Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks
-
摘要: 岩帽作为重要的找矿标志,长期以来却没有引起广泛关注,阻碍了勘查工作.在斯弄多地区对与不同矿化类型相关的岩帽进行岩石学、岩相学和全岩地球化学分析,其中斯弄多红色岩帽与铅锌成矿作用相关,窝弱黑色岩帽与金银成矿作用相关,而马尔地村白色岩帽目前未见明显相关矿化.镜下特征和岩石学特征表明斯弄多地区3种类型岩帽具大量石英晶屑,多呈致密块状,其次为多孔状石英.全岩地球化学显示,斯弄多红色岩帽SiO2含量>90%,主要由石英组成,Pb含量为288.75×10-6~4 769.16×10-6,Zn含量为34.34×10-6~332.70×10-6;马尔地村白色岩帽则含更多的铝硅酸盐矿物,不具成矿元素异常;窝弱黑色岩帽含富钾类蚀变矿物,K2O含量为0.26%~2.58%,Au含量为80.21×10-9~360.74×10-9.斯弄多地区岩帽均由硅质酸性流体交代晶屑凝灰岩形成,铅锌成矿作用使岩帽Be元素富集,具Ce负异常;窝弱金银成矿作用使岩帽V、Rb、Mo和Cs富集,具Yb正异常;马尔地村岩帽面积大,粘土蚀变矿物发育,其深部可能存在斑岩型矿体.Abstract: Lithocap, as an important indicator for exploration, has not attracted widespread attention for a long time, hindering the exploration work.Three types of lithocaps related to different mineralization styles in Sinongduo area are sampled for petrology, microphysiography and whole rock geochemistry analysis in which Sinongduo red lithocaps correspond to Pb-Zn mineralization, while Woruo black lithocaps are of Au-Ag mineralization, and Maerdi white lithocaps display no obvious mineralization. Microscopic and petrological characteristics show that three types of lithocaps in the Sinongduo area have many quartz fragments which are composed of massive quartz and vuggy quartz. The whole rock geochemistry data show that Sinongduo red lithocaps contain over 90% of SiO2, and are mostly composed of quartz. The Pb contents are 288.75×10-6-4 769.16×10-6, and the Zn is 34.34×10-6-332.70×10-6. The Maerdi white lithocaps are rich in aluminosilicate minerals and show none metallogenic elements anomaly. The contents of K2O (0.26%-2.58%) in Woruo black lithocaps indicate that there are many potassium-rich altered minerals, and the contents of Au are 80.21×10-9-360.74×10-9. In conclusion, the forming processes of lithocaps can be explained as the ascending siliceous acid fluid reacting with the crystal tuff. Pb-Zn mineralization tends to result in enrichment of Be and a negative anomaly of Ce in chondrite normalized REE patterns. In contrast, Au-Ag mineralization benefits V, Rb, Mo and Cs and Ce, and there is a positive anomaly of Yb. In addition, the large amount of clay minerals in the biggest Maerdi white lithocap could be an implication for porphyry at depth.
