Petrogenesis of Late Triassic Luerma Monzodiorite in Western Gangdise, Tibet, China
-
摘要: 晚三叠世及以前岩浆活动研究的缺乏严重制约了雅鲁藏布新特提斯洋演化模式的讨论.为探讨冈底斯西段打加错地区晚三叠世岩浆活动的地球动力学背景,对鲁尔玛二长闪长岩开展了岩石学、地球化学和年代学研究工作.利用LA-ICP-MS方法测得2件二长闪长岩样品的锆石206Pb/238U年龄加权平均值为212.1±0.6 Ma(MSWD=0.97)和212.8±0.2 Ma(MSWD=0.74),表明鲁尔玛中性岩浆活动发生在晚三叠世.二长闪长岩主要由斜长石、钾长石、普通角闪石等组成,并含少量石英、普通辉石、黑云母、磁铁矿、磷灰石等,具有中等的SiO2(50.75%~54.69%)含量,高的K2O(2.71%~3.99%)和总碱(K2O+Na2O=5.84%~8.65%)含量,以及中等的A12O3(13.77%~19.17%)含量,较高的CaO(4.90%~10.14%)含量.里特曼指数(σ43)为3.40~7.65,A/CNK值为0.56~1.00,表明鲁尔玛二长闪长岩属于准铝质钾玄岩系列岩石.岩石富集轻稀土元素(LREE)和大离子亲石元素(LILE),相对亏损重稀土元素和高场强元素(HFSE),轻重稀土分异较弱(LREE/HREE=7.45~11.10),并具轻微的Eu负异常(δEu=0.83~0.95),无Ce异常(0.93~1.04).相对较低的87Sr/86Sr初始比值((87Sr/86Sr)t=0.705 532~0.706 135,平均0.705 852)、正的εHf(t)值(4.97~14.10,平均8.77)、年轻的地壳模式年龄(TDM2=348~930 Ma,平均为686 Ma),(143Nd/144Nd)t和εHf(t)分别为0.512 639~0.512 669(平均为0.512 657)和0.08~0.67(平均为0.43),(206Pb/204Pb)t、(207Pb/204Pb)t和(208Pb/204Pb)t分别为:18.235~18.521(平均为18.411)、15.593~15.651(平均为15.617)和39.948~38.579(平均为38.401),指示二长闪长岩起源于新生地壳.Sr-Nd-Pb-Hf同位素及微量元素特征表明鲁尔玛二长闪长岩为新生地壳部分熔融的产物.研究结果揭示,鲁尔玛二长闪长岩体是晚三叠雅鲁藏布新特提斯洋北向俯冲初期,新生地壳熔融形成的准铝质碱性钾玄岩系岩石.该岩体的研究表明,在晚三叠世(~213 Ma),冈底斯西段的打加错地区,雅鲁藏布新特提斯洋壳已经向北俯冲到南拉萨微陆块之下.Abstract: The study on the evolution model of the New Tethys Ocean in Yarlung Zangbo has been seriously restricted due to the lack of in-depth research on magmatism during and even before the Late Triassic In order to discuss the geodynamic background of the Late Triassic magmatism in Dajia Co area of western Gangdise, this paper presents a study on petrology, geochemistry and chronology of the Ruerma monzodiorite. LA-ICP-MS zircon U-Pb analyses suggest that monzodiorite has two weighted mean 206Pb/238U ages of 212.1±0.6 Ma (mean square weighted deviation=0.97), and 212.8±0.2 Ma (mean square weighted deviation=0.74), which suggests that the Luerma magmatism event took place during the late Triassic epoch. The rocks contain plagioclase, potassium feldspar and amphibole, and contain a small amount of quartz, pyroxene, biotite, magnetite and apatite. They have moderate contents of SiO2 (50.75%-54.69%), and A12O3 (13.77%-19.17%), high contents of K2O (2.71%-3.99%), total K2O+Na2O (5.84%-8.65%), and CaO (4.90%-10.14%), with a Reitman index (σ43) of 3.40 to 7.65, and A/CNK values of 0.56 to 1.00. These characteristics suggest that the Luerma monzodiorite is a quasi-aluminous and alkaline-shoshonite series. The rocks are enriched in light rare earth elements (LREE) and large ion lithofile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements(HFSE), with LREE/HREE ratios of 7.45 to 11.10. They have weakly negative Eu anomalies of 0.83 to 0.95 without obvious Ce anomalies (δCe=0.93-1.04). The relatively low initial 87Sr/86Sr ratios of 0.705 532 to 0.706 135, positive εHf(t) values of 4.97 to 14.10, and two-stage Hf model ages (TDM2) ranging from 348 Ma to 930 Ma, indicate that the rocks derived from a juvenile crust. The monzodiorite's (143Nd/144Nd)t values range from 0.512 639 to 0.512 669, their εHf(t) values range from 0.08 to 0.67, their (206Pb/204Pb)t values range from 18.235 to 18.521, their (207Pb/204Pb)t values range from 15.593 to 15.651, and their (208Pb/204Pb)t values range from 39.948 to 38.579. These data indicate that the Luerma monzodiorite was formed by partial melting of the juvenile crust. We propose that the Luerma monzodiorite was formed during the northward subduction of Yarlu Zangbo oceanic crust of the Neo Tethys Ocean.
