• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义

    许伟 徐学义 卢进才 牛亚卓 陈高潮 史冀忠 党犇 宋博 张宇轩 张乔

    许伟, 徐学义, 卢进才, 牛亚卓, 陈高潮, 史冀忠, 党犇, 宋博, 张宇轩, 张乔, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
    引用本文: 许伟, 徐学义, 卢进才, 牛亚卓, 陈高潮, 史冀忠, 党犇, 宋博, 张宇轩, 张乔, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
    Xu Wei, Xu Xueyi, Lu Jincai, Niu Yazhuo, Chen Gaochao, Shi Jizhong, Dang Ben, Song Bo, Zhang Yuxuan, Zhang Qiao, 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
    Citation: Xu Wei, Xu Xueyi, Lu Jincai, Niu Yazhuo, Chen Gaochao, Shi Jizhong, Dang Ben, Song Bo, Zhang Yuxuan, Zhang Qiao, 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048

    北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义

    doi: 10.3799/dqkx.2019.048
    基金项目: 

    中国地质调查局地质调查项目 DD20160172

    国家自然科学基金项目 41402195

    中国地质调查局地质调查项目 DD20190092

    国家自然科学基金项目 41402097

    详细信息
      作者简介:

      许伟(1985-), 男, 博士研究生, 主要从事区域构造研究

    • 中图分类号: P597

    Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen

    • 摘要: 为了理清北山南部晚古生代构造演化过程,对野马井地区的二长花岗岩与流纹岩进行了岩石学、全岩主微量元素地球化学、锆石U-Pb年代学及Hf同位素等研究.LA-ICP-MS锆石U-Pb定年结果表明二长花岗岩与流纹岩的就位年龄分别为402.7±2.4 Ma与392.9±2.5 Ma.二者均为富钾钾质岩浆岩,呈现过铝质-强过铝质,轻重稀土弱到中等分馏且相对富集轻稀土,二长花岗岩呈现无或弱的负Eu异常,流纹岩呈现较明显的负Eu异常,二者均富集Rb、Th、U、Pb等,亏损Nb、Ta、Ba、Sr、Ti等,为I型酸性岩浆岩.二长花岗岩与流纹岩的锆石εHft)值介于-2.2~+6.8,对应Hf模式年龄(tDM2)为962~1 533 Ma;指示二者主要由中元古代陆壳物质熔融所形成.依据野马井地区泥盆纪富钾酸性岩浆岩的地球化学特征,结合该区域其他地质资料,可推测其为后碰撞构造环境的产物.

       

    • 图  1  北山南部地质概况及采样位置

      a.中亚造山带构造纲要与研究区位置图(据Zhou et al., 2018); b.北山南部地质概况及泥盆纪研究成果(据许伟等, 2018);c.野马井地区地质简图及采样位置

      Fig.  1.  Geological map of the investigation area and sampling positions

      图  2  野马井地区样品的镜下特征.

      Q.石英;Pl.斜长石;Bt.黑云母;Mc.微斜长石

      Fig.  2.  Photomicrograph of the Samples in the Yemajing area

      图  3  样品锆石阴极发光图像

      图中白色圈与黄色圈分别为U-Pb年龄与Hf同位素测点,并标注了锆石测点的U-Pb年龄结果与εHf(t)值

      Fig.  3.  The zircon CL images for the samples

      图  4  样品锆石U-Pb同位素年龄谐和图

      标准化数值据Sun and Mcdonough(1989);拉萨地块钾质岩数据来自Zhao et al.(2009), 王保弟等(2011);措勤现布嘎寺组钾质岩数据来自陈建林等(2006);燕冀辽地区钾质岩数据来自许保良等(1999)

