/j.epsl.2017.02.028 [64] Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003.Late Pan-African Magmatism in Northeastern China:SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif.Precambrian Research, 122(1-4):311-327.https://doi.org/10.1016/s0301-9268(02)00217-6 doi: 10.1016/S0301-9268(02)00217-6 [65] Windley, B.F., Alexeiev, D., Xiao, W.J., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [66] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30.https://doi.org/10.1016/j.jseaes.2010.11.014 doi: 10.1016-j.jseaes.2010.11.014/ [67] Wu, G., Chen, Y.C., Chen, Y.J., et al., 2012.Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications.Journal of Asian Earth Sciences, 49:214-233. https://doi.org/10.1016/j.jseaes.2011.11.023 [68] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB).Acta Petrologica Sinica, 30(7):1841-1857 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [69] Xu, M.J., Xu, W.L., Meng, E., et al., 2011.LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area, Northeastern Inner Mongolia.Geological Bulletin of China, 30(9):1321-1338(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201109001 [70] Xu, M.J., Xu, W.L., Wang, F., et al., 2013.Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications.Acta Petrologica Sinica, 29(2):354-368 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302002 [71] Xu, W.L., Ji, W.Q., Pei, F.P., et al., 2009.Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China:Chronology, Geochemistry, and Tectonic Implications.Journal of Asian Earth Sciences, 34(3):392-402.https://doi.org/10.1016/j.jseaes.2008.07.001 http://cn.bing.com/academic/profile?id=9b86f515db435c0b5347a77d6b3f826a&encoded=0&v=paper_preview&mkt=zh-cn [72] Xu, W.L., Pei, F.P., Wang, F., et al., 2013.Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China:Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes.Journal of Asian Earth Sciences, 74:167-193. https://doi.org/10.1016/j.jseaes.2013.04.003 [73] Xu, W.L., Wang, D.Y., Wang, S.M., 2000.pTtc Model of Mesozoic and Cenozoic Volcanisms and Lithospheric Evolution in Eastern China.Journal of Changchun University of Science and Technology, 30(4):329-335 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200004004 [74] Xu, W.L., Wang, F., Pei, F.P., et al., 2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica, 29(2):339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 [75] Xu, Y.G., 2006.Using Basalt Geochemistry to Constrain Mesozoic-Cenozoic Evolution of the Lithosphere beneath North China Craton.Earth Science Frontiers, 13(2):93-104 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=38b922a356d3d629a955d81f1f91a02f&encoded=0&v=paper_preview&mkt=zh-cn [76] Xu, Y.G., Ma, J.L., Frey, F.A., et al., 2005.Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton.Chemical Geology, 224(4):247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004 [77] Xu, Y.G., Zhang, H.H., Qiu, H.N., et al., 2012.Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China:Derived from the Mantle Transition Zone? Chemical Geology, 328:168-184. https://doi.org/10.1016/j.chemgeo.2012.01.027 [78] Yaxley, G.M., 2000.Experimental Study of the Phase and Melting Relations of Homogeneous Basalt+Peridotite Mixtures and Implications for the Petrogenesis of Flood Basalts.Contributions to Mineralogy and Petrology, 139(3):326-338. https://doi.org/10.1007/s004100000134 [79] Yu, J.J., Wang, F., Xu, W.L., et al., 2012.Early Jurassic Mafic Magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and Its Tectonic Implications:Constraints from Zircon U-Pb Chronology and Geochemistry.Lithos, 142/143:256-266. https://doi.org/10.1016/j.lithos.2012.03.016 [80] Zhang, H.H., Xu, Y.G., Ge, W.C., et al., 2006.Geochemistry of Late Mesozoic-Cenozoic Basalts in Yitong-Datun Area, Jilin Province and Its Implication.Acta Petrologica Sinica, 22(6):1579-1596 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200606015 [81] Zhang, J.H., 2009.Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [82] Zhang, J.H., Ge, W.C., Wu, F.Y., et al., 2008.Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China.Lithos, 102(1-2):138-157. https://doi.org/10.1016/j.lithos.2007.08.011 [83] Zhang, L., Liu, Y.J., Feng, Z.Q., et al., 2017.Basement Structural Features of Mesozoic Volcanic Basins in Erguna Massif:Implications from Lingquan Basin.Earth Science, 42(12):2229-2242 (in Chinese with English abstract). [84] Zhang, L.C., Ying, J.F., Chen, Z.G., et al., 2008.Age and Tectonic Setting of Triassic Basic Volcanic Rocks in Southern Da Hinggan Range.Acta Petrologica Sinica, 24(4):911-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804029 [85] Zhang, M., Suddaby, P., Thompson, R.N., et al., 1995.Potassic Volcanic Rocks in NE China:Geochemical Constraints on Mantle Source and Magma Genesis.Journal of Petrology, 36(5):1275-1303. https://doi.org/10.1093/petrology/36.5.1275 [86] Zhang, R.Q., Wu, Q.J., Sun, L., et al., 2014a.Crustal and Lithospheric Structure of Northeast China from S-Wave Receiver Functions.Earth and Planetary Science Letters, 401:196-205. https://doi.org/10.1016/j.epsl.2014.06.017 [87] Zhang, Y.H., Xu, W.L., Tang, J., et al., 2014b.Age and Provenance of the Ergunahe Group and the Wubinaobao Formation, Northeastern Inner Mongolia, NE China:Implications for Tectonic Setting of the Erguna Massif.International Geology Review, 56(6):653-671. https://doi.org/10.1080/00206814.2013.877856 [88] Zhang, Y.L., Liu, C.Z., Ge, W.C., et al., 2011.Ancient Sub-Continental Lithospheric Mantle (SCLM) beneath the Eastern Part of the Central Asian Orogenic Belt (CAOB):Implications for Crust-Mantle Decoupling.Lithos, 126(3-4):233-247. https://doi.org/10.1016/j.lithos.2011.07.022 [89] Zhang, Y., Zhao, H.L., Han, Y.D., 2005.Geochemical Characteristics and Tectonic Background of Basalt from Tamulangou Formation in Northern Daxinganling.Journal of Precious Metallic Geology, 14(2):87-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz200502002 [90] Zhao, D.P., 2004.Global Tomographic Images of Mantle Plumes and Subducting Slabs:Insight into Deep Earth Dynamics.Physics of the Earth and Planetary Interiors, 146(1-2):3-34. https://doi.org/10.1016/j.pepi.2003.07.032 [91] Zhao, S., Xu, W.L., Tang, J., et al., 2016.Timing of Formation and Tectonic Nature of the Purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China:Constraints from Field Geology and U-Pb Geochronology of Detrital and Magmatic Zircons.Precambrian Research, 281:585-601. https://doi.org/10.1016/j.precamres.2016.06.014 [92] Zhao, Y.L., Liu, Y.J., Li, W.M., et al., 2018.Detrital Zircon LA-ICP-MS U-Pb Age of the Late Carboniferous to Early Permian Sandstones in the Central Great Xing'an Range and Its Geological Significance.Earth Science, 43(6):2055-2075 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201806021 [93] Zhao, Y.W., Fan, Q.C., 2012.Mantle Sources and Magma Genesis of Quaternary Volcanic Rocks in the Halaha River and Chaoer River Area, Great Xing'an Range.Acta Petrologica Sinica, 28(4):1119-1129 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201204009 [94] Zhao, Y.W., Fan, Q.C., Zou, H.B., et al., 2014.Geochemistry of Quaternary Basaltic Lavas from the Nuomin Volcanic Field, Inner Mongolia:Implications for the Origin of Potassic Volcanic Rocks in Northeastern China.Lithos, 196-197:169-180. https://doi.org/10.1016/j.lithos.2014.03.011 [95] Zhao, Z., Chi, X.G., Pan, S.Y., et al., 2010.Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range.Acta Petrologica Sinica, 26(8):2452-2464 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201008018 [96] Zindle, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14:493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [97] 陈欢, 2017.