Electrical Structure of Narusongduo Ore Concentration District and Its Constraints on Mineralization
-
摘要: 为了研究西藏纳如松多矿集区的电性结构特征和对成矿作用的约束,对覆盖矿集区的大地电磁测深数据进行全面的数据处理分析,得到了可靠的二维电性结构模型.研究结果表明,分别在深度为40~50 km,20~30 km和10 km处见高导体,推测这些高导体可能为部分熔融和水流体共同所致.由于纳如松多矿集区内矿床为岩浆-热液型,深部岩浆的上涌在成矿作用中起到关键作用,所以壳内高导体可能为与成矿有关岩浆房的电性痕迹,将这些高导体连起来可能代表着深部热液向上运移的古通道.电性结构主要体现了壳内高导体与区域成矿动力作用的关系,向上运移的富矿岩浆也可能通过局部的隐伏构造运移到Pb-Zn和Fe-Cu矿床的位置,再演化形成矿体.Abstract: To understand the electrical structure in Narusongduo ore concentration district in the Tibetan Plateau and its constraints on mineralization, the magnetotellurics data in the district were carefully processed and analyzed, obtaining a reliable 2-D electrical model. The study shows that there are some conductors at depths of about 40-50 km, 20-30 km and 10 km, which may be resulted from the partial melting and aqueous fluids. As the deposits in the district belong to the magmatic-hydrothermal type, and the upwelling deep-seated magma played an important role in the mineralization, the crustal conductors may offer constraints to the ore-related magma reservoirs, and connecting these conductors also may represent the ancient ascending channels. The electrical structure indicates the relationship between the crustal conductors and the regional metallogenic dynamics in our study. The ascending ore-bearing magma also may migrate to the Pb-Zn and Fe-Cu locations by the local hidden structures, and subsequently evolved into the ore body.
-
图 1 (a) 研究区点位图; (b)青藏高原及邻区地形图
a图中包括主要大地构造和MT测点.黑色圆点表示宽频大地电磁测深点位, 红色圆点表示长周期大地电磁测深点位, 蓝色圆圈表示典型测点点位.b图中红色矩形为研究区.TH.特提斯-喜马拉雅地块; LS.拉萨地块; QT.羌塘地块; SPGZ.松潘-甘孜地块; QD.柴达木盆地; TB.塔里木盆地; IYS.印度-雅鲁藏布江缝合带; LMF.洛巴堆-米拉山断裂; BNS.班公湖-怒江缝合带; JRS.金沙江缝合带; AMS.阿尼玛卿缝合带.矿集区位置引自中国地质科学院地质研究所岩石圈中心——冈底斯成矿带深地震反射剖面探测
Fig. 1. (a) Topography map showing major tectonic structures and MT station locations in the survey area, (b) topography of the Tibetan Plateau and its adjacent areas
图 6 二维TE模式和TM模式联合反演模型
a.反演单点拟合差(RMS); b.二维反演电性模型, LMF.洛巴堆-米拉山断裂; NR1~NR3.地壳内高导体; 黑色虚线为上、中、下地壳分界面(源自Hou et al., 2015); c.基于电性结构的纳如松多矿集区成矿动力模型示意图
Fig. 6. 2-D electrical structure model using TE+TM data
图 9 印度-欧亚大陆主碰撞期间(65~50 Ma)南-中拉萨地块内矽卡岩型Fe(Fe-Cu)矿床和花岗岩有关的Pb-Zn矿床成矿示意
Fig. 9. Sketch topography of South-Central Lhasa terrane during the main-stage of India-Eurasia continental collision (65-50 Ma) and the mineralization of the skarn Fe (Fe-Cu) ore deposit and the granite-related Pb-Zn ore deposit
-
[1] Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101-m [2] Chave, A.D., Jones, A.G., MacKie, R., et al., 2012.The Mag-netotelluric Method:Theory and Practice. Cambridge University Press, Cambridge. [3] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020 [4] Groom, R.W., Bailey, R.C., 1989.Decomposition of Magneto-telluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion.Journal of Geo-physical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913 [5] Guo, X.Y., Li, W.H., Gao, R., et al., 2017.Nonuniform Sub-duction of the Indian Crust beneath the Himalayas.Scien-tific Reports, 7(1):12497. https://doi.org/10.1038/s41598-017-12908-0 [6] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [7] Jin, S., 2009. The Characteristic of Crust-Mantle Electrical Structure and Dynamics within Tibetan Plateau (Disser-tation).China University of Geosciences, Beijing, 67-80(in Chinese with English abstract). [8] Ledo, J., 2005.2-D versus 3-D Magnetotelluric Data Interpre-tation. Surveys in Geophysics, 26(5):511-543. https://doi.org/10.1007/s10712-005-1757-8 [9] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China.Earth Sci-ence, 43(8):2684-2700(in Chinese with English abstract). [10] Liang, H. D., Jin, S., Wei, W. B., et al., 2018. Lithospheric Electrical Structure of the Middle Lhasa Terrane in the South Tibetan Plateau. Tectonophysics, 731-732:95-103. https://doi.org/10.1016/j.tecto.2018.01.020 [11] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001 [12] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chem-geo.2008.02.003 [13] Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Cartographic Publishing House, Chengdu. [14] Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophys-ics, 66(1):174-187. doi: 10.1190/1.1444893 [15] Sun, J., 2013. The Genetic Study of Narusongduo Lead Zinc Ore Deposit in Middle Gangdese Belt, Tibet (Disserta-tion). China University of Geosciences, Beijing, 74-78(in Chinese with English abstract). [16] Swift, C.M., 1967.A Magnetotelluric Investigation of an Elec-trical Conductivity Anomaly in the Southwestern United States. Massachusetts Institute of Technology, Cam-bridge. [17] Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Se-ries of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4), 393-410(in Chinese with English abstract). [18] Tang, J.X., Wang, L.Q., Zheng, W.B., et al., 2014.Ore Depos-its Metallogenic Regularity and Prospecting in the East-ern Section of the Gangdese Metallogenic Belt.Acta Geo-logica Sinica, 88(12):2545-2555(in Chinese with Eng-lish abstract). [19] Tang, Z.L., Qian, Z.Z., Jiang, C.Y., et al., 2011.Trends of Re-search in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System. Journal of Earth Sciences and Environment, 33(1):1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201101003.htm [20] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064):78-81. https://doi.org/10.1038/nature04154 [21] Wang, G., Wei, W. B., Jin, S., et al., 2017. A Study on the Electrical Structure of Eastern Gangdese Metallogenic Belt. Chinese Journal of Geophysics, 60(8):2993-3003(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201708008.htm [22] Wei, W., Unsworth, M., Jones, A., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotellu-ric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580 [23] Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the South-ern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11):1591-1606(in Chinese). [24] Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. doi: 10.1029/98EO00426 [25] Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Ter-rane in the South Tibetan Plateau as Revealed by Mag-netotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017 [26] Xu, Q., Zhao, J.M., Yuan, X.H., et al., 2015.Mapping Crustal Structure beneath Southern Tibet:Seismic Evidence for Continental Crustal Underthrusting. Gondwana Re-search, 27(4):1487-1493. https://doi.org/10.1016/j.gr.2014.01.006 [27] Zhang, L.T., 2017.A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent.Surveys in Geophysics, 38(5):1043-1096. https://doi.org/10.1007/s10712-017-9424-4 [28] Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Struc-ture of Crust and Upper Mantle beneath the Eastern Mar-gin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201212026.htm [29] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Ban-gong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109 [30] Zheng, Y.Y., Sun, X., Zheng, H.T., et al., 2012.Magma Evo-lution of Small Intrusion and Mineralization in Gang-dese, Tibet. Northwestern Geology, 45(4):165-174(in Chinese with English abstract). [31] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical In-vestigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Ter-rane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [32] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in South-ern Tibet:Paleogeographic Implications.Geological Soci-ety of America Bulletin, 122(7-8):979-993. doi: 10.1130/B30062.1 [33] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth & Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [34] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bi-modal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [35] 金胜, 2009.青藏高原的壳幔电性结构特征及其动力学意义(博士学位论文).北京: 中国地质大学, 67-80. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075365.htm [36] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://www.earth-science.net/WebPage/Article.aspx?id=3905 [37] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [38] 孙骥, 2013.冈底斯中段纳如松多铅锌矿床成因研究(硕士学位论文).北京: 中国地质大学, 74-78. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014164884.htm [39] 唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02 [40] 唐菊兴, 王立强, 郑文宝, 等, 2014.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报, 88(12):2545-2555. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412027 [41] 汤中立, 钱壮志, 姜常义, 等, 2011.岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统.地球科学与环境学报, 33(1):1-9. doi: 10.3969/j.issn.1672-6561.2011.01.001 [42] 王刚, 魏文博, 金胜, 等, 2017.冈底斯成矿带东段的电性结构特征研究.地球物理学报, 60(8):2993-3003. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201610003017.htm [43] 魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm [44] 张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025 [45] 郑有业, 次琼, 吴松, 等, 2017西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109 [46] 郑有业, 孙祥, 郑海涛, 等, 2012.西藏冈底斯小斑岩体演化与成矿.西北地质, 45(4):165-174. doi: 10.3969/j.issn.1009-6248.2012.04.015