      Fig.  4.  U-Pb concordia diagrams of the samples

      图  5  北山南部野马井地区泥盆纪酸性岩浆岩主量元素特征

      a.火山岩TAS分类图解投图(据Le Maitre, 1989);b. K2O-SiO2图解(据Peccerillo and Taylor, 1976);c. Na2O+K2O-CaO-SiO2图解(据Frost et al., 2001);d. A/NK-A/CNK图解(据Maniar and Piccoli, 1989);e. FeOT/(FeOT+MgO)-SiO2图解(据Frost et al., 2001);f. (Al2O3+CaO)/(FeOT+Na2O+K2O)—100(MgO+FeOT+Ti2O)/SiO2图解(据Sylvester, 1989);FeO=FeOT+0.899 8Fe2O3,A/CNK(摩尔比)=N(Al2O3)/[N(Na2O)+N(K2O)+N(CaO)],A/NK(摩尔比)=N(Al2O3)/[N(Na2O)+N(K2O)]

      Fig.  5.  Major element diagrams for the Devonian acidic magmatic rocks in the Yemajing area

      图  6  样品球粒陨石标准化稀土元素配分图(a, c)和原始地幔标准化微量元素蛛网图(b, d)

      Fig.  6.  Chondrite normalized REE patterns (a, c) and primitive mantle normalized spider diagram (b, d) for the samples

      图  7  野马井地区酸性岩浆岩主微量元素协变图解

      I型与S型花岗岩分异趋势依据Chappell(1999);元素分配系数依据Rollinson(1993);Pl.斜长石;Kfs.钾长石;Hb.角闪石;Bt.黑云母;Tit.榍石;Allan.褐帘石;Ap.磷灰石;Zr.锆石;Mon.独居石

      Fig.  7.  The major and trace elements relationship diagrams for the Devonian acidic magmatic rocks in the Yemajing region

      图  8  北山南部泥盆纪酸性岩浆岩在有关A型花岗岩判别图解中的投图

      a, b.分别为Nb和Zr含量对10 000×Ga/Al的图解;c.为Rb/Ba对Zr+ Ce+Y的图解;d.为(K2O+Na2O)/CaO对Zr+Nb+Ce+Y的图解(据Whalen et al., 1987);M, I, S.表示M型、I型、以及S型花岗岩;FG.分异的花岗岩;OGT.未分异的M型、I型、与S型花岗岩;双峰山花岗岩样品数据来自李舢等(2009);墩墩山流纹岩样品数据来自Guo et al.(2014, 2017); 王国强(2015)

      Fig.  8.  Devonian acidic magmatic rocks from southern Beishan plotted in discrimination diagrams for A-type granitoids.

      图  9  野马井地区泥盆纪酸性岩浆岩锆石εHf(t)-年龄图解

      ①.北山南部新元古界花岗岩;②.红柳园花岗岩;③.辉铜山花岗岩;④.北山南部二叠纪花岗岩;⑤.北山南部三叠纪花岗岩;Hf同位素数据源自于: 李舢等(2011); Li et al.(2012, 2013); Zhang et al.(2012); Mao et al.(2012b); Zhu et al.(2015); He et al.(2018)

      Fig.  9.  Diagram of εHf(t) vs. age for the Devonian acidic magmatic rocks in the Yemajing region.

      图  10  主微量元素构造判别图解

      Maniar and Piccoli (1989); Pearce et al.(1984); Pearce and Norry(1979); Pearce(1982, 1996); IAG.岛弧花岗岩;CAG.陆弧花岗岩;CCG.大陆碰撞花岗岩;POG.后碰撞花岗岩;RRG.裂谷相关的花岗岩;CEUG.大陆造陆抬升相关的花岗岩;双峰山花岗岩样品数据来自李舢等(2009);墩墩山流纹岩数据来自Guo et al.(2014, 2017)和王国强(2015);墩墩山玄武岩来自王国强(2015);辉铜山二长花岗岩数据来自赵泽辉等(2007);辉铜山钾长花岗岩数据来自李舢等(2011);红柳园埃达克岩数据来自Mao et al.(2012b)

      Fig.  10.  The major and trace element discrimination diagrams for the tectonic interpretation