-
Key words:
- lithocap /
- Linzizong Group volcanic rock /
- geochemistry /
- gold deposit /
- Pb-Zn deposit
-
图 5 斯弄多地区不同岩帽的微观照片
a、b、c分别为马尔地村白色岩帽、斯弄多红色岩帽和窝弱黑色岩帽的显微组成;d.斯弄多红色碧玉中含大量红色赤铁矿;e、f.单偏光和正交偏光下含赤铁矿的隐爆角砾岩;g.斯弄多红色岩帽中的方铅矿和黄铁矿;h.赤铁矿沿隐爆角砾岩裂隙充填;i.窝弱黑色岩帽中大量散粒状、团斑状黄铁矿;j.窝弱黑色岩帽中部分黄铁矿可见银白色矿物交代边;k.形成于黄铁矿边缘的毒砂;l.窝弱岩帽中黄铁矿交代菱形自形矿物形成的交代假象结构. quartz.石英;hematite.赤铁矿;galena.方铅矿;pyrite.黄铁矿;arsenopyrite.毒砂
Fig. 5. Microscopic photos of different lithocaps in the Sinongduo area
图 7 斯弄多地区岩帽稀土元素球粒陨石标准化配分曲线(a)和微量元素球粒陨石标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE pattern(a) and chondrite-normalized trace element spidergram of lithocaps from the Sinongduo deposit (b)
图 9 岩帽在斑岩成矿系统中的位置
据Cooke et al. (2017). ab.钠长石; act.阳起石; anh.硬石膏; Au.金; bi.黑云母; bn.斑铜矿; cb.碳酸盐; chl.绿泥石; cp.黄铜矿; epi.绿帘石; gt.石榴石; Kf.钾长石; mt.磁铁矿; py.黄铁矿; qz.石英
Fig. 9. Schematic illustration of lithocap's location in a porphyry system
表 1 斯弄多矿区岩帽主量元素分析结果(%)
Table 1. Major element (%) analysis results for the lithocaps from the Sinongduo deposit
编号 SiO2 TiO2 Al2O3 Fe2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 总量 BS01 95.96 0.02 0.91 1.47 1.70 0.04 0.18 0.22 0.09 0.29 0.02 99.39 BS02 96.95 0.02 0.75 0.79 1.11 0.03 0.15 0.12 0.04 0.19 0.02 99.35 BS03 95.68 0.02 1.11 0.98 1.27 0.02 0.16 0.13 0.03 0.34 0.02 98.76 BS04 95.92 0.02 1.02 1.15 1.38 0.02 0.17 0.10 0.03 0.30 0.03 98.97 BS05 96.58 0.02 0.92 1.10 1.33 0.02 0.16 0.08 0.03 0.26 0.01 99.40 BS06 90.89 0.04 0.83 4.34 4.60 0.07 0.15 0.10 0.05 0.30 0.02 97.04 BS07 96.89 0.01 0.53 1.24 1.48 0.02 0.14 0.09 0.02 0.12 0.02 99.30 BS08 93.99 0.03 1.75 1.46 1.69 0.05 0.14 0.09 0.04 0.30 0.02 98.08 BX01 57.74 0.40 30.58 0.20 0.31 0.01 0.09 0.15 0.05 0.11 0.10 89.52 BX02 73.86 0.25 17.69 0.04 0.33 0.01 0.13 0.16 0.06 0.18 0.09 92.72 BX03 96.56 0.22 1.35 0.03 0.26 0.02 0.15 0.13 0.03 0.18 0.09 98.95 BX04 82.63 0.35 11.82 0.05 0.11 0.01 0.10 0.08 0.02 0.11 0.05 95.26 BX05 73.85 0.43 18.30 0.05 0.11 0.00 0.08 0.10 0.01 0.15 0.10 93.12 BX06 67.65 0.31 22.93 0.09 0.15 0.01 0.07 0.12 0.02 0.11 0.08 91.43 BX07 91.69 0.23 5.49 0.02 0.11 0.01 0.12 0.09 0.02 0.10 0.02 97.87 BX08 60.44 0.33 28.24 0.11 0.17 0.00 0.04 0.11 0.02 0.10 0.09 89.52 BX09 71.13 0.38 20.70 0.02 0.10 0.00 0.07 0.10 0.02 0.10 0.10 92.69 BX10 66.21 0.37 24.46 0.06 0.12 0.00 0.05 0.08 0.01 0.08 0.08 91.45 BX11 97.88 0.20 0.67 0.06 0.12 0.01 0.13 0.08 0.02 0.11 0.01 99.22 BK01 96.17 0.01 1.19 0.44 0.82 0.02 0.16 0.11 0.02 0.29 0.02 98.79 BK02 83.51 0.07 6.50 2.84 3.63 0.02 0.26 0.11 0.07 1.58 0.06 95.74 BK03 83.85 0.06 6.96 2.10 2.57 0.02 0.25 0.10 0.06 2.58 0.09 96.49 BK04 97.66 0.02 1.14 0.23 0.49 0.02 0.16 0.11 0.03 0.26 0.02 99.88 注:全铁含量Fe2O3T = Fe2O3+ 1.111×FeO. 表 2 斯弄多矿区岩帽稀土元素分析结果(10-6)
Table 2. REE element (10-6) results for the lithocaps from the Sinongduo deposit
