Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes
-
摘要: 前人对林子宗群典中组火山岩的成因研究较为深入,却忽略了侵位于其中的大量花岗斑岩.在野外地质调查的基础上,对拉萨地体西段达若地区花岗斑岩进行了年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素研究.结果显示,2件花岗斑岩的成岩年龄分别为61.9±0.3 Ma(MSWD=0.17)和61.1±0.6 Ma(MSWD=0.69),为古新世岩浆活动的产物;岩石中未见角闪石及富铝矿物,属高钾钙碱性-钾玄岩系列,具有高SiO2(76.16%~82.78%,平均为78.28%)、高碱(K2O+Na2O=4.16%~6.93%,平均为6.09%)、低CaO(0.11%~0.16%,平均为0.14%)和P2O5(0.02%~0.04%,平均为0.03%)的特点,富集Rb、Th、K和LREE,亏损Ba、Nb、Sr、P、Ti和HREE,轻、重稀土元素分馏强烈,负Eu异常显著,属强过铝质的高分异I型花岗岩.岩石富含放射成因Pb,(208Pb/204Pb)t、(207Pb/204Pb)t和(206Pb/204Pb)t值分别为为38.737~38.944、15.661~15.682和18.079~18.624,且具有较高的(87Sr/86Sr)i值(0.722 739~0.744 497)、εNd(t)值(-6.82~-6.67),锆石εHf(t)值(-4.97~-1.54)为较为分散而低弱的负值,Hf同位素二阶段亏损地幔模式年龄(TDM2)介于1 083~1 273 Ma,Nd-Hf同位素之间发生了一定程度的解耦.综合研究表明,达若花岗斑岩形成于印度-欧亚大陆主碰撞板块汇聚(65~41 Ma)的早阶段,主要为滞后的俯冲新特提斯洋壳与地幔岩石相互作用形成的母岩浆底侵于拉萨地体古老地壳之下致使其重熔,并与少部分幔源岩浆混合之后,经高程度的结晶分异作用形成.Abstract: The genesis of volcanic rocks in Dianzhong Formation of Linzizong Group has been deeply studied, but a large number of granitic porphyry emplaced has been neglected. Based on the field geological survey, the chronology, petrogeochemistry and Sr-Nd-Pb-Hf isotopes of granitic porphyry of Daruo area in the western Lhasa block were studied. The results show that the diagenetic ages of the two granitic porphyry samples are 61.9±0.3 Ma (MSWD=0.17) and 61.1±0.6 Ma (MSWD=0.69), respectively, indicating that they are products of Paleocene magmatic activities. Hornblende and aluminum-rich minerals are not found in the rocks, indicating they belong to the series of high potassium calc-potassium basaltic rocks, which are characterized by high SiO2 (76.16%-82.78%, average 78.28%), high alkali (K2O+Na2O=4.16%-6.93%, average 6.09%), low CaO(0.11%-0.16%, average 0.14%) and P2O5(0.02%-0.04%, average 0.03%). It is enriched in Rb, Th, K and LREE, and depleted in Ba, Nb, Sr, P, Ti and HREE. LREE and HREE have strong fractionation, and the negative Eu is very significant. These characteristics indicate that it belongs to weakly peraluminous and highly fractionated I-type granites. Daruo granite porphyry is rich in radiogenetic Pb, and the values of (208Pb/204Pb)t, (207Pb/204Pb)t and (206Pb/204Pb)t are 38.737-38.944, 15.661-15.682 and 18.079-18.624, respectively. Meanwhile, the granite porphyry has high (87Sr/86Sr)i value (0.722 739-0.744 497) and εNd(t) values (-6.82—-6.67), the εHf(t) values of zircon are only weakly and diffusely negative, and TDM2 is between 1 083 and 1 273 Ma, which means that there is a certain degree of decoupling between Nd-Hf isotopes. According to the comprehensive study, Daruo granite porphyry was formed in the early stage of the main collision convergence of the India-Eurasia plate (65-41 Ma), and the parent magma, formed by the interaction of the hysteretic subduction Neo-Tethys oceanic crust and mantle rocks, underplated beneath the ancient crust of Lhasa block, causing it to remelt and mix with a small part of mantle magma, then the granite porphyry was generated after a high degree of crystallization differentiation.