    • [1] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2/3): 466-478. https://doi.org/10.1016/j.gr.2010.01.004
      [2] Bonin, B., Sekkal, A., Bussy, F., et al., 1998. Alkali-Calcic and Alkaline Post-Orogenic (PO) Granite Magmatism: Petrologic Constraints and Geodynamic Settings. Lithos, 45(1/2/3/4): 45-70. https://doi.org/10.1016/s0024-4937(98)00025-5
      [3] Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geol. 8:173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/
      [4] Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      [5] Chen, J.L., Xu, J.F., Kang, Z.Q., et al., 2006. Origin of the Miocene Bugasi Group Volcanic Rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petroloica Sinica, 22(3): 585-594(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603007
      [6] Chen, J.L., Xu, J.F., Kang, Z.Q., et al., 2008. Geochemical Comparison of the Cenozoic High-MgO-Potassic Volcanic Rocks between Northern and Southern of Tibetan Plateau: Difference of the Both Mantle Sources. Acta Petrologica Sinica, 24(2): 211-224(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a81374f82fbe7bed39bfd0578465625a&encoded=0&v=paper_preview&mkt=zh-cn
      [7] Chen, S., Guo, Z. J., Qi, J. F., et al., 2016. Early Permian Volcano-Sedimentary Successions, Beishan, NW China: Peperites Demonstrate an Evolving Rift Basin. Journal of Volcanology and Geothermal Research, 309: 31-44. https://doi.org/10.1016/j.jvolgeores.2015.11.004
      [8] Collins, W. J., 1994. Upper- and Middle-Crustal Response to Delamination: An Example from the Lachlan Fold Belt, Eastern Australia. Geology, 22(2): 143. https://doi.org/10.1130/0091-7613(1994)022<0143:uamcrt>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0143:uamcrt>2.3.co;2
      [9] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [10] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [11] Feng, J.C., Zhang, W., Wu, T.R., et al., 2011. Geochronology and Geochemistry of Granite Pluton in the North of Qiaowan, Beishan Mountain, Gansu Province, China, and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 48 (1): 61-70. http://cn.bing.com/academic/profile?id=829575b61ff108ac3f44802347a0c450&encoded=0&v=paper_preview&mkt=zh-cn
      [12] Guo, Q. Q., Xiao, W. J., Hou, Q. L., et al., 2014. Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt. Lithos, 184-187: 361-378. https://doi.org/10.1016/j.lithos.2013.11.007
      [13] Guo, Q. Q., Chung, S. L., Xiao, W. J., et al., 2017. Petrogenesis and Tectonic Implications of Late Devonian Arc Volcanic Rocks in Southern Beishan Orogen, NW China: Geochemical and Nd-Sr-Hf Isotopic Constraints. Lithos, 278-281: 84-96. https://doi.org/10.1016/j.lithos.2017.01.017
      [14] He, S.P., Zhou, H.W., Ren, B.C., et al., 2005. Crustal Evolution of Palaeozoic in Beishan Area, Gansu and Inner Mongolia, China. Northwestern Geology, 38(4): 6-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200503002
      [15] He, Z. Y., Klemd, R., Yan, L. L., et al., 2018. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14. https://doi.org/10.1016/j.earscirev.2018.05.012
      [16] Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      [17] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ.Mineralization in Tibetan Collisional Extension Setting. Mineral Deposites, 25(6):629-651 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fad70807df8aa5e03666540e0d6941d4&encoded=0&v=paper_preview&mkt=zh-cn
      [18] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      [19] Khain, E. V., Bibikova, E. V., Kröner, A., et al., 2002. The Most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 199(3/4): 311-325. https://doi.org/10.1016/s0012-821x(02)00587-3
      [20] Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.
      [21] Li, J.Y., Zhang, J., Yang, T.N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200904002
      [22] Li, S., Wang, T., Tong, Y., et al., 2009. Identification of the Early Devonian Shuangfengshan A-Type Granites in Liuyuan Area of Beishan and Its Implications to Tectonic Evolution. Acta Petrologica et Mineralogica, 28(5): 407-422 (in Chinese with English abstract. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200905001