编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE δEu BS01 10.40 12.12 3.41 16.22 5.08 0.78 7.33 1.54 9.12 2.00 5.68 0.88 5.62 0.85 48.70 81.04 48.01 33.03 0.58 BS02 10.02 9.08 2.89 14.24 6.44 0.83 12.81 2.85 18.84 4.16 12.38 1.87 12.85 1.87 112.79 111.13 43.49 67.63 0.39 BS03 11.49 15.47 3.53 17.04 6.25 0.89 11.42 2.42 15.25 3.41 9.77 1.41 9.34 1.32 94.36 109.03 54.69 54.34 0.46 BS04 17.33 27.19 5.33 25.93 9.63 1.23 16.85 3.52 22.11 4.91 14.13 2.08 14.18 1.98 140.04 166.41 86.65 79.76 0.43 BS05 11.11 7.02 2.72 11.49 2.99 0.39 4.83 1.00 6.68 1.47 4.36 0.67 4.04 0.69 36.16 59.44 35.71 23.72 0.46 BS06 19.65 27.52 7.63 38.95 11.22 1.54 12.45 2.15 11.80 2.27 5.98 0.83 5.20 0.69 51.31 147.89 106.51 41.38 0.61 BS07 13.42 45.46 4.08 18.72 6.09 0.66 9.09 1.89 12.23 2.59 7.70 1.17 8.28 1.14 63.74 132.52 88.43 44.08 0.40 BS08 21.37 34.95 7.94 40.00 10.72 1.32 10.34 1.62 8.58 1.63 4.32 0.59 3.79 0.49 33.90 147.64 116.29 31.36 0.59 BX01 123.12 198.35 24.84 90.64 14.79 1.69 10.67 1.00 4.19 0.88 3.10 0.49 2.47 0.56 20.24 476.80 453.44 23.36 0.63 BX02 106.62 154.78 16.54 60.40 11.70 1.32 8.82 0.89 4.04 0.89 3.12 0.54 2.32 0.64 19.45 372.63 351.36 21.26 0.61 BX03 58.63 80.06 8.29 32.38 5.74 0.60 3.27 0.36 1.87 0.45 1.59 0.23 1.64 0.22 15.44 195.32 185.69 9.63 0.63 BX04 94.63 138.79 14.43 49.22 7.01 0.77 6.08 0.63 2.86 0.63 2.20 0.35 2.81 0.39 24.36 320.79 304.84 15.95 0.55 BX05 134.64 209.96 25.84 96.90 17.61 2.07 12.44 1.12 4.93 1.07 3.68 0.59 3.29 0.68 29.21 514.81 487.02 27.79 0.65 BX06 83.39 137.82 17.10 61.17 10.34 1.21 7.73 0.70 2.91 0.63 2.20 0.35 1.77 0.40 16.97 327.72 311.04 16.68 0.63 BX07 50.54 77.68 8.33 29.37 4.38 0.49 3.65 0.41 2.06 0.45 1.46 0.23 1.76 0.26 14.42 181.07 170.79 10.28 0.58 BX08 104.74 169.38 20.99 78.70 13.51 1.68 9.74 0.91 3.59 0.74 2.58 0.41 3.19 0.48 16.36 410.64 389.00 21.64 0.68 BX09 107.79 160.27 16.84 58.36 10.14 1.11 8.08 0.79 3.36 0.68 2.32 0.40 3.21 0.45 24.67 373.82 354.52 19.31 0.57 BX10 94.99 144.95 15.97 54.83 7.61 0.84 6.28 0.47 1.34 0.26 0.97 0.14 0.89 0.16 8.50 329.69 319.19 10.50 0.57 BX11 25.13 38.81 3.82 13.13 1.94 0.23 1.89 0.24 1.31 0.30 0.97 0.15 1.15 0.17 11.10 89.22 83.05 6.17 0.55 BK01 29.04 65.86 9.25 41.31 7.96 0.64 7.17 1.08 5.34 0.94 2.43 0.29 2.76 0.21 26.15 174.26 154.06 20.21 0.40 BK02 125.39 290.13 43.88 216.30 46.38 4.41 41.60 6.10 28.41 4.86 11.60 1.24 12.21 0.84 131.41 833.34 726.48 106.86 0.47 BK03 155.69 423.46 68.16 334.63 79.13 6.40 68.38 11.02 54.43 9.50 22.92 2.55 22.30 1.58 223.72 1260.13 1067.46 192.67 0.41 BK04 31.65 74.86 10.49 44.68 8.84 0.68 7.94 1.20 6.02 1.09 2.78 0.34 2.88 0.25 29.77 193.70 171.20 22.50 0.38 表 3 斯弄多矿区岩帽微量元素分析结果
Table 3. Trace element results for the lithocaps from the Sinongduo deposit
编号 Au Hg Ag As Ba Be Co Cr Cs Cu Ga Hf Li Mo BS01 1.09 108.30 3.70 117.33 163.36 16.36 0.51 9.05 1.68 9.26 3.03 1.86 34.34 8.14 BS02 1.43 88.70 1.20 75.55 128.58 17.79 0.40 7.61 1.64 7.87 3.02 1.61 28.29 1.73 BS03 2.36 75.91 4.02 370.10 199.63 21.41 0.49 9.01 2.89 11.29 3.82 2.53 57.83 4.96 BS04 2.79 136.98 3.82 531.61 125.42 19.34 0.40 6.31 2.26 7.85 3.28 2.08 51.19 5.34 BS05 1.36 126.58 1.81 73.13 130.39 26.59 0.43 6.84 2.04 5.90 4.70 1.45 26.00 5.35 BS06 1.59 308.27 8.38 414.88 159.95 7.14 0.56 6.81 2.88 16.60 2.34 3.22 61.11 68.38 BS07 1.36 157.88 1.52 101.37 100.35 28.79 0.27 6.27 