Geochemistry and Detrital Zircon U-Pb Ages of Sedimentary Rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province
-
摘要: 江南造山带已被普遍接受为是由扬子陆块与华夏陆块在新元古代碰撞拼合而形成,正确理解江南造山带形成机制是探索华南前寒武纪地质演化的前提,也是深入剖析华南显生宙构造演化的重要因素,但是人们对其拼贴时限及构造属性仍存在争议.沉积岩的矿物组成及地球化学特征可以对其沉积物源及形成的构造背景起到很好的指示作用.然而,前人多聚焦于岩浆岩的地球化学-年代学研究或地层中碎屑锆石的年代学研究,江南造山带新元古代沉积物的物源示踪研究相对薄弱.针对江南造山带中段平江地区冷家溪群中段小木坪组及黄浒洞组沉积岩开展了详细的岩石学、地球化学和锆石U-Pb年代学研究,结果表明,这些样品具有较高的SiO2(58.82%~70.62%,平均为64.68%)和Al2O3(13.35%~20.99%,平均为16.78%),高的Al2O3/(CaO+Na2O)(3.8~12.4,平均6.6)、K2O/Na2O(0.95~3.20,平均1.8)、La/Sc(2.0~2.7)、Th/Sc(0.84~0.86)比值,与此同时,具有较低的CaO、MgO和Na2O含量(分别为0.19%~2.85%、1.43%~2.13%、和1.44%~2.27%)和Co/Th(0.83~5.30)比值.同时,这些沉积岩富集轻稀土元素(LREE),具有明显的铕负异常(Eu/Eu*=0.62~0.69),与澳大利亚后太古代页岩(PAAS)的稀土元素配分模式相似.其中两件定年样品的碎屑锆石最小年龄峰值分别为856 Ma和860 Ma.综合前人研究成果,江南造山带冷家溪群沉积岩来自于中酸性火成物源区,并经历了快速剥蚀和较弱的风化过程,在860~830 Ma时处于活动大陆边缘的构造环境中.Abstract: It is generally accepted that the Jiangnan Orogenic Belt was formed by the amalgamation of the Yangtze and Cathaysian blocks during the Neoproterozoic period. However, the time of the amalgamation and its tectonic properties are still controversial. Comprehensive understanding of the formation mechanism of the Jiangnan Orogenic Belt is a prerequisite for exploring the Precambrian geological evolution, and also an important factor for in-depth analysis of the Phanerozoic geological nature in South China. The mineral composition and geochemical characteristics of sedimentary rocks can be used as a good indicator for the source of sediments and the tectonic setting of their formation. However, previous studies have been focused on the geochemistry-geochronology of magmatic rocks or the geochronology of clastic zircons in the strata, and the tracing of sediments is seldom reported. According to our integrated study on petrology, geochemistry, and zircon geochronology on the Xiaomuping Formation and Huanghudong Formation of Lengjiaxi Group from Pingjiang area, it is shown that (1) whole rock samples have high SiO2 (58.82%-70.62%) and Al2O3(13.35%-20.99%) contents, and high A/CN (3.8-12.4), K2O/Na2O (0.95-3.20), La/Sc (2.0-2.7) and Th/Sc (0.84-0.86) ratios, but low CaO, MgO and Na2O contents (0.19%-2.85%, 1.43%-2.13% and 1.44%-2.27%, respectively) and Co/Th (0.83-5.30) ratio; (2) these samples are enriched in LREE and have significant negative Eu anomaly, which is similar to those of the PAAS. (3) The maximum age peak of detrital zircon collection is 856 Ma and 861 Ma; Hence, we propose that the sedimentary rocks of the Lengjiaxi Group from the Jiangnan Orogen are derived from intermediate-felsic magmatic sources in an active continental margin setting at 860-830 Ma, and then experienced rapid erosion and relatively weak weathering processes.