      [23] Li, S., Wang, T., Tong, Y., et al., 2011. Zircon U-Pb Age, Origin and Its Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China. Acta Petrologica Sinica, 27(10): 3055-3070 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110021
      [24] Li, S., Wang, T., Wilde, S. A., et al., 2012. Geochronology, Petrogenesis and Tectonic Implications of Triassic Granitoids from Beishan, NW China. Lithos, 134-135: 123-145. https://doi.org/10.1016/j.lithos.2011.12.005
      [25] Li, S., Wilde, S. A., Wang, T., 2013. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 179: 99-119. https://doi.org/10.1016/j.lithos.2013.08.002
      [26] Li, X.F., Zhang, C.L., Li, L., et al., 2015. Formation Age, Geochemical Characteristics of the Mingshujing Pluton in Beishan Area of Gansu Province and Its Geological Significance. Acta Petrologica Sinica, 31(9): 2521-2538 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509005
      [27] Meng, F.C., Liu, J.Q., Li, M., et al., 2010. Geochemistry and Tectonic Implications of Rhyolites from Yingcheng Formation in Xujiaweizi, Songliao Basin. Acta Petrologica Sinica, 26(1):227-224(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201001025
      [28] London, D., Evensen, J. M., 2002. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486. https://doi.org/10.2138/rmg.2002.50.11
      [29] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [30] Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012a. The Liuyuan Complex in the Beishan, NW China: A Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483-506. https://doi.org/10.1017/s0016756811000811
      [31] Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2012b. Late Ordovician to Early Devonian Adakites and Nb-Enriched Basalts in the Liuyuan Area, Beishan, NW China: Implications for Early Paleozoic Slab-Melting and Crustal Growth in the Southern Altaids. Gondwana Research, 22(2):534-553. https://doi.org/10.1016/j.gr.2011.06.006
      [32] Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
      [33] Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2
      [34] Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      [35] Pearce, J.A, 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries.In: Thorps, R.S., ed., Andesites.John Wiley and Sons, New York, 525-548.
      [36] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [37] Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. http://cn.bing.com/academic/profile?id=74f99961a201b754ad5c70bd9c422827&encoded=0&v=paper_preview&mkt=zh-cn
      [38] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      [39] Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
      [40] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Singapore Publishers, Singapore, 352.
      [41] Ren, B.F., Ren, Y.W., Niu, W.C., et al., 2019. Zircon U-Pb Ages and Hf Isotope Characteristics of the Volcanic Rocks from Queershan Group in the Hazhudongshan Area of Beishan, Inner Mongolia and Their Geological Significance. Earth Science, 44(1): 298-311(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201901021
      [42] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      [43] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [44] Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302
      [45] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      [46] Thompson, A. B., 1999. Some Time-Space Relationships for Crustal Melting and Granitic Intrusion at Various Depths. Geological Society, London, Special Publications, 168(1): 7-25. https://doi.org/10.1144/gsl.sp.1999.168.01.02
      [47] Wang, B.D., Chen, L.K., Xu, J.F., et al., 2011. Identification and Petrogenesis of Potassic Volcanic Rocks with"Ultrapotassic"Characteristics from Maqiang Area in Lhasa Block. Acta Petrological Sinica, 27(6): 1662-1674. http://cn.bing.com/academic/profile?id=d9a6949067d7f16b2146d3d113862803&encoded=0&v=paper_preview&mkt=zh-cn
      [48] Wang, G.Q., 2015. The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan Area (Northwest China)(Dissertation). Changan University, Xi'an, 150 (in Chinese with English abstract).