-
Key words:
- Lhasa terrane /
- Dajia Co /
- zircon U-Pb chronology /
- Sr-Nd-Pb-Hf isotopes /
- petrogenesis /
- geochemistry
-
图 4 QAP图解(a);K2O+Na2O-SiO2图解(b);K2O-SiO2图解(c);A/NK-A/CNK图解(d)
图a底图据Le Maitre (2002);图b底图据Middlemost (1994);图c底图据Peccerillo and Taylor (1976)、Middlemost (1985);图d底图据Maniar and Piccoli (1989)
Fig. 4. QAP plot (a); K2O+Na2O-SiO2 plot (b); K2O vs. SiO2 plot (c); A/NK vs. A/CNK plot (d)
图 5 稀土元素标准化曲线(a)和微量元素标准化蛛网图(b)
图a标准化数据数据McDonough and Sun (1995);图b标准化数据数据Sun and McDonough (1989)
Fig. 5. Chondrite-normalised REE patterns (a); mantle-normalised multi-element diagrams (b)
图 7 鲁尔玛二长闪长岩构造环境图解
a. Na/La-La/Sm图解; b. Ti-Zr图解,底图据Pearce and Cann(1973) ; c. Nb/Yb-Th/Yb图解,底图据Pearce (2008)
Fig. 7. Structural environment diagram of the monzodiorite in Luerma
图 8 εHf(t)与年龄关系
南拉萨、中拉萨和北拉萨数据据Hou et al.(2015);DM.原始地幔; CHUR.球粒陨石均一储库
Fig. 8. εHf(t) vs. U-Pb ages plots
图 9 鲁尔玛岩体Sr-Nd-Pb图解
EMⅠ. Ⅰ型富集地幔; EMⅡ. Ⅱ型富集地幔; PREMA.普通地幔; BSE.整个硅酸盐地球; HIMU.高μ地幔; Geochron.零等时线; NHRL.北半球参考线; *数据据Xu and Castillo (2004)、Zhang et al.(2005);底图据Zindler et al. (1986)、Wilson (1989)
Fig. 9. Sr-Nd-Pb plots of Luerma
图 10 鲁尔玛二长闪长岩成因模式
a.晚三叠世板块构造图, 据Baxter et al.(2016)、Li et al.(2016)、Cao et al.(2018)修改; b.鲁尔玛晚三叠世岩浆岩形成模式
Fig. 10. Schematic illustration showing the generation and emplacement to the monzodiorite in Luerma
表 1 鲁尔玛二长闪长岩采样分布
Table 1. The sample distributions of the Luerma monzodiorite
样品编号 采样位置 分析项目 东经E 北纬N LEM08 85°42’30” 30°01’34” 薄片鉴定,全岩主量、稀土、微量元素分析,全岩Sr-Pb-Pb同位素分析 LEM12 87°42’29” 30°02’09” 薄片鉴定,全岩主量、稀土、微量元素分析 LEM13 87°42’30” 30°02’09” 薄片鉴定,全岩主量、稀土、微量元素分析 LEM15 87°42’32” 30°02’10” 薄片鉴定,全岩主量、稀土、微量元素分析 LEM17 87°42’41” 30°02’08” 薄片鉴定,全岩主量、稀土、微量元素分析,全岩Sr-Pb-Pb同位素分析 LEM26-1 87°43’00” 30°02’30” 薄片鉴定,全岩主量、稀土、微量元素分析,全岩Sr-Pb-Pb同位素分析 LEM41 85°42’39” 30°02’05” 薄片鉴定,全岩主量、稀土、微量元素分析,全岩Sr-Pb-Pb同位素分析锆石U-Pb测年、Lu-Hf同位素分析 ZK03-23 85°43’23” 30°02’31” 薄片鉴定,全岩主量、稀土、微量元素分析,锆石U-Pb测年、Lu-Hf同位素分析 -
[1] Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The High K2O Volcanism of Northwestern Tibet:Geochemistry and Tectonic Implications. Earth and Planetary Science Letters, 111(2-4):351-367. https://doi.org/10.1016/0012-821x(92)90189-3 [2] Baxter, A. T., Aitchison, J. C., Ali, J. R., et al., 2016. Detrital Chrome Spinel Evidence for a Neotethyan Intra-Oceanic Island Arc Collision with India in the Paleocene. Journal of Asian Earth Sciences, 128:90-104. https://doi.org/10.1016/j.jseaes.2016.06.023 [3] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola:Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5):554-566. https://doi.org/10.1007/s004100000211. [4] Blichert Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127 (3):248-260. https://doi.org/10.1007/s004100050278. [5] Cao, H. W., Huang, Y., Li, G. M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya:Tectonic Link with Greater India. Geoscience Frontiers, 9(1):273-291. https://doi.org/10.1016/j.gsf.2017.04.001 [6] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered Ca. 113Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005 [7] DePaolo, D.J., Wasserburg, G.J., 1976. Nd Isotopic Variations and Petrogenetic Models. Geophysical Research Letters, 3:249-252. https://doi.org/10.1029/GL003i005p00249 [8] Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4):635-651. https://doi.org/10.1007/s11430-016-5244-x [9] Dong, X., Zhang, Z. M., Xiang, H., et al., 2013. Metamorphism and Dynamics of the Lhasa Terrane, South Tibet. Acta Geoscientia Sinica, 34(3):257-262 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201903007 [10] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. 10.1016/S0016-7037(99)00343-9. doi: 10.1016/S0016-7037(99)00343-9 [11] Griffin, W. L., Wang, X., Jackson, S. E., P et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/S0024-4937(02)00082-8. [12] Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [13] Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- And Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1 [14] Huang, F., Xu, J. F., Chen, J. L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022 [15] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1 [16] Lassiter, J. C., Depaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Onstraints. In: Mahoney, J. J., Coffin, M.F. eds., Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. Geophysical Monograph Series, 100: 335-355. https://doi.org/10.1029/GM100p0335 [17] Le Maitre, R.W., 2002. Igneous Rocks:A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks):Second Edition. Cambridge University Press, New York, 3-42. [18] Li, F. Q., Liu, W., Zhang, S. Z., et al., 2012. Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area, Southern Gangdese. Acta Geologica Sinica, 86(10):1592-1603 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201210004 [19] Li, Z. Y., Ding, L., Lippert, P. C., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44(9):727-730. https://doi.org/10.1130/g38030.1 [20] Liu, H., Li, G. M, Huang, H. X., et al., 2019a. Sources of Ore-Forming Materials in Luerma Porphyry Copper (Gold) Deposit, Western Gangdise. Mineral Deposits, 38(3):631-643 (in Chinese with English abstract). [21] Liu, H., Zhang, L. K.. Huang, H. X., et al., 2019b. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Western Gangdise. Earth Science, 44(6):1935-1956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.370 [22] Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong Ⅰ-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica (English Edition), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634 [23] Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8 [24] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [25] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [26] Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94-95:34-49. https://doi.org/10.1016/j.jog.2016.01.003 [27] Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London. [28] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [29] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [30] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [31] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [32] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [33] Song, S. W., Liu, Z., Zhu, D. C., et al., 2014. Zircon U-Pb Chronology and Hf Isotope of the Late Triassic Andesitic Magmatism in Dajiacuo, Tibet. Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023 [34] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [35] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262 [36] Thompson, A. B., 1996. Fertility of Crustal Rocks during Anatexis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2):1-10. https://doi.org/10.1017/s0263593300006428 [37] Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Post-Collisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019 [38] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [39] Wilson, W., 1989. Igneous Petrogenesis. Unwin Hyman, London. [40] Wu, Y. W., Li, C., Xu, M. J., et al., 2017. Zircon U-Pb Age, Geochemical Data:Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 28(3):422-432. https://doi.org/10.1007/s12583-017-0730-z [41] Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1-4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028 [42] Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105:320-337. https://doi.org/10.1016/j.jseaes.2015.01.021 [43] Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001 [44] Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1):1-131. https://doi.org/10.1016/j.earscirev.2005.05.004. [45] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [46] Zhang, S. Q., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics. Journal of Petrology, 46(4):829-858. https://doi.org/10.1093/petrology/egi002 [47] Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1):170-189. https://doi.org/10.1016/j.gr.2012.08.024 [48] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [49] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [50] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [51] 董昕, 张泽明, 向华, 等, 2013.青藏高原南部拉萨地体的变质作用与动力学.地球学报, 34(3):257-262. http://d.old.wanfangdata.com.cn/Periodical/dqxb201303001 [52] 黄丰, 许继峰, 陈建林, 等, 2015.早株罗世叶己组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?.岩石学报, 31(7):2089-2100. [53] 李奋其, 刘伟, 张士贞, 等, 2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征.地质学报, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004 [54] 刘洪, 李光明, 黄瀚霄, 等, 2019a.冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究.矿床地质, 38(3):631-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201903012 [55] 刘洪, 张林奎, 黄瀚霄, 等, 2019b.冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化.地球科学, 44(6):1935-1956. http://earth-science.net/WebPage/Article.aspx?id=4248 [56] 宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世岩浆活动的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Conference/8472890