1.49 3.46 3.73 1.56 25.33 5.07 BS08 6.06 390.86 12.80 457.99 185.62 6.14 0.31 6.13 3.03 8.17 2.98 3.00 63.67 20.57 BX01 1.09 9.58 0.07 10.23 128.11 0.67 0.59 5.24 0.50 2.12 34.12 8.49 114.50 1.02 BX02 2.15 22.40 0.44 8.60 180.74 1.00 0.76 10.11 1.83 3.65 21.39 8.07 90.27 1.83 BX03 0.47 29.82 5.53 6.59 104.96 1.04 0.52 10.45 1.86 6.19 2.45 6.60 39.19 20.94 BX04 0.36 2.31 0.68 2.81 96.83 0.75 0.30 6.24 0.86 8.02 11.36 9.66 104.50 2.58 BX05 0.41 10.81 0.12 6.94 108.33 0.80 0.21 3.66 1.40 3.72 20.72 11.45 80.25 0.71 BX06 0.45 19.01 0.08 10.91 105.94 0.70 0.16 3.72 0.90 2.62 25.10 9.38 88.65 0.65 BX07 0.45 5.19 1.07 3.50 80.18 1.12 0.12 2.82 0.97 2.03 5.28 6.38 41.29 2.22 BX08 0.55 26.09 0.09 11.93 105.35 0.73 0.13 2.81 0.68 1.60 29.08 8.11 118.60 0.58 BX09 2.45 16.03 0.10 5.28 149.68 1.45 0.10 2.39 2.10 1.46 24.01 9.49 105.30 0.55 BX10 1.29 7.50 0.16 10.47 74.26 0.41 0.10 1.92 0.61 2.62 25.15 8.63 218.80 1.29 BX11 2.02 15.04 1.53 5.87 55.35 0.95 0.13 1.62 0.86 1.87 1.30 5.91 26.03 3.95 BK01 80.21 428.15 7.23 236.37 50.15 1.90 0.24 5.70 3.81 3.67 2.65 1.36 77.08 27.39 BK02 360.74 2 234.69 27.77 644.74 124.90 1.55 0.46 4.09 6.23 6.34 14.50 4.13 54.73 135.50 BK03 307.06 53.75 13.25 552.64 178.50 2.16 0.18 1.98 7.36 3.38 16.00 4.86 49.28 140.61 BK04 87.40 77.72 6.22 223.31 55.23 1.82 0.24 3.30 3.65 3.98 2.71 1.43 77.06 13.71 编号 Nb Ni Pb Rb Sb Sc Sn Sr Ta Th U V Zn Zr BS01 6.33 2.09 1 288.30 25.19 14.36 0.88 1.48 26.02 0.18 3.83 1.86 4.35 89.91 22.67 BS02 5.88 2.00 288.75 19.72 6.77 0.97 1.77 17.34 0.10 3.26 1.32 3.71 49.84 7.32 BS03 10.38 1.83 1 893.66 35.65 9.71 0.99 2.46 21.19 0.22 7.77 2.44 4.09 68.09 25.91 BS04 7.72 1.49 1 329.56 32.49 12.15 1.06 1.74 19.89 0.20 7.18 2.58 4.01 50.89 9.52 BS05 7.15 2.00 328.60 30.90 7.91 1.12 2.93 17.54 0.12 3.05 1.03 3.51 55.62 16.56 BS06 8.57 1.65 4 769.16 31.27 46.95 2.06 1.83 27.93 0.42 9.60 7.67 3.49 332.70 38.02 BS07 5.12 1.29 330.51 16.40 13.98 0.87 1.60 18.57 0.10 5.08 2.24 2.48 34.34 16.61 BS08 9.11 1.42 3 438.59 26.53 35.59 0.77 1.58 37.93 0.48 11.55 5.49 2.34 54.96 42.26 BX01 30.11 1.88 47.04 4.22 0.78 4.78 5.87 322.92 3.01 59.09 8.33 17.75 5.91 296.56 BX02 17.91 3.44 45.07 14.03 0.90 3.44 4.14 269.65 1.73 41.29 3.91 13.34 10.67 291.99 BX03 10.91 2.18 12.77 15.15 1.98 1.53 1.23 58.65 0.43 13.68 2.40 5.03 10.60 241.76 BX04 18.74 1.80 28.01 9.84 1.66 2.02 2.01 148.06 1.69 33.21 2.51 5.52 3.59 361.24 BX05 30.11 0.88 58.69 10.29 0.87 5.23 4.41 317.07 3.12 75.99 6.62 14.45 7.70 408.35 BX06 23.19 0.66 38.08 7.87 0.78 3.36 4.66 239.12 2.18 47.85 5.70 13.87 6.45 343.13 BX07 10.37 0.82 19.67 9.79 1.76 0.92 1.03 55.89 0.82 16.08 2.11 4.29 4.47 229.29 BX08 24.85 0.51 49.11 6.80 0.75 3.78 5.06 280.45 2.49 49.85 6.14 14.56 6.47 284.48 BX09 27.12 0.42 61.63 8.10 0.72 4.85 4.79 344.51 2.70 61.54 5.71 11.47 5.88 341.55 BX10 26.16 0.56 68.89 7.50 0.76 1.86 4.01 272.48 2.46 43.24 1.80 10.52 5.37 315.95 BX11 8.59 0.87 6.40 11.65 2.24 0.51 0.42 14.45 0.35 8.63 1.48 1.75 3.48 215.41 BK12 1.36 1.58 27.91 25.67 11.38 0.41 0.27 36.72 0.05 2.12 0.30 4.72 8.47 20.19 BK13 6.18 1.28 92.47 124.76 43.40 2.39 3.04 43.14 0.26 14.01 1.90 43.60 19.50 108.68 BK14 9.38 0.68 46.80 174.37 16.39 2.60 1.88 42.92 0.87 15.07 1.71 32.57 23.12 124.89 BK15 1.39 1.35 15.85 21.39 9.86 0.47 0.28 22.96 0.06 1.71 0.32 2.80 8.47 21.42 注:Au含量单位为10-9,其余元素为10-6. -