      [49] Wang, S.J., Xu, Z.Y., Dong, X.J., et al., 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809024
      [50] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      [51] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [52] Williams, H.M, Turner, S.P., Pearce, J.A, et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
      [53] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      [54] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
      [55] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
      [56] Wyllie, P. J., 1977. Crustal Anatexis: An Experimental Review. Tectonophysics, 43(1/2): 41-71. https://doi.org/10.1016/0040-1951(77)90005-1
      [57] Wyllie, P. J., Osmaston, M. F., Morrison, M. A., 1984. Constraints Imposed by Experimental Petrology on Possible and Impossible Magma Sources and Products [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 310(1514): 439-456. https://doi.org/10.1098/rsta.1984.0003
      [58] Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2008. Relative Contributions of Crust and Mantle to the Generation of the Tianshan Carboniferous Rift-Related Basic Lavas, Northwestern China. Journal of Asian Earth Sciences, 31(4/5/6): 357-378. https://doi.org/10.1016/j.jseaes.2007.07.002
      [59] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
      [60] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      [61] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015
      [62] Xu, B.L., Yan, G.h., Zhang, C., et al., 1999. Characteristics and Petrological Signification of Ultrapotassic Peraluminous Porphyry of the Yanshan Period in the Hebei-Shanxi-Liaoning Area. Geological Review, 45: 520-527 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002183
      [63] Xu, W., Xu, X.Y., Niu, Y.Z., et al., 2018. Geochronology, Petrogenesis and Tectonic Implications of Early Permian A-Type Rhyolite from Southern Beishan Orogen, NW China. Acta Petrologica Sinica, 34(10): 3011-3033 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810012
      [64] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      [65] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      [66] Zhang, Q., Wang, Y., Xiong, X.L., et al., 2008. Adakite and Granite: Challenge and Opportunity. China Land Press, Beijing, 344 (in Chinese with English abstract).
      [67] Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c
      [68] Zhang, W., Wu, T.R., He, Y.K., et al., 2010. LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-Rich Potassium-High Granites in Beishan, Gansu Province, and Their Tectonic Significance. Acta Petrologica et Mineralogica, 29(6): 719-731 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201006009
      [69] Zhang, W., Wu, T. R., Zheng, R. G., et al., 2012. Post-Collisional Southeastern Beishan Granites: Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 58: 51-63. https://doi.org/10.1016/j.jseaes.2012.07.004
      [70] Zhang, W., Pease, V., Meng, Q., et al., 2015. Timing, Petrogenesis, and Setting of Granites from the Southern Beishan Late Palaeozoic Granitic Belt, Northwest China and Implications for Their Tectonic Evolution. International Geology Review, 57(16): 1975-1991. https://doi.org/10.1080/00206814.2015.1045944
      [71] Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Gondwana Research, 20(4): 816-830. https://doi.org/10.1016/j.gr.2011.03.008
      [72] Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its' Implication. Acta Petrologica Sinica, 22(4): 787-794(in Chinese with English abstract). https://www.researchgate.net/publication/279756550_Post-collisional_ultrapotassic_rocks_in_Lhasa_Block_Tibetan_Plateau_Spatial_and_temporal_distribution_and_its_implications
      [73] Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1/2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      [74] Zhao, Z.H., Guo, Z.J., Wang, Y., 2007. Geochronology, Geochemical Characteristics and Tectonic Implications of the Granitoids from Liuyuan Area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23(8): 1847-1860 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200708007