-
Key words:
- Jiangnan Orogen /
- Neoproterozoic /
- Lengjiaxi Group /
- detrital zircon /
- active continental margin /
- geochemistry
-
图 1 平江地质简图及岩性柱状图(据Wang et al., 2007修改)
图a据中国地图(审图号:GS(2016)1606)修改
Fig. 1. Simplified geological map and lithologic column in Pingjiang area (modified from Wang et al., 2007)
图 4 平江地区碎屑沉积岩球粒陨石标准化(a)和PAAS标准化(b)稀土元素配分图
球粒陨石标准值引自Sun and McDonough(1989);PAAS据Taylor and McLennan(1985);代表性构造环境碎屑沉积岩平均值来自Bhatia(1986)
Fig. 4. Chondrite and Post-Archean Australian shale (PAAS) normalized rare earth element distribution patterns for the samples from the Lengjiaxi Group
图 5 平江地区冷家溪群沉积岩风化特征图解
a. A-CN-K图解,据Nesbitt et al.(1982),A、C、N和K分别为Al2O3、CaO、Na2O和K2O的摩尔数,花岗岩(Gr)、英云闪长岩(To)、花岗闪长岩(Gd)、上地壳,平均页岩数值引自Condie (1993);b. CIA-ICV图解,据Nesbitt et al. (1982)、Cox et al. (1995);c.陆源砂岩分类图解,据Pettijohn et al. (1972);d. Th-Th/U图解,据McLennan et al. (1993)
Fig. 5. Diagrams for evaluating compositional variations and weathering process for sedimentary rock samples of the Lengjiaxi Group in Pingjiang area
图 6 平江地区冷家溪群沉积岩源区物质组成图解
a.判别函数F1-F2,据Roser and Korsch (1988);b. Th/Sc-Zr/Sc,据McLennan et al. (1993);c. Co/Th-La/Sc,火山岩平均组分引自Condie (1993);d. La/Th-Hf,据Floyd and Leberidge (1987),湘东板溪数据王鹏鸣等(2012)
Fig. 6. Source composition discrimination diagrams for Lengjiaxi Group sedimentary rock samples in Pingjiang area
图 7 平江地区冷家溪群沉积岩构造背景判别图解
a. K2O/SiO2-SiO2,据Roser and Korsch (1986);b. La/Y-Sc/Cr;c. La-Th-Sc;d. Th-Sc-Zr/10;图b、c、d据Bhatia and Crook(1986)
Fig. 7. Discrimination diagrams of tectonic settings for representative Lengjiaxi sedimentary rocks in Pingjiang area
-
[1] Bai, D. Y., Jia, B. H., Liu, W., et al., 2010. Zircon SHRIMP U-Pb Dating of the Igneous Rocks from Chengbu, Hunan, and Their Constraints on the Neoproterozoic Tectonic Evolution of Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12):1715-1726 (in Chinese with English abstract). [2] Bhatia, M. R., 1985a. Plate Tectonics and Geochemical Composition of Sandstones:A Reply. Journal of Geology, 91 (6):611-627. https://doi.org/10.1086/628922 [3] Bhatia, M. R., 1985b. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control. Sedimentary Geology, 45(1):97-113. https://doi.org/10.1016/0037-0738(85)90025-9 [4] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/bf00375292 [5] Bhatia, M. R., Taylor, S. R., 1981. Trace-Element Geochemistry and Sedimentary Provinces:A Study from the Tasman Geosyncline, Australia. Chemical Geology, 33(1-4), 115-125. https://doi.org/10.1016/0009-2541(81)90089-9 [6] Bureau of Geology and Mineral Resources of Guangxi Province, 1985. Regional Geology of the Guangxi Province. Geology Publishing House, Beijing (in Chinese). [7] Bureau of Geology and Mineral Resources of Guizhou Province, 1987.Regional Geology of the Guizhou Province. Geology Publishing House, Beijing (in Chinese). [8] Bureau of Geology and Mineral Resources of Hunan Province, 1988. Regional Geology of the Hunan Province. Geology Publishing House, Beijing (in Chinese). [9] Bureau of Geology and Mineral Resources of Jiangxi Province, 1984. Regional Geology of the Jiangxi Province. Geology Publishing House, Beijing (in Chinese). [10] Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10):875-878. https://doi.org/10.1130/g32945.1 [11] Che, Q. J., Wu, G. Y., Tang, X. S., et al., 2005. Disintegration of Mesoproterooic Lengjiaxi Group in Northeast Hunan Province. Geology and Mineral Resources of South China, 21(1):47-53, 71 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc200501009 [12] Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4):1-37. https://doi.org/10.1016/0009-2541(93)90140-e [13] Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14):2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 [14] Cui, X., Zhu, W. B., Fitzsimons, I. C. W., et al., 2017. A Possible Transition from Island Arc to Continental Arc Magmatism in the Eastern Jiangnan Orogen, South China:Insights from a Neoproterozoic (870-860 Ma) Gabbroic-Dioritic Complex near the Fuchuan Ophiolite. Gondwana Research, 46:1-16. https://doi.org/10.1016/j.gr.2017.02.012 [15] Cullers, R. L., Basu, A., Suttner, L. J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70(4):335-348. https://doi.org/10.1016/0009-2541(88)90123-4 [16] Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata:a Test Against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2):115-125. https://doi.org/10.1016/j.epsl.2009.09.013 [17] Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical in Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4):539-544 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200304019 [18] Fildani, A., Cope, T. D., Graham, S. A., et al., 2003. Initiation of the Magallanes Foreland Basin:Timing of the Southernmost Patagonian Andes Orogeny Revised by Detrital Zircon Provenance Analysis. Geology, 31(12):1081. https://doi.org/10.1130/g20016.1 [19] Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4):531-542. https://doi.org/10.1144/gsjgs.144.4.0531 [20] Gao, L. Z., Chen, J., Ding, X. Z., et al., 2011a. Zircon SHRIMP U-Pb Dating of the Tuff Bed of Lengjiaxi and Banxi Groups, Northeastern Hunan:Constraints on the Wuling Movement. Geological Bulletin of China, 30(7):1001-1008 (in Chinese with English abstract). [21] Gao, L. Z., Dai, C. G., Liu, Y. X., et al., 2010. Zircon SHRIMP UPb Dating of Tuff Bed of the Sibao Group in Southeastern Guizhou-Northern Guangxi Area, China and Its Stratigraphic Implication. Geologcal Bulletin of China, 29(9):1259-1267 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201009001.htm [22] Gao, L. Z., Ding, X. Z., Pang, W. H., et al., 2011b. SRHIMP Zircon U-Pb Dating of Metamorphic Tuff from the Precambrian Cangxi Complex-Group in Northeastern Hunan. Geologcal Bulletin of China, 30(10):1479-1484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110001 [23] Gibbs, A. K., 1985. The Continental Crust:Its Composition and Evolution. Journal of Geology, 94(4):632-633. https://doi.org/10.1086/629067 [24] Li, W. X., Li, X. H., Li, Z. X., 2010. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China:Initial Extension during the Breakup of Rodinia?. American Journal of Science, 310(9):951-980. https://doi.org/10.2475/09.2010.08 [25] Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite:Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3):288-301. https://doi.org/10.1016/j.gr.2007.12.010 [26] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004 [27] Li, X. H., Li, Z. X., Ge, W. C., et al., 2001. U-Pb Ziron Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications. Bulletin of Mineralogy Petrology and Geochemistry, 20(4):271-273 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200104019 [28] Li, X. H., Li, Z. X., Ge, W., et al., 2003. Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 122(1-4):45-83. https://doi.org/10.1016/S0301-9268(02)00207-3 [29] Li, X. H., Liu, Y., Tu, X. L., et al., 2002. Precise Determination of Chemical Compositions in Silicate Rocks Using ICP Aesand ICP MS:A Comparative Study of Sample Digestion Techniques of Alkali Fusion and Acid Dissolution. Geochimica, 31(3):289-294 (in Chinese with English abstract). http://www.researchgate.net/publication/306153354_Precise_determination_of_chemical_compositions_in_silicate_rocks_using_ICP-AES_and_ICP-MS_A_comparative_study_of_sample_digestion_techniquesofalkalifusion_and_acid_disolution [30] Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2):163. https://doi.org/10.1130/0091-7613(2002)0300163:gccisc>2.0.co; 2 doi: 10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2 [31] Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6):552-558 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048595 [32] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [33] Ma, T. Q., Chen, L. X., Bai, D. Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeastern Huan. Geology in China, 36(1):65-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901007.htm [34] McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284:21-40. https://doi.org/10.1130/spe284-p21 [35] McLennan, S. M., Taylor, S. R., 1980. Th and U in Sedimentary Rocks:Crustal Evolution and Sedimentary Recycling. Nature, 285(5767):621-624. https://doi.org/10.1038/285621a0. [36] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885):715-717. https://doi.org/10.1038/299715a0. [37] Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2):129-147. https://doi.org/10.1086/629290. [38] Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and Sandstone.Springer, New York. [39] Rodrigues, B., Chew, D., Jorge, R., et al., 2015. Detrital Zircon Geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); Constraints on the Provenance and Geodynamic Evolution of the South Portuguese Zone. Journal of the Geological Society, 172:294-308. https://doi.org/10.1144/jgs2013-084 [40] Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5):635-650. https://doi.org/10.1086/629071. [41] Roser, B. P., Korsch, R. J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67(1-2):119-139. https://doi.org/10.1016/0009-2541(88)90010-1. [42] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geologcal Bulletin of China, 31(7):1035-1053 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 [43] Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China):New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3-4):263-276. https://doi.org/10.1016/j.precamres.2011.03.003. [44] Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19. [45] Tan, Q. L., Wang, Y. J., Zhang, Y. Z., et al., 2017. Taohong Diorite from Pingshui Region in Eastern Jiangnan Orogen:Evidence for Early Neoproterozoic Oceanic Crust Subduction. Earth Science, 42(2):173-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702002.htm [46] Tang, X. S., 1989. Lithostratigraphic Study of Lengjiaxi Group in Hunan. Hunan Geology, 8(2):1-9 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ198902000.htm [47] Tang, Z. C., Chen, Z. D., Hu, K. M., et al., 2018. Neoproterozoic (~828 Ma) Expansion of Back-Arc Basin:Implications from Geochronology and Geochemistry of the Diabase and Flyschoids in Kaihua Area, Western Zhejiang. Earth Science, 43(S2):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2001.htm [48] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust:Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford. [49] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262. [50] Wang, J., Li, X. H., Duan, T. Z., et al., 2003. Zircon SHRIMP U-Pb Dating for the Cangshuipu Volcanic Rocks and Its Implications for the Lower Boundary Age of the Nanhua Strata in South China. Chinese Science Bulletin, 48(16):1726-1731 (in Chinese). doi: 10.1360/csb2003-48-16-1726 [51] Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12):3841-3857 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212005 [52] Wang, W., Wang, F., Chen, F. K., et al., 2010. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block:Constraints on the Deposition Age and Provenance. Journal of Geology, 118(1):79-94. https://doi.org/10.1086/648533. [53] Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235:1-19. https://doi.org/10.1016/j.precamres.2013.05.013. [54] Wang, X. C., Li, Z. X., Li, X. H., et al., 2011. Geochemical and Hf-Nd Isotope Data of Nanhua Rift Sedimentary and Volcaniclastic Rocks Indicate a Neoproterozoic Continental Flood Basalt Provenance. Lithos, 127(3-4):427-440. https://doi.org/10.1016/j.lithos.2011.09.020. [55] Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2):117-131. https://doi.org/10.1016/j.precamres.2007.06.005. [56] Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242:154-171. https://doi.org/10.1016/j.precamres.2013.12.023. [57] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso-to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China:Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1-2):79-103. https://doi.org/10.1016/j.precamres.2004.07.006. [58] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China:Implications for Tectonic Evolution. Precambrian Research, 145(1-2):111-130. https://doi.org/10.1016/j.precamres.2005.11.014. [59] Wang, Y. J., Gan, C. S., Tan, Q. L., et al., 2018. Early Neoproterozoic (∼840 Ma) Slab Window in South China:Key Magmatic Records in the Chencai Complex. Precambrian Research, 314:434-451. https://doi.org/10.1016/j.precamres.2018.06.002. [60] Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231:343-371. https://doi.org/10.1016/j.precamres.2013.03.020. [61] Wang, Y. J., Zhang, Y. Z., Fan, W. M., et al., 2014. Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block:Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses. Precambrian Research, 249:144-161. https://doi.org/10.1016/j.precamres.2014.05.003. [62] Wronkiewicz, D. J., Condie, K.C., 1989. Geochemistry and Provenance of Sediments from the Pongola Supergroup, South Africa:Evidence for a 3.0-Ga-Old Continental Craton. Geochimica et Cosmochimica Acta, 53(7):1537-1549. https://doi.org/10.1016/0016-7037(89)90236-6. [63] Wu, Y. B., Zheng, Y. F., 2004. Geogenic Mineralogy of Zircon and Its Restriction on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [64] Xia, X. P., Sun, M., Zhao, G. C., et al., 2004. Spot Zircon U-Pb Isotope Analysis by ICP-MS Coupled with a Frequency Quintupled (213 Nm) Nd-YAG Laser System. Geochemical Journal, 38(2):191-200. https://doi.org/10.2343/geochemj.38.191. [65] Yang, C., Li, X. H., Wang, X. C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited:Insights from Detrital Zircon U-Pb Age and Hf-O Isotopes. Precambrian Research, 266:165-178. https://doi.org/10.1016/j.precamres.2015.05.016. [66] Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2016. An Early Neoproterozoic Accretionary Prism Ophiolitic Mélange from the Western Jiangnan Orogenic Belt, South China. Journal of Geology, 