-
Key words:
- Sr-Nd-Pb-Hf isotope /
- geochemistry /
- zircon U-Pb dating /
- petrogenesis /
- granite porphyry /
- Dianzhong Formation /
- Lhasa block
-
图 1 拉萨地体构造单元划分简图
Fig. 1. Schematic diagram of structural unit division in Gangdese belt Liu et al. (2018)
图 6 达若花岗斑岩Na2O+K2O-SiO2图解(a)、K2O-SiO2图解(b)及A/NK-A/CNK图解(c)
图a据Middlemost (1994);图b据Peccerillo and Taylor (1976);图c据Maniar and Piccoli (1989)
Fig. 6. Na2O+K2O-SiO2 (a), K2O-SiO2 (b) and A/NK-A/CNK diagram (c) of Daruo granite prophyry
图 7 达若花岗斑岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分图(b)
微量元素标准化值和地壳数据值据Sun and McDonough (1989);稀土元素标准化值据McDonough and Sun (1995)
Fig. 7. Primitive mantle-normalized multi-element diagrams (a) and chondrite-normalised REE patterns (b) of Daruo granite porphyry
图 8 花岗斑岩成因类型判别相关图解
图a底图据Whalen et al. (1987);图c、d底图据Chappell and White (1992)、Chappell (1999)
Fig. 8. Diagrammatic analysis of genetic types of granitic porphyry
图 9 达若花岗斑岩Sr-Nd同位素组成
底图据Zhu et al.(2001);雅鲁藏布江蛇绿岩引自Hou et al. (2004);幔源玄武岩引自Lee et al. (2012);古拉萨地体引自Zhu et al. (2011);措麦-隆格尔典中组酸性火山岩岳相元(2012)
Fig. 9. Sr-Nd isotope composition of Daruo granite porphyry
图 10 达若花岗斑岩Pb同位素组成
图a底图据朱炳泉和常向阳(2001);图b、c、d底图据Zartman and Doe (1981);1.地幔源铅;2.上地壳铅;3.上地壳与地幔混合的俯冲带铅(3a.岩浆作用;3b.沉积作用);4.化学沉积型铅;5.海底热水作用铅;6.中深变质作用铅;7.深变质下地壳铅;8.造山带铅;9.古老页岩上地壳铅;10.退变质铅;A.地幔;B.造山带;C.上地壳;D.下地壳;OIV.洋岛火山岩;雅鲁藏布江蛇绿岩引自Li et al. (2014);古拉萨地体引自Zhang et al. (2010);措麦-隆格尔典中组酸性火山岩岳相元(2012)
Fig. 10. Pb isotope composition of Daruo granite porphyry
图 11 达若花岗斑岩Hf同位素组成
底图据吴福元等(2007);南拉萨地体成矿岩体数据引自Chu et al. (2011);古拉萨结晶基底数据引自Zhu et al. (2011)
Fig. 11. Hf isotope composition of Daruo granite porphyry
图 12 达若花岗斑岩哈克图解(a~g)与La/Yb-La(h)、La/Sm-La图解(i)
图h底图据王敏等(2018);图i底图据于玉帅等(2018)
Fig. 12. Harker (a-g), La/Yb-La (h) and La/Sm-La (i) diagram of Daruo granite porphyry
图 13 达若花岗斑岩构造环境判别图解
图a底图据Maniar and Piccoli (1989);图b底图据Defant and Drummond (1990);图c、d底图据Pearce et al. (1984);RRG.与裂谷有关的花岗岩;CEUG.陆内造陆运动隆起的花岗岩;POG.后造山型花岗岩;IAG.岛弧型花岗岩;CAG.大陆弧型花岗岩;CGG.大陆碰撞型花岗岩;sync-COLD.同碰撞型花岗岩;VAG.火山弧花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩
Fig. 13. Diagrammatic discrimination of tectonic settings of Daruo granite porphyry
图 14 达若花岗斑岩Th/Yb-Sr/Nd(a)与Th/Nb-Ba/Th(b)图解
底图据姜军胜(2018)
Fig. 14. Th/Yb-Sr/Nd (a) and Th/Nb-Ba/Th (b) diagram of Daruo granite porphyry
-
[1] Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733):252-255. https://doi.org/10.1038/20426 [2] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2):365-401. https://doi.org/10.1093/petrology/32.2.365 [3] Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1996. Late Cretaceous Ophiolite Obduction and Paleocene India-Asia Collision in the Westernmost Himalaya. Geodinamica Acta, 9(2-3):114-144. https://doi.org/10.1080/09853111.1996.11105281 [4] Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [5] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720 [6] Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types:25 Years Later. Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x [7] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020 [8] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [9] Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7):559-562. https://doi.org/10.1130/g24658a.1 [10] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [11] Ding, F., Xu, Z. B., Liu, S. H., et al., 2017. LA-ICP-MS Zircon U-Pb Ages, Petrochemical Characteristics and Petrogenesis of the Volcanic Rocks from the Palaeocene-Eocene Nianbo Formation in Chima Area, Coqen County, Xizang (Tibet). Geological Review, 63(4):1102-1116 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201704020 [12] Donaldson, D. G., Webb, A. A. G., Menold, C. A., et al., 2013. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite. Geology, 41(8):835-838. https://doi.org/10.1130/g33699.1 [13] Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2002. Research Progress of Linzizong Volcanic Rocks in Linzhou Basin, Tibet. Earth Science Frontiers, 9(1):153 (in Chinese). [14] Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2005. A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6):549-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200506012 [15] Dong, M. C., Zhao, Z. D., Zhu, D. C., et al., 2015. Geochronology, Geochemistry, and Petrogenesis of the Intermediate and Acid Dykes in Linzhou Basin, Southern Tibet. Acta Petrologica Sinica, 31(5):1268-1284. (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505006 [16] Ferrari, O. M., Hochard, C., Stampfli, G. M., 2008. An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1-4):346-365. https://doi.org/10.1016/j.tecto.2007.11.065 [17] Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shi-Quan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6):850-859 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201406008 [18] Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 [19] Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6):505. https://doi.org/10.1130/g22453.1 [20] Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971):753-757. https://doi.org/10.1038/309753a0 [21] He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4):15-37. https://doi.org/10.1016/j.tecto.2007.01.005 [22] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [23] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [24] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2):139-155. https://doi.org/10.1016/s0012-821x(04)00007-x [25] Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen:New Advances. Acta Geoscientica Sinica, 29(3):275-292 (in Chinese with English abstract). [26] Huang, H. X., Li, G. M., Liu, H., et al., 2018. An Low Sulfide Epithermal Gold-Silver Polymetallic Deposit Newly Discovered in the Western Section of the Gangdise Metallogenic Belt. Geology in China, 45(3):628-629 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201803016 [27] Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Propspecting Potential in the Linzizong Area, Western Gangdese Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [28] Ke, X. Z., Long W. G., Zhou D., et al., 2017. Metallogenesis of the Main Collisional Period in Mid-Western Gangdise:Zircon U-Pb Geochronology of the Granite Porphyry in Dexin Deposit, Tibet. Geological Bulletin of China, 36(5):772-779 (in Chinese with English abstract). [29] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [30] Kinny, P. D., Compston, W., Williams, I. S., 1991. A Reconnaissance Ion-Probe Study of Hafnium Isotopes in Zircons. Geochimica et Cosmochimica Acta, 55(3):849-859. https://doi.org/10.1016/0016-7037(91)90346-7 [31] Lassiter, J. C., DePaolo, D. J., 2013. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. John Wiley & Sons, New York. [32] Lee, H. Y., Chung, S. L., Ji, J. Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53(2):96-114. https://doi.org/10.1016/j.jseaes.2011.08.019 [33] Lee, H. Y., Chung, S. L., Lo, C. H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031 [34] Leech, M. L., Singh, S., Jain, A. K., et al., 2005. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1-2):83-97. https://doi.org/10.1016/j.epsl.2005.02.038 [35] Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision:Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58(3):27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006 [36] Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.593 [37] Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica (English Edition), 92(4):1396-1414. https://doi.org/10.1111/1755-6724.13634 [38] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [39] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [40] Maniar, P. D., Piccoli, P., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [41] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [42] Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane:Products of Back-Arc Extension of Neo-Tethyan Ocean?. Gondwana Research, 26(2):505-520. https://doi.org/10.1016/j.gr.2013.07.017 [43] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [44] Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005 [45] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 [46] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia Can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419 [47] Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1):1-16 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003 [48] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [49] Pearce, J. A., Kempton, P. D., Nowell, G. M., et al., 1999. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology, 40(11):1579-1611. https://doi.org/10.1093/petroj/40.11.1579 [50] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [51] Pichavant, M., Montel, J. M., Richard, L. R., 1992. Apatite Solubility in Peraluminous Liquids:Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56(10):3855-3861. https://doi.org/10.1016/0016-7037(92)90178-l [52] Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958):605-609. https://doi.org/10.1038/nature02031 [53] Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1):1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 [54] Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2):123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 [55] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust, Elsevier-Pergamon, Oxford. [56] Shi, C. Y., Yan, M. C., Liu, C. M., et al., 2005. Abundances of Chemical Elements in Granitoids of China and Their Characteristics. Geochimica, 34(5):56-68 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx200703007 [57] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [58] Tang, J. X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4):461-470 (in Chinese with English abstract). [59] Tang, P., Tang, J. X., Zheng, W. B., et al., 2018. Zircon U-Pb Ages, Hf Isotopes and Geochemistry of the Volcanic Rocks in Dianzhong Formation from Xingaguo Area, Tibet. Acta Petrologica et Mineralogica, 37(1):47-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201801005 [60] Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 [61] Wang, L. Q., Zhu, D. C., Geng, Q. R., et al., 2006. The Forming Age and Significance of Granitophyre Associated with Collision Process in Linzhou Basin of Gangdise Belt in Tibet. Chinese Science Bulletin, 51(16):1920-1928 (in Chinese). [62] Wang, M., Wang, J, L., Hu, Y., et al., 2018. Geochemistry, Geochronology, Whole Rock Sr-Nd and Zircon Hf Isotopes of the Wulansala Granite Pluton in Xiemisitai Area, Xinjiang. Acta Petrologica Sinica, 34(3):618-636 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803006 [63] Watson, E. B., Harrison T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723):841-844. https://doi.org/10.1126/science.1110873 [64] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [65] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [66] Xie, B. J., Zhou, S., Xie, G. G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese Belt. Acta Petrologica Sinica, 29(11):3803-3814 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013 [67] Xu, N., Wu, C. L., Lei, M., et al., 2018. Petrogenesis Zircon U-Pb Chronology, and Lu-Hf Isotopic Characteristics of the Monzonitic Granite from Mangya Area. Earth Science, 43(9):1-35 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.326 [68] Yu, Y. S., Gao, Y., Yang, Z. S., et al., 2018. Geochronology and Genesis of Quartz Diorite-Porphyrites of the Deneng Copper Polymetallic Deposit, Coqen, Tibet, China:Evidence from LA-ICP-MS Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb Isotopes. Acta Geologica Sinica, 92(7):1458-1473 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201807009 [69] Yue, X. Y., 2012. Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [70] Zartman, R. E., Doe, B. R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [71] Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 [72] Zhang, L., Huang, Y., Li, G. M., et al., 2016. Study of Quartz Diorite Porphyry by LA-ICP-MS U-Pb Dating and Lu-Hf Isotopic Tracing in the Zhunuo Porphyry Deposit, Tibet. Acta Mineralogica Sinica, 36(1):143-149 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201601022 [73] Zhang, Q., Pan, G. Q., Li, C. D., et al., 2007. Granitic Magma Mixing Versus Basaltic Magma Mixing:New Viewpoints on Granitic Magma Mixing Process:Some Crucial Questions on Granite Study (1). Acta Petrologica Sinica, 23(5):1141-1152 (in Chinese with English abstract). [74] Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17(4):615-631. https://doi.org/10.1016/j.gr.2009.10.007 [75] Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar-39Ar Geochronology of Cenozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet, China, and Their Geological Implications. Chinese Science Bulletin, 49(18):1970-1979. https://doi.org/10.1007/bf03184291 [76] Zhu, B. Q., Chang, X. Y., 2001. Geochemical Provinces and Their Boundaries. Advance in Earth Sciences, 16(2):153-162 