      [75] Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430-015-5097-3
      [76] Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
      [77] Zhu, J., Lv, X. B., Peng, S. G., 2015. LA-ICP-MS Zircon U-Pb Dating, Geochemistry and Tectonic Implications of the Neoproterozoic Xiaoxigong Granite at Dunhuang Block, Northeastern Tarim, NW China. Geosciences Journal, 19(4): 697-708. https://doi.org/10.1007/s12303-015-0010-9
      [78] Zuo, G.C., Liu, Y.K., Liu, C.Y., 2003. Framework and Evolution of the Tectonic Structure in Beishan Area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200301863552
      [79] 陈建林, 许继峰, 康志强, 等, 2006.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因.岩石学报, 22(3): 585-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603007
      [80] 陈建林, 许继峰, 康志强, 等, 2008.青藏高原南部与北部新生代高镁钾质岩地球化学对比:南北地幔源区差异.岩石学报, 24(2): 211-244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802003
      [81] 冯继承, 张文, 吴泰然, 等, 2011.甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义.北京大学学报(自然科学版), 48 (1): 61-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201201010
      [82] 何世平, 周会武, 任秉琛, 等, 2005.甘肃内蒙古北山地区古生代地壳演化.西北地质, 38(4): 6-15. http://d.old.wanfangdata.com.cn/Periodical/xbdz200503002
      [83] 侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6): 629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001
      [84] 李锦轶, 张进, 杨天南, 等. 2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化.吉林大学学报(地球科学版), 39(4): 584-605. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200904002
      [85] 李小菲, 张成立, 李雷, 等, 2015.甘肃北山明舒井岩体形成年龄、地球化学特征及其地质意义.岩石学报, 31(9): 2521-2538. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509005
      [86] 李舢, 王涛, 童英, 等, 2009.北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义.岩石矿物学杂志, 28(5): 407-422. doi: 10.3969/j.issn.1000-6524.2009.05.001
      [87] 李舢, 王涛, 童英, 等, 2011.北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义.岩石学报, 27(10): 3055-3070. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110021
      [88] 孟凡超, 刘嘉麒, 李明, 等, 2010.松辽盆地徐家围子营城组流纹岩地球化学特征及构造指示意义.岩石学报, 26(1): 227-241. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201001025
      [89] 任邦方, 任云伟, 牛文超, 等, 2019.内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(1): 298-311. http://earth-science.net/WebPage/Article.aspx?id=4121
      [90] 王国强, 2015.北山古生代蛇绿岩、火山岩研究与构造演化.博士学位论文.西安: 长安大学, 150. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D747533
      [91] 王保弟, 陈陵康, 许继峰, 等, 2011.拉萨地块麻江地区具有"超钾质"成分的钾质火山岩的识别及成因.岩石学报, 27(6):1662-1674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201106008
      [92] 王师捷, 徐仲元, 董晓杰, 等, 2018.华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制.地球科学, 43(9): 3267-3284. http://earth-science.net/WebPage/Article.aspx?id=3942
      [93] 吴福元, 李献华, 杨进辉, 等. 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      [94] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      [95] 许保良, 阎国翰, 张臣, 等, 1999.冀晋辽地区燕山期超钾过铝质斑岩特征及其岩石学意义.地质论评, 45, 520-527. doi: 10.3321/j.issn:0371-5736.1999.z1.071
      [96] 许伟, 徐学义, 牛亚卓, 等, 2018.北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义.岩石学报, 34(10): 3011-3033. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810012
      [97] 张旗, 王焰, 熊小林, 等, 2008.埃达克岩和花岗岩:挑战与机遇.北京:中国大地出版社, 344.
      [98] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      [99] 张文, 吴泰然, 贺元凯, 等, 2010.甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义.岩石矿物学杂志, 29(6): 719-731. doi: 10.3969/j.issn.1000-6524.2010.06.009
      [100] 赵泽辉, 郭召杰, 王毅, 2007.甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义.岩石学报, 23(8): 1847-1860. doi: 10.3969/j.issn.1000-0569.2007.08.007
      [101] 郑永飞, 陈伊翔, 戴立群, 等, 2015.发展板块构造理论:从洋壳俯冲带到碰撞造山带.中国科学:地球科学, 45: 711-735. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz200403001
      [102] 左国朝, 刘义科, 刘春燕, 2003.甘新蒙北山地区构造格局及演化.甘肃地质学报, 12(1): 1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200301863552
    • 加载中
    图(10)
    计量
    • 文章访问数:  5723
    • HTML全文浏览量:  1887
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-15
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回