[1] Chang, Z. S., Hedenquist, J. W., White, N. C., et al., 2011. Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines. Economic Geology, 106(8): 1365-1398. https://doi.org/10.2113/econgeo.106.8.1365 [2] Cooke, D.R., Baker, M., Hollings, P., et al., 2014.New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems-Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments. Society of Economic Geologists Special Publications, 18: 127-152. [3] Cooke, D.R., White, N.C., Zhang, L.J., et al., 2017.Lithocaps-Characteristics, Origins and Significance for Porphyry and Epithermal Exploration. Proceedings of the 14th SGA Biennial Meeting, Québec City. [4] Corral, I., Cardellach, E., Corbella, M., et al., 2016. Cerro Quema (Azuero Peninsula, Panama): Geology, Alteration, Mineralization, and Geochronology of a Volcanic Dome-Hosted High-Sulfidation Au-Cu Deposit. Economic Geology, 111(2): 287-310. https://doi.org/10.2113/econgeo.111.2.287 [5] Deyell, C. L., Rye, R. O., Landis, G. P., et al., 2005. Alunite and the Role of Magmatic Fluids in the Tambo High-Sulfidation Deposit, El Indio-Pascua Belt, Chile. Chemical Geology, 215(1-4): 185-218. https://doi.org/10.1016/j.chemgeo.2004.06.038 [6] Ding, S, Chen, Y.C., TangJ.X., et al., 2017.Relationship Between Linzizong Volcanic Rocks and Mineralization: A Case Study of Sinongduo Epithermal Ag-Pb-Zn Deposit. Mineral Deposits, 36(5): 1074-1092 (in Chinese with English abstract). [7] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2005.A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6): 549-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200506012 [8] Guo, N., Guo, W. B., Shi, W. X., et al., 2019. Characterization of Illite Clays Associated with the Sinongduo Low Sulfidation Epithermal Deposit, Central Tibet Using Field SWIR Spectrometry. Ore Geology Reviews, in Press. https://doi.org/10.1016/j.oregeorev.2019.103228 [9] Hedenquist, J. W., Aoki, M., Shinohara, H., 1994. Flux of Volatiles and Ore-Forming Metals from the Magmatic-Hydrothermal System of Satsuma Iwojima Volcano. Geology, 22(7): 585-588. https://doi.org/10.1130/0091-7613(1994)022<0585:fovaof>2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0585:fovaof>2.3.co;2 [10] Hedenquist, J. W., Arribas, A., Reynolds, T. J., 1998. Evolution of an Intrusion-Centered Hydrothermal System; Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 93(4): 373-404. https://doi.org/10.2113/gsecongeo.93.4.373 [11] Hedenquist, J. W., Lowenstern, J. B., 1994. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370(6490): 519-527. https://doi.org/10.1038/370519a0 [12] Hedenquist, J. W., Taran, Y. A., 2013. Modeling the Formation of Advanced Argillic Lithocaps: Volcanic Vapor Condensation above Porphyry Intrusions. Economic Geology, 108(7): 1523-1540. https://doi.org/10.2113/econgeo.108.7.1523 [13] Huang, H.X., Zhang, L.K., Liu, H., 2019. Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 44(6): 1876-1887 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201906010 [14] Lang, X. H., Tang, J. X., Li, Z. J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009 [15] Lang, X.H., Tang, J.X., Yang, Z.Y., et al., 2017.Geophysical Characteristics and Prospecting Direction of the Sinongduo Pb-Zn Deposit in Xietongmen County, Tibet. Geology and Exploration, 53(3): 508-518 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201703010 [16] Li, H. F., Tang, J. X., Hu, G. Y., et al., 2019. Fluid Inclusions, Isotopic Characteristics and Geochronology of the Sinongduo Epithermal Ag-Pb-Zn Deposit, Tibet, China. Ore Geology Reviews, 107: 692-706. https://doi.org/10.1016/j.oregeorev.2019.02.033 [17] Li, X.X., Zhang, L.J., Gao, C.S., et al., 2017.Geological and Geochemical Characteristics of Lithocap in the Lu-Zong Basin, Anhui, China. Acta Petrologica Sinica, 33(11): 3545-3558 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711015 [18] Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018.Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8): 2755-2766 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808016 [19] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808011 [20] Li, Z., Lang, X.H., Ding, S., et al., 2017.A Study of the Modes of Occurrence of Silver in the Sinongduo Epithermal Ag-Pb-Zn Deposit, Tibet. Acta Geoscientica Sinica, 38(5): 687-701 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705009 [21] Lin, B., Tang, J. X., Chen, Y. C., et al., 2019. Geology and Geochronology of Naruo Large Porphyry-Breccia Cu Deposit in the Duolong District, Tibet. Gondwana Research, 66: 168-182. https://doi.org/10.1016/j.gr.2018.07.009 [22] Liu, H.F., 1993.Division of Linzizong Volcanic Series and Its Geochronology in Lhasa Area. Xizang Geology, 2: 59-69 (in Chinese with English abstract). [23] Liu, Y.C., Ji, X.H., Hou, Z.Q., et al., 2015.The Establishment of an Independent Pb-Zn Mineralization System Related to Magmatism: A Case Study of the Narusongduo Pb-Zn Deposit in Tibet. Acta Petrologica et Mineralogica, 34(4): 539-556 (in Chinese with English abstract). [24] Maksaev, V., Munizaga, F., McWilliams, M., et al., 2004. New Chronology for El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os and Fission-Track Dating: Implications for the Evolution of a Supergiant Porphyry Cu-Mo Deposit. Society of Economic Geologists Special Publication, 11: 15-54. [25] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 [26] Qiu, X.P., Lan, Y.Z., Liu, Y., et al., 2010.The Key to the Study of Deep Mineralization and the Evalution of Ore-Prospecting Potential in the Zijinshan Gold and Copper Deposit. Acta Geoscientica Sinica, 31(2): 209-215 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201002010 [27] Sillitoe, R.H., Halls, C., Grant, J.N., 1975.Porphyry Tin Deposits in Bolivia. Economic Geology, 70: 913-927. http://doi.org/10.2113/gsecongeo.70.5.913 [28] Sillitoe, R.H., Steele, G.B., Thompson, J.F.H., et al., 1998. Advanced Argillic Lithocaps in the Bolivian Tin-Silver Belt. Mineralium Deposita, 33(6): 539-546. https://doi.org/10.1007/s001260050170 [29] Sun, G.P., Wu, Y.J., Zheng, Y.Y., et al., 2019. Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization. Earth Science, 44(9): 3007-3025 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909018.htm [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Tang, J.X., Ding, S., Meng, Z., et al., 2016.The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientica Sinica, 37(4): 461-470 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201604010.htm [32] Tang, J.X., Ding, S., Wang, Q., et al., 2014.Discovery of the Epithermal Deposit of Cu (Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geoscientica Sinica, 35(1): 6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201401002.htm [33] Tang, J.X., Lang, X.H., Xie, F.W., et al., 2015. Geological Characteristics and Genesis of the Jurassic No.i Porphyry Cu-Au Deposit in the Xiongcun District, Gangdese Porphyry Copper Belt, Tibet. Ore Geology Reviews, 70: 438-456. https://doi.org/10.1016/j.oregeorev.2015.02.008 [34] Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010.Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506 (in Chinese with English abstract). [35] Tang, J.X., Wang, Q., Yang, H.H., et al., 2017.Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571-613 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002 [36] Tang, P., Tang, J.X., Zheng, W.B., et al., 2018. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Vol-canic Rocks in Dianzhong Formation from Xingaguo Area, Tibet. Acta Petrologica et Mineralogica, 37(1): 47-60 (in Chinese with English abstract). [37] Wang, M., Li, C., Dong, Y.S., et al., 2010.Cenozoic Thrusting Nappe Structure in the Sinongduo Area, Xie Tongmen, Tibet, China. Geological Bulletin of China, 29(12): 1851-1856 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201012014.htm [38] Xu, Q.S., Qin, F., Liu, Y., et al., 2010.Lithocaps:Geological Characteristics and Implication to Exploration of Epithermal and Porphyry-Style Deposits. Geology and Exploration, 46(1): 20-23 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232768186/ [39] Yang, Z.Y., Lang, X.H., Tang, J.X., et al., 2017. Geochemical Characteristics of the Jurassic Sandstones in the Xiongcun Copper-Gold Deposit, Tibet: Constraints on Tectonic Setting. Acta Geologica Sinica, 91(9): 1985-2003 (in Chinese with English abstract). [40] Yang, Z.Y., Zhang, C.H., Zhao, X.Y., et al., 2019.Characteristics of Rock Geochemical Anomalies and Prospecting Potential of Sinongduo Silver Polymetallic Deposit, Tibet. Geophysical and Geochemical Exploration, 43(4): 702-708 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/wtyht201904003 [41] Yue, X.Y., 2012.Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [42] Zhang, Z., Fang, X., Tang, J.X., et al., 2017.Chronology, Geochemical Characteristics of the Gaerqin Porphyry Copper Deposit in the Duolong Ore Concentration Area in Tibet and Discussion about the Identification of the Lithoscaps and the Possible Epithermal Deposit. Acta Petrologica Sinica, 33(2): 476-494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702011 [43] 丁帅, 陈毓川, 唐菊兴, 等, 2017.林子宗群火山岩与成矿关系:以斯弄多浅成低温热液型矿床为例.矿床地质, 36(5):1074-1092. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705004 [44] 董国臣, 莫宣学, 赵志丹, 等, 2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012 [45] 黄瀚霄, 张林奎, 刘洪, 等, 2019.西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向.地球科学, 44(6): 1876-1887. doi: 10.3799/dqkx.2018.364 [46] 郎兴海, 唐菊兴, 杨宗耀, 等, 2017.西藏自治区谢通门县斯弄多铅锌矿区地球物理特征及找矿方向.地质与勘探, 53(3):508-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201703010 [47] 李旋旋, 张乐骏, 高昌生, 等, 2017.安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究.岩石学报, 33(11): 3545-3558. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711015 [48] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. doi: 10.3799/dqkx.2018.593 [49] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8): 2684-2700. doi: 10.3799/dqkx.2018.170 [50] 李壮, 郎兴海, 丁帅, 等, 2017.西藏斯弄多浅成低温热液型银铅锌矿床银的赋存状态研究.地球学报, 38(5):687-701. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705009 [51] 刘鸿飞, 1993.拉萨地区林子宗火山岩系的划分和时代归属.西藏地质, 2: 59-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005846083 [52] 刘英超, 纪现华, 侯增谦, 等, 2015.一个与岩浆作用有关的独立铅锌成矿系统的建立——以西藏纳如松多铅锌矿床为例.岩石矿物学杂志, 34(4):539-556. doi: 10.3969/j.issn.1000-6524.2015.04.008 [53] 邱小平, 蓝岳彰, 刘羽, 等, 2010.紫金山金铜矿床深部成矿作用研究和找矿前景评价的关键.地球学报, 31(2):209-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201002010 [54] 孙国平, 吴运军, 郑有业, 等, 2019.西藏恰功矽卡岩铁矿床成矿流体特征及演化:对Fe-Pb矿化的约束.地球科学, 44(9):3007-3025. doi: 10.3799/dqkx.2018.564 [55] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08 [56] 唐菊兴, 丁帅, 王勤, 等, 2014.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报, 35(1):6-10. http://d.old.wanfangdata.com.cn/Periodical/dqxb201401002 [57] 唐菊兴, 王登红, 汪雄武, 等, 2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报, 31(4):495-506. http://d.old.wanfangdata.com.cn/Periodical/dqxb201004002 [58] 唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5):571-613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002 [59] 唐攀, 唐菊兴, 郑文宝, 等, 2018.西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征.岩石矿物学杂志, 37(1):47-60. doi: 10.3969/j.issn.1000-6524.2018.01.005 [60] 王明, 李才, 董永胜, 等, 2010.西藏谢通门斯弄多地区新生代逆冲推覆构造的基本特征.地质通报, 29(12): 1851-1856. doi: 10.3969/j.issn.1671-2552.2010.12.013 [61] 徐庆生, 覃锋, 刘阳, 等, 2010.岩帽:地质特征及找矿意义.地质与勘探, 46(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711015 [62] 杨宗耀, 郎兴海, 唐菊兴, 等, 2017.西藏雄村铜金矿区侏罗系砂岩地球化学特征:对构造背景的约束.地质学报, 91(9):1985-2003. doi: 10.3969/j.issn.0001-5717.2017.09.006 [63] 杨宗耀, 张崇海, 赵晓彦, 等, 2019.西藏斯弄多银多金属矿床岩石地球化学特征及找矿前景.物探与化探, 43(4):702-708. http://d.old.wanfangdata.com.cn/Periodical/wtyht201904003 [64] 岳相元, 2012.西藏措勤地区典中组火山岩地球化学特征及其地质意义(硕士学位论文).成都: 成都理工大学. [65] 张志, 方向, 唐菊兴, 等, 2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学——兼论硅帽的识别与可能的浅成低温热液矿床.岩石学报, 33(2):476-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702011