俯冲的太平洋板块与中国东部新生代玄武岩起源(博士学位论文).合肥: 中国科学技术大学. http://cdmd.cnki.com.cn/Article/CDMD-10358-1017179035.htm [98] 樊祺诚, 隋建立, 赵勇伟, 等, 2008.大兴安岭中部第四纪火山岩中石榴石橄榄岩捕虏体的初步研究.岩石学报, 24(11):2563-2568. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811010 [99] 葛文春, 林强, 李献华, 等, 2000.大兴安岭北部伊列克得组玄武岩的地球化学特征.矿物岩石, 20(3):14-18. doi: 10.3969/j.issn.1001-6872.2000.03.003 [100] 葛文春, 林强, 孙德有, 等, 1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报, 15(3):396-407. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903008 [101] 郭锋, 范蔚茗, 王岳军, 等, 2001.大兴安岭南段晚中生代双峰式火山作用.岩石学报, 17(1):161-168. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200101017 [102] 李锦轶, 1998.中国东北及邻区若干地质构造问题的新认识.地质论评, 44(4):339-347. doi: 10.3321/j.issn:0371-5736.1998.04.002 [103] 李锦轶, 牛宝贵, 宋彪, 1999.长白山北段地壳的形成与演化.北京:地质出版社, 136. [104] 林强, 葛文春, 曹林, 等, 2003.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学, 32(3):208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 [105] 林强, 葛文春, 孙德有, 等, 1998.中国东北地区中生代火山岩的大地构造意义.地质科学, 33(2):129-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069875 [106] 马杏垣, 1987.中国岩石圈动力学概要.地质科学, 22(2):113-125. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198702001.htm [107] 孟恩, 许文良, 杨德彬, 等, 2011.满洲里地区灵泉盆地中生代火山岩的错石U-Pb年代学、地球化学及其地质意义.岩石学报, 27(4):1209-1226. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104025 [108] 苗来成, 刘敦一, 张福勤, 等, 2007.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄.科学通报, 52(5):591-601. doi: 10.3321/j.issn:0023-074X.2007.05.016 [109] 裴福萍, 许文良, 杨德彬, 等, 2009.华北克拉通东北缘岩石圈深部物质组成的不均一性:来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据.岩石学报, 25(8):1962-1974. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908020 [110] 邵济安, 张文兰, 2008.演化中的裂谷带:五大连池火山岩带.地学前缘, 15(6):241-250. doi: 10.3321/j.issn:1005-2321.2008.06.031 [111] 隋建立, 李霓, 樊祺诚, 等, 2014.大兴安岭北部诺敏河地幔金云母及钾质地幔熔体研究.岩石学报, 30(12):3587-3594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412009 [112] 孙立新, 任邦方, 赵凤清, 等, 2013.内蒙古额尔古纳地块古元古代末期的岩浆记录:来自花岗片麻岩的锆石U-Pb年龄证据.地质通报, 32(2):341-352. doi: 10.3969/j.issn.1671-2552.2013.02.013 [113] 唐杰, 许文良, 王枫, 等, 2011.张广才岭帽儿山组双峰式火山岩成因:年代学与地球化学证据.世界地质, 30(4):508-520. doi: 10.3969/j.issn.1004-5589.2011.04.002 [114] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [115] 徐美君, 许文良, 孟恩, 等, 2011.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 30(9):1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001 [116] 徐美君, 许文良, 王枫, 等, 2013.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义.岩石学报, 29(2):354-368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302002 [117] 许文良, 王冬艳, 王嗣敏, 2000.中国东部中新生代火山作用的pTtc模型与岩石圈演化.长春科技大学学报, 30(4):329-335. doi: 10.3969/j.issn.1671-5888.2000.04.004 [118] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 [119] 徐义刚, 2006.用玄武岩组成反演中-新生代华北岩石圈的演化.地学前缘, 13(2):93-104. doi: 10.3321/j.issn:1005-2321.2006.02.008 [120] 张辉煌, 徐义刚, 葛文春, 等, 2006.吉林伊通-大屯地区晚中生代-新生代玄武岩的地球化学特征及其意义.岩石学报, 22(6):1579-1596. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606015 [121] 张吉衡, 2009.大兴安岭中生代火山岩年代学及地球化学研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-2009153771.htm [122] 张丽, 刘永江, 冯志强, 等, 2017.额尔古纳地块中生代火山岩盆地基底构造特征:来自灵泉盆地的启示.地球科学, 42(12):2229-2242. http://earth-science.net/WebPage/Article.aspx?id=3703 [123] 张连昌, 英基丰, 陈志广, 等, 2008.大兴安岭南段三叠纪基性火山岩时代与构造环境.岩石学报, 24(4):911-920. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804029 [124] 张昱, 赵焕力, 韩彦东, 2005.大兴安岭北段塔木兰沟组玄武岩地球化学及构造背景.地质与资源, 14(2):87-96. doi: 10.3969/j.issn.1671-1947.2005.02.002 [125] 赵英利, 刘永江, 李伟民, 等, 2018.大兴安岭中段晚石炭世—早二叠世砂岩碎屑锆石LA-ICP-MS U-Pb年龄及地质意义.地球科学, 43(6):2055-2075. http://earth-science.net/WebPage/Article.aspx?id=3867 [126] 赵勇伟, 樊祺诚, 2012.大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因.岩石学报, 28(4):1119-1129. http://d.old.wanfangdata.com.cn/Conference/7667379 [127] 赵芝, 迟效国, 潘世语, 等, 2010.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义.岩石学报, 26(8):2452-2464. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008018