124(5):587-601. https://doi.org/10.1086/687396. [67] Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science in China (Series D), 43(10):1553-1582 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201311002.htm [68] Zhang, Y. Z., Wang, Y. J., 2016. Early Neoproterozoic (∼840 Ma) Arc Magmatism:Geochronological and Geochemical Constraints on the Metabasites in the Central Jiangnan Orogen. Precambrian Research, 275:1-17. https://doi.org/10.1016/j.precamres.2015.11.006. [69] Zhang, Y. Z., Wang, Y. J., Zhang, Y. H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks:Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269:18-30. https://doi.org/10.1016/j.precamres.2015.08.003. [70] Zhao, G. C., 2015. Jiangnan Orogen in South China:Developing from Divergent Double Subduction. Gondwana Research, 27(3):1173-1180. https://doi.org/10.1016/j.gr.2014.09.004. [71] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017. [72] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004. [73] Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003. [74] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China:Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1-2):27-42. https://doi.org/10.1016/j.precamres.2008.11.002. [75] Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2003. Lithogeochemistry of Meso-and Neoproterozoic Mafic-Ultramafic Rocks from Nothern Guangxi. Acta Petrologica Sinica, 19(1):9-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200301001.htm [76] Zhou, M. F., Ma, Y., Yan, D. P., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1-2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002. [77] Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1-2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032. [78] 柏道远, 贾宝华, 刘伟, 等, 2010.湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束.地质学报, 84(12):1715-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201012001 [79] 广西壮族自治区地质矿产局, 1985.广西壮族自治区区域地质志.北京:地质出版社. [80] 贵州地质矿产局, 1987.贵州省区域地质志.北京:地质出版社 [81] 湖南省地质矿产局, 1988.湖南省区域地质志.北京:地质出版社. [82] 江西省地质矿产局, 1984.江西省区域地质志.北京:地质出版社. [83] 车勤建, 伍光英, 唐晓珊, 等, 2005.湘东北中元古代冷家溪群的解体及其地质意义.华南地质与矿产, 21(1):47-53, 71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc200501009 [84] 冯连君, 储雪蕾, 张启锐, 等, 2003.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用.地学前缘, 10(4):539-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200304019 [85] 高林志, 陈峻, 丁孝忠, 等, 2011a.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约.地质通报, 30(7):1001-1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201107001 [86] 高林志, 戴传固, 刘燕学, 等, 2010.黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义.地质通报, 29(9):1259-1267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201009001 [87] 高林志, 丁孝忠, 庞维华, 等, 2011b.湘东北前寒武纪仓溪岩群变凝灰岩SHRIMP锆石U-Pb年龄.地质通报, 30(10):1479-1484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110001 [88] 李献华, 李正祥, 葛文春, 等, 2001.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义.矿物岩石地球化学通报, 20(4):271-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200104019 [89] 李献华, 刘颖, 涂湘林, 等, 2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学, 31(3):289-294. http://www.cqvip.com/Main/Detail.aspx?id=6221863 [90] 刘颖, 刘海臣, 1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, 25(6):552-558. http://www.cnki.com.cn/Article/CJFDTotal-DQHX606.003.htm [91] 马铁球, 陈立新, 柏道远, 等, 2009.湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征.中国地质, 36(1):65-73. http://www.cqvip.com/qk/90050X/200901/29667894.html [92] 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 [93] 谭清立, 王岳军, 张玉芝, 等, 2017.江南东段平水地区桃红闪长岩:早新元古代洋壳消减的证据.地球科学, 42(2):173-190. doi: 10.3799/dqkx.2017.014 [94] 唐晓珊, 1989.湖南冷家溪群岩石地层的研究.湖南地质, 8(2):1-9. http://www.cnki.com.cn/Article/CJFDTotal-HNDZ198902000.htm [95] 唐增才, 陈忠大, 胡开明, 等, 2018.浙西开化地区新元古代(~828 Ma)弧后盆地扩张:来自类复理石和辉绿岩墙的年代学和地球化学证据.地球科学, 43(S2):1-15. http://www.cqvip.com/QK/94035A/2018S2/68817588504849568350484849.html [96] 王剑, 李献华, Duan, T.Z., 等, 2003.沧水铺火山岩锆石SHRIMP U-Pb年龄及"南华系"底界新证据.科学通报48(16):1726-1731. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200316003 [97] 王鹏鸣, 于津海, 孙涛, 等, 2012.湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义.岩石学报, 28(12):3841-3857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212005 [98] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002 [99] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学(D辑), 43(10):1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003 [100] 周金城, 王孝磊, 邱检生, 等, 2003.桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学.岩石学报, 19(1):9-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200301002 -
dqkxzx-45-9-3461-附表1 2.docx