Geochronology, Geochemistry and Hf Isotopic Composition of Amphibolite from Zhalantun Region in Northern Great Xing'an Range and Its Tectonic Significance
-
摘要: 扎兰屯地区位于贺根山-黑河构造带中段,发育叠加韧性变形的晚古生代岩浆岩,可较好地记录这一时期的构造演化历史,但其研究程度较低.在野外调查基础上,对扎兰屯头道沟花岗质糜棱岩中的斜长角闪岩构造透镜体进行年代学和地球化学研究,探讨其成岩、变质及构造意义.头道沟斜长角闪岩原岩为玄武安山岩,锆石LAICP-MS U-Pb年龄为373.0±2.6 Ma,相当于大民山组火山岩.该岩石属钠质岩石,富集大离子亲石元素和轻稀土元素,亏损高场强元素,锆石原位εHf(t)为+5.39~+10.06,类似兴安岛弧的Hf同位素特征.上述特征暗示其原岩可能起源于蚀变洋壳流体交代亏损地幔演化而来的年轻下地壳,形成于板块消减带之上的前弧盆地.晚泥盆世在额尔古纳-兴安地块东南缘发育弧后、弧间和弧前盆地.斜长角闪岩变质年龄为~241.5±9.6 Ma,该变质可能与天山-兴蒙造山带演化晚期的伸展作用有关.Abstract: The Late Paleozoic magmatic rocks with ductile deformation occurred in the Zhalantun region located in the middle of the Hegenshan-Heihe tectonic belt, which well record the tectonic evolution history of the Late Paleozoic, but the research degree is low. Through the field investigation, the geochronology and geochemistry of amphibolite lenticles from granitic mylