Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin
-
摘要: 沉积物的地球化学成分在沉积岩物源分析及构造背景的研究中具有重要的作用.对研究区4口钻孔中的姚家组砂岩进行了详细的岩石学和地球化学研究,结果显示,砂岩碎屑颗粒石英含量最高,长石次之,岩屑含量最低,平均值分别为42%、37%和21%,具有锆石+钛磁铁矿+石榴子石的重矿物组合,反映源岩以酸性岩浆岩或变质岩为主,Dickinson判别图解表明物源主要来自于大陆物源区;姚家组砂岩的稀土元素以轻稀土富集、重稀土平坦、中度铕负异常为特征.砂岩CIA值为52.02~60.16,平均值为56.69,反映了干燥气候背景下弱的化学风化作用.源岩属性判别图解表明源岩为再旋回的古老沉积物及长英质火山岩.主量、微量和稀土元素的构造背景判别图解综合表明姚家组砂岩物源区为被动大陆边缘构造环境,结合区域构造演化,认为姚家组砂岩的物源为华北克拉通北缘燕山陆内造山带发育的火山-沉积岩系.Abstract: The geochemical composition of sandstones in sedimentary basin plays an important role in the study of sedimentary provenance and tectonic settings. In this paper, detailed petrography and geochemical analyses were carried out on the sandstones of the Yaojia Formation from 4 drilling cores in the study area. All sandstone samples have the highest content of quartz (Q), followed by feldspar (F), and the lowest amount of lithic fragments (L), with an average of 42%, 37% and 21% respectively, featuring with heavy mineral assemblage of zircon-titanium magnetite-garnet, which suggests an acidic or metamorphic source. Dickinson discrimination diagrams show provenance mainly from continental block provenance. The REE distribution patterns are uniform, with LREE enrichment, flat HREE, and moderate negative Eu anomalies (average 0.63). Chemical index of alteration CIA (52.02-60.16, average 56.69) of the sandstones displays that they have experienced low grade of chemical weathering and alteration under arid paleoclimate condition. The discrimination diagrams for provenance attribute indicate a mixed source material composition of old sedimentary rocks and felsic igneous rocks. Based on major elements, trace and rare earth elements tectonic setting discrimination diagrams, suggested that source materials of the Yaojia Formation sandstones were from passive margin environment, and its provenances were from Yanshan intracontinental orogenic belts of the northern margin of Huabei Craton.
-
图 3 姚家组砂岩微量元素和稀土元素标准化配分曲线
a.微量元素上地壳标准化配分曲线(上地壳标准值据Rudnick and Gao, 2003);b.稀土元素球粒陨石标准化配分曲线(球粒陨石标准化值据Taylor and McLennan, 1985)
Fig. 3. Trace element and REE patterns for sandstones from the Yaojia Formation
图 4 姚家组砂岩三角判别图解
a.QmFLt分类判别图解,单位%;b.QtFL图解(据Dickinson et al., 1983);c.QmFLt图解(据Dickinson et al., 1983)
Fig. 4. Ternary diagrams for sandstones from the Yaojia Formation
图 5 姚家组砂岩类型的地球化学判别图解
a.(Fe2O3T+MgO)-Na2O-K2O判别图解(据Blatt et al., 1980);b.lg(Fe2O3T/K2O)-lg(SiO2/Al2O3)判别图解(据Herron,1988)
Fig. 5. Geohemical classification diagrams for sandstones from the Yaojia Formation
图 6 姚家组砂岩的SiO2-(Al2O3+K2O+Na2O)古气候判别图解
Fig. 6. Bivariate SiO2 versus (Al2O3+K2O+Na2O) palaeoclimate discrimination diagram of sandstones from the Yaojia Formation
图 7 姚家组砂岩判别图解
a.A-CN-K图解(据Fedo et al.,1995);花岗闪长岩和花岗岩数据引自Condie(1993);PAAS.澳大利亚后太古代平均页岩;UCC.平均上地壳,数据引自Taylor and McLennan(1985);b.Zr/Sc-Th/Sc图解(据McLennan et al., 1993),不同岩石类型的平均值引自Condie(1983)
Fig. 7. Discrimination diagrams of sandstones from the Yaojia Formation
图 9 姚家组砂岩主量-微量元素源区物质组成判别
a.K2O-Rb图解(据Floyd and Leveridge, 1987);b.TiO2-Ni图解(据Floyd et al., 1989)
Fig. 9. Source material composition discrimination diagrams for sandstones from the Yaojia Formation
图 10 姚家组砂岩La/Th-Hf和Co/Th-La/Sc源岩判别图解
a.La/Th-Hf图解(据Floyd and Leveridge, 1987);b.Co/Th-La/Sc图解(据Gu et al.,2002)
Fig. 10. Discrimination diagrams for provenance attribute for sandstones from the Yaojia Formation
图 11 姚家组砂岩构造背景主量元素判别图解
a.K2O/Na2O-SiO2图解(据Roser and Korsch, 1986);b.SiO2/Al2O3-K2O/Na2O图解(据Maynard et al., 1982);c.K2O/Na2O-(Fe2O3T+MgO)图解;d.Al2O3/(Na2O+CaO)-(Fe2O3T+MgO)图解(据Bhatia,1983);ARC.岛弧;A1.弧;A2.演化弧;ACM.主动大陆边缘;PM.被动大陆边缘;OIA.大洋岛弧;CIA.大陆岛弧
Fig. 11. Tectonic setting discrimination diagrams using major elements for sandstones from the Yaojia Formation
图 12 姚家组砂岩构造背景微量元素判别图解
a.La/Y-Sc/Cr图解;b.La-Th-Sc图解;c.Th-Co-Zr/10图解;d.Th-Sc-Zr/10图解(据Bhatia and Crook, 1986);ACM.主动大陆边缘;PM.被动大陆边缘;OIA.大洋岛弧;CIA.大陆岛弧
Fig. 12. Tectonic setting discrimination diagrams using trace elements for sandstones from the Yaojia Formation
图 13 姚家组砂岩的稀土元素-主量元素源区判别图
封闭虚线表示不同的物源区;A.安山岩型;B.英安岩型;C.花岗片麻岩及沉积岩型,箭头指示从A到B到C,成熟度逐渐增加,分别相当于OIA(大洋岛弧),CIA(大陆岛弧),ACM(主动大陆边缘)与PM(被动大陆边缘)的构造环境;据Bhatia(1985)
Fig. 13. Provenance discrimination diagrams of REE vs. major elements for sandstones from the Yaojia Formation
图 14 姚家组砂岩用于区分主动大陆边缘和被动大陆边缘的新的判别函数图
a.基于主量元素的图解;判别函数DF(A-P)M由下列式子计算得出:DF(A-P)M=(3.000 5×ilr1TiM)+(2.824 3×ilr2AlM)+(-1.596×ilr3FeM)+(-0.705 6×ilr4MnM)+(-0.304 4×ilr5MgM)+(0.627 7×ilr6CaM)+(-1.183 8×ilr7NaM)+(1.591 5×ilr8KM)+(0.152 6×ilr9PM)-5.994 8;b.联合主量元素和微量元素的图解,判别函数(DF(A-P)MT)由下列式子计算得出:DF(A-P)MT=(3.268 3×ilr1TiMT)+(5.387 3×ilr2AlMT)+(1.554 6×ilr3FeMT)+(3.216 6×ilr4MnMT)+(4.754 2×ilr5MgMT)+(2.039 0×ilr6CaMT)+(4.049 0×ilr7NaMT)+(3.150 5×ilr8KMT)+(2.368 8×ilr9PMT)+(2.835 4×ilr10CrMT)+(0.901 1×ilr11NbMT)+(1.912 8×ilr12NiMT)+(2.909 4×ilr13VMT)+(4.150 7×ilr14YMT)+(3.487 1×ilr15ZrMT)-3.208 8;据Verma and Armstrong-Altrin(2016)
Fig. 14. Evaluation of the new multidimensional discriminant function diagrams for the discrimination of active and passive margin settings for sandstones from the Yaojia Formation
表 1 姚家组砂岩薄片碎屑组分的原始统计
Table 1. Raw point-counting data of sandstone compositions in thin sections from the Yaojia Formation
样品号 深度(m) 粒度 Qm Qp P K Lv Lm Ls Ms MC O Total Qt F L Lt QC17-34 272.3 f 152 8 61 49 64 5 6 7 82 4 416 160 110 75 83 QC19-9 323.2 f 154 10 68 53 48 4 8 7 103 7 428 164 120 60 70 QC19-11 346.2 f 129 9 71 60 52 4 3 5 72 2 364 138 131 59 68 QC19-15 374.6 f 128 11 67 57 56 5 6 6 81 2 387 139 124 67 78 QC19-19 385.5 m 121 10 63 54 54 6 6 8 94 4 403 131 117 66 76 QC19-21 390.0 f 130 11 67 46 54 4 8 5 76 3 375 141 113 66 77 QC19-24 392.0 f 137 9 62 59 42 3 13 11 98 9 416 146 121 58 67 QC19-26 394.0 f 140 8 59 55 59 5 3 9 83 4 394 148 114 67 75 QC19-28 397.7 f 142 7 77 49 47 3 6 12 106 7 418 149 126 56 63 QC19-34 423.0 f 151 6 68 52 58 7 2 8 88 5 405 157 120 67 73 QC19-36 437.8 f 147 7 66 48 51 4 6 6 81 3 392 154 114 61 68 QC90-6 398.5 f 137 6 62 51 54 6 5 8 96 3 397 143 113 65 71 QC90-10 445.0 f 145 8 72 61 67 9 9 11 86 6 416 153 133 85 93 QC90-15 507.0 f 134 9 68 58 58 7 6 5 82 2 382 143 126 71 80 注:Qm:单晶石英;Qp:多晶石英;P:斜长石;K:钾长石;Lv.火山岩岩屑;Lm.变质岩岩屑;Ls.沉积岩岩屑(不包括碳酸盐岩);Ms.白云母和黑云母;MC.杂基和胶结物(包括碳酸盐岩);O.其他矿物(重矿物和透明矿物);表中数值为碎屑颗粒个数; Total.总颗粒数;Qt=Qm+Qp;F=K+P;L=Lv+Lm+Ls;Lt=L+Qp;f.细砂岩;m.中砂岩. 表 2 姚家组砂岩与不同构造背景杂砂岩主量元素特征参数比较
Table 2. Comparison of major elements for sandstones from the Yaojia Formation and graywackes from different tectonic settings
构造背景 主量元素特征参数 Fe2O3T+MgO TiO2 Al2O3/SiO2 K2O/Na2O Al2O3/(CaO+Na2O) 大洋岛弧 11.73 1.06 0.29 0.39 1.72 大陆岛弧 6.79 0.64 0.20 0.61 2.42 主动大陆边缘 4.63 0.46 0.18 0.99 2.56 被动大陆边缘 2.89 0.49 0.10 1.60 4.15 姚家组砂岩(N=12) 2.39 0.44 0.14 1.58 3.85 注:主量元素含量的单位为%,不同构造背景杂砂岩主量元素特征参数引自Bhatia(1983). 表 3 姚家组砂岩与不同构造背景杂砂岩稀土元素特征参数比较
Table 3. Comparison of REE characteristics for sandstones from the Yaojia Formation and graywackes from different tectonic settings
构造背景 源区类型 REE参数 La(×10-6) Ce(×10-6) ∑REE(×10-6) La/Yb LaN/YbN ∑LREE/∑HREE Eu/Eu* 大洋岛弧 未切割的岩浆弧 8±1.7 19±3.7 58±10 4.2±1.3 2.8±0.9 3.8±0.9 1.04±0.11 大陆岛弧 切割的岩浆弧 27±4.5 59±8.2 146±20 11.0±3.6 7.5±2.5 7.7±1.7 0.79±0.13 主动大陆边缘 隆升的基底 37 78 186 12.5 8.5 9.1 0.6 被动大陆边缘 克拉通内部构造高地 39 85 210 15.9 10.8 8.5 0.56 姚家组砂岩(N=12) 35.3 64.6 153.7 16.9 11.4 10.1 0.63 注:LaN/YbN和Eu/Eu*采用Taylor and McLennan(1985)推荐的球粒陨石平均值标准化;不同构造背景杂砂岩稀土元素特征参数引自Bhatia(1985). -
[1] Armstrong-Altrin, J.S., Verma, S.P., 2005.Critical Evaluation of Six Tectonic Setting Discrimination Diagrams Using Geochemical Data of Neogene Sediments from Known Tectonic Settings.Sedimentary Geology, 177(1-2):115-129. https://doi.org/10.1016/j.sedgeo.2005.02.004 [2] Bai, D.Y., Zhou, L., Wang, X.H., et al., 2007.Geochemistry of Nanhuan-Cambrian Sandstones in Southeastern Hunan, and Its Constraints on Neoproterozoic-Early Paleozoic Tectonic Setting of South China.Acta Geologica Sinica, 81(6):755-771(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200706004 [3] Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627. https://doi.org/10.1086/628815 [4] Bhatia, M.R., 1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology, 45(1-2):97-113. https://doi.org/10.1016/0037-0738(85)90025-9 [5] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193. doi: 10.1007/BF00375292 [6] Blatt, H., Middleton, G., Murray, R., 1980.Origin of Sedimentary Rocks.Prentice-Hall, New Jersey. [7] Chen, F.H., Zhang, M.Y., Lin, C.S., 2005.Sedimentary Environments and Uranium Enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin, Nei Mongol.Sedimentary Geology and Tethyan Geology, 25(3):74-79(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200503012 [8] Chen, X.L., Fang, X.H., Guo, Q.Y., et al., 2008.Re-Discussion on Uranium Metallogenesis in Qianjiadian Sag, Songliao Basin.Acta Geologica Sinica, 82(4):553-561(in Chinese with English abstract). [9] Condie, K.C., 1993.Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales.Chemical Geology, 104(1-4):1-37. https://doi.org/10.1016/0009-2541(93)90140-e [10] Cui, S.Q., Li, J.R., Sun, J.S., et al., 2000.Sequences of Tectonic Movement and Regional Tectonic Framework of North Margin of the North China Plate.Geological Publishing House, Beijing, 100-151(in Chinese). [11] Dickinson, W.R., Beard, L.S., Brakenridge, G.R., et al., 1983.Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting.Geological Society of America Bulletin, 94(2):222-235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 [12] Dickinson, W.R., Suczek, C.A., 1979.Plate Tectonics and Sandstone Compositions.American Association of Petroleum Geologists Bulletin, 63:2164-2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d [13] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 [14] Floyd, P.A., Leveridge, B.E., 1987.Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones.Journal of the Geological Society, 144(4):531-542. https://doi.org/10.1144/gsjgs.144.4.0531 [15] Floyd, P.A., Winchester, J.A., Park, R.G., 1989.Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland.Precambrian Research, 45(1-3):203-214. https://doi.org/10.1016/0301-9268(89)90040-5 [16] Girty, G.H., Ridge, D.L., Knaack, C., et al., 1996.Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California.Journal of Sedimentary Research, 66(1):107-118. https://doi.org/10.1306/d42682ca-2b26-11d7-8648000102c1865d [17] Gu, X.X., Liu, J.M., Zheng, M.H., et al., 2002.Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China:Geochemical Evidence.Journal of Sedimentary Research, 72(3):393-407. https://doi.org/10.1306/081601720393 [18] Herron, M.M., 1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.Journal of Sedimentary Petrology, 58(5): 820-829.http://10.1306/212f8e77-2b24-11d7.8648000102c1865d [19] Jiao, Y.Q., Wu, L.Q., Peng, Y.B., et al., 2015.Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China.Earth Science Frontiers, 22(1):189-205(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201501016 [20] Luo, Y., He, Z.B., Ma, H.F., et al., 2012.Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin.Mineral Deposits, 31(2):391-400(in Chinese with English abstract). [21] Ma, H.F., Luo, Y., Li, Z.Y., et al., 2009.Sedimentary Features and Uranium Metallogenic Conditions of Yaojia Formation in Southern Songliao Basin.Uranium Geology, 25(3):144-149(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200903003 [22] Ma, Y.S., 2001.The Evolution of Mesozoic-Cenozoic Basin-Mountain Structure in the East Yanshan Area and Xialiaohe Basin.Journal of Geomechanics, 7(1):79-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200101010 [23] Maynard, J.B., Valloni, R., Yu, H.S., 1982.Composition of Modern Deep-Sea Sands from Arc-Related Basins.In: Leggett, J.K., ed., Trench and Fore-Arc Sedimentation.The Geological Society, London, Special Publications, (10): 551-561. [24] McLennan, S.M., Hemming, S.R., McDanniel, D.K., et al., 1993.Geochemical Approaches to Sedimentation, Provenance and Tectonics.In: Johnson, M.J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments.The Geological Society of America, Special Paper, (284): 21-40. [25] McLennan, S.M., Taylor, S.R., 1991.Sedimentary Rocks and Crustal Evolution:Tectonic Setting and Secular Trends.The Journal of Geology, 99(1):1-21. https://doi.org/10.1086/629470 [26] Nesbitt, H.W., Young, G.M., 1984.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations.Geochimica et Cosmochimica Acta, 48(7):1523-1534. doi: 10.1016/0016-7037(84)90408-3 [27] Pei, X.Z., Hu, N., Liu, C.J., et al., 2015.Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region.Geological Review, 61(2):307-323(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201502006 [28] Pettijohn, F.J., Potter, P.E., Siever, R., 1987.Sand and Sandstone.Springer, New York, 24-63. [29] Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation.Longman Scientific Technical Press, London. [30] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016.Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin.Earth Science, 41(1):153-166(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201601012 [31] Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.The Journal of Geology, 94(5):635-650. doi: 10.1086/629071 [32] Roser, B.P., Korsch, R.J., 1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology, 67(1-2):119-139. https://doi.org/10.1016/0009-2541(88)90010-1 [33] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.In: Holland, H.D., Turekian, K.K., eds., The Crust: Treatise on Geochemistry.Pergamon, Oxford. [34] Suttner, L.J., Dutta, P.K., 1986.Alluvial Sandstone Composition and Paleoclimate, I.Framework Mineralogy.Journal of Sedimentary Research, 56(3):329-345. http://cn.bing.com/academic/profile?id=4740ad4ad0b4b32dbe62eb33c0ccb3a8&encoded=0&v=paper_preview&mkt=zh-cn [35] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.The Journal of Geology, 94(4):57-72. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7b034b121c08912757b660fdefe8747e [36] Verma, S.P., Armstrong-Altrin, J.S., 2013.New Multi-Dimensional Diagrams for Tectonic Discrimination of Siliciclastic Sediments and Their Application to Precambrian Basins.Chemical Geology, 355:117-133. https://doi.org/10.1016/j.chemgeo.2013.07.014 [37] Verma, S.P., Armstrong-Altrin, J.S., 2016.Geochemical Discrimination of Siliciclastic Sediments from Active and Passive Margin Settings.Sedimentary Geology, 332:1-12. https://doi.org/10.1016/j.sedgeo.2015.11.011 [38] Wang, D.P., Liu, Z.J., Liu, L., 1994.Basin Evolution and Sea Level Fluctuation of Songliao Basin.Geological Publishing House, Beijing, 114-127(in Chinese). [39] Wang, Q.Y., Mou, C.L., He, J., et al., 2018.Provenance Analysis and Tectonic Setting Judgment in Shanglan Formation of Middle Triassic in Weixi Area.Earth Science, 43(8):2811-2832(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808020 [40] Wang, X.M., Jiao, Y.Q., Du, Y.S., et al., 2013.REE Mobility and Ce Anomaly in Bauxite Deposit of WZD Area, Northern Guizhou, China.Journal of Geochemical Exploration, 133(5):103-117. https://doi.org/10.1016/j.gexplo.2013.08.009 [41] Xu, H., Liu, Y.Q., Liu, Y.X., et al., 2011.Stratigraphy, Sedimentology and Tectonic Background of Basin Evolution of the Late Jurassic-Early Cretaceous Tuchengzi Formation in Yinshan-Yanshan, North China.Earth Science Frontiers, 18(4):88-106(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201104008 [42] Yin, J.H., Zhang, H., Zan, G.J., et al., 2000.Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region.Journal of Palaeogeography, 2(4):76-83(in Chinese with English abstract). [43] Zhang, M.Y., Zheng, J.W., Tian, S.F., et al., 2005.Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression.Uranium Geology, 21(4):213-218(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200504005 [44] 柏道远, 周亮, 王先辉, 等, 2007.湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约.地质学报, 81(6):755-771. doi: 10.3321/j.issn:0001-5717.2007.06.004 [45] 陈方鸿, 张明瑜, 林畅松, 2005.开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义.沉积与特提斯地质, 25(3):74-79. doi: 10.3969/j.issn.1009-3850.2005.03.012 [46] 陈晓林, 方锡珩, 郭庆银, 等, 2008.对松辽盆地钱家店凹陷铀成矿作用的重新认识.地质学报, 82(4):553-561. doi: 10.3321/j.issn:0001-5717.2008.04.013 [47] 崔盛芹, 李锦蓉, 孙家树, 等, 2000.华北陆块北缘构造运动序列及区域构造格局.北京:地质出版社, 100-151. [48] 焦养泉, 吴立群, 彭云彪, 等, 2015.中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析.地学前缘, 22(1):189-205. [49] 罗毅, 何中波, 马汉峰, 等, 2012.松辽盆地钱家店砂岩型铀矿成矿地质特征.矿床地质, 31(2):391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018 [50] 马汉峰, 罗毅, 李子颖, 等, 2009.松辽盆地南部姚家组沉积特征及铀成矿条件.铀矿地质, 25(3):144-149. doi: 10.3969/j.issn.1000-0658.2009.03.003 [51] 马寅生, 2001.燕山东段下辽河地区中新生代盆山构造演化.地质力学学报, 7(1):79-91. doi: 10.3969/j.issn.1006-6616.2001.01.010 [52] 裴先治, 胡楠, 刘成军, 等, 2015.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析.地质论评, 61(2):307-323. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502006 [53] 荣辉, 焦养泉, 吴立群, 等, 2016.松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束.地球科学, 41(1):153-166. doi: 10.3799/dqkx.2016.012 [54] 王东坡, 刘招君, 刘立, 1994.松辽盆地演化与海平面升降.北京:地质出版社, 114-127. [55] 王启宇, 牟传龙, 贺娟, 等, 2018.维西地区中三叠统上兰组物源分析及构造背景判断.地球科学, 43(8):2811-2832. doi: 10.3799/dqkx.2018.307 [56] 许欢, 柳永清, 刘燕学, 等, 2011.阴山-燕山地区晚侏罗世-早白垩世土城子组地层、沉积特征及盆地构造属性分析.地学前缘, 18(4):88-106. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104008 [57] 殷敬红, 张辉, 昝国军, 等, 2000.内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析.古地理学报, 2(4):76-83. doi: 10.3969/j.issn.1671-1505.2000.04.009 [58] 张明瑜, 郑纪伟, 田时丰, 等, 2005.开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究.铀矿地质, 21(4):213-218. doi: 10.3969/j.issn.1000-0658.2005.04.005