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200102003 [77] Zhu, B. Q., Zhang, J. L., Tu, X. L., et al., 2001. Pb, Sr, and Nd Isotopic Features in Organic Matter from China and Their Implications for Petroleum Generation and Migration. Geochimica et Cosmochimica Acta, 65(15):2555-2570. https://doi.org/10.1016/s0016-7037(01)00608-1 [78] Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record:Method and Examples. Science in China (Series D), 47(6):657-673 (in Chinese with English abstract). [79] Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Corrigendum:Magmatic Record of India-Asia Collision. Scientific Reports, 5(1):17236. https://doi.org/10.1038/srep17236 [80] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [81] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). [82] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [83] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (Ca. Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [84] 丁枫, 徐忠彪, 刘寿航, 等, 2017.西藏措勤赤马地区古近系年波组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因.地质论评, 63(4):1102-1116. http://d.old.wanfangdata.com.cn/Periodical/dzlp201704020 [85] 董国臣, 莫宣学, 赵志丹, 等, 2002.西藏林周盆地林子宗火山岩研究近况.地学前缘, 9(1):153. doi: 10.3321/j.issn:1005-2321.2002.01.036 [86] 董国臣, 莫宣学, 赵志丹, 等, 2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012 [87] 董铭淳, 赵志丹, 朱弟成, 等, 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因.岩石学报, 31(5):1268-1284. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505006 [88] 付文春, 康志强, 潘会彬, 2014.西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义.地质通报, 33(6):850-859. doi: 10.3969/j.issn.1671-2552.2014.06.008 [89] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [90] 侯增谦, 王二七, 2008.印度-亚洲大陆碰撞成矿作用主要研究进展.地球学报, 29(3):275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003 [91] 黄瀚霄, 李光明, 刘洪, 等, 2018.冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床.中国地质, 45(3):628-629. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201803016 [92] 姜军胜, 2018.冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士学位论文).北京: 中国地质大学. [93] 柯贤忠, 龙文国, 周岱, 等, 2017.西藏冈底斯中西段主碰撞期成矿事件——德新矿区花岗斑岩锆石U-Pb年龄证据.地质通报, 36(5):772-779. doi: 10.3969/j.issn.1671-2552.2017.05.009 [94] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. http://earth-science.net/WebPage/Article.aspx?id=3910 [95] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-16. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001 [96] 史长义, 鄢明才, 刘崇民, 等, 2005.中国花岗岩类化学元素丰度及特征.地球化学, 34(5):56-68. http://d.old.wanfangdata.com.cn/Periodical/dqhx200505005 [97] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例.地球学报, 37(4):461-470. doi: 10.3975/cagsb.2016.04.08 [98] 唐攀, 唐菊兴, 郑文宝, 等, 2018.西藏新嘎果地区典中组火山岩年代学、Hf同位素及地球化学特征.岩石矿物学杂志, 37(1):47-60. doi: 10.3969/j.issn.1000-6524.2018.01.005 [99] 王立全, 朱弟成, 耿全如, 等, 2006.西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义.科学通报, 51(16):1920-1928. doi: 10.3321/j.issn:0023-074X.2006.16.011 [100] 王敏, 王居里, 胡洋, 等, 2018.新疆谢米斯台地区乌兰萨拉岩体地球化学、年代学及全岩Sr-Nd和锆石Hf同位素研究.岩石学报, 34(3):618-636. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201803006 [101] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [102] 谢冰晶, 周肃, 谢国刚, 等, 2013.西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比.岩石学报, 29(11):3803-3814. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311013 [103] 徐楠, 吴才来, 雷敏, 等, 2018.茫崖二长花岗岩锆石U-Pb年代学、Lu-Hf同位素特征及岩石成因.地球科学, 43(9):1-35. http://earth-science.net/WebPage/Article.aspx?id=4099 [104] 于玉帅, 高原, 杨竹森, 等, 2018.西藏措勤县德能铜多金属矿床石英闪长玢岩时代与成因:LA-ICP-MS锆石U-Pb年代学、地球化学和Sr-Nd-Pb同位素证据.地质学报, 92(7):1458-1473. doi: 10.3969/j.issn.0001-5717.2018.07.009 [105] 岳相元, 2012.西藏措勤地区典中组火山岩地球化学特征及其地质意义(硕士学位论文).成都: 成都理工大学. [106] 张丽, 黄勇, 李光明, 等, 2016.西藏朱诺斑岩铜矿石英闪长斑岩锆石LA-ICP-MS U-Pb定年及Lu-Hf同位素研究.矿物学报, 36(1):143-149. http://d.old.wanfangdata.com.cn/Periodical/kwxb201601022 [107] 张旗, 潘国强, 李承东, 等, 2007.花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一.岩石学报, 23(5):1141-1152. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705026 [108] 朱炳泉, 常向阳, 2001.地球化学省与地球化学边界.地球科学进展, 16(2):153-162. doi: 10.3321/j.issn:1001-8166.2001.02.003 [109] 朱弟成, 王青, 赵志丹, 2017.岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例.中国科学(D辑), 47(6):657-673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201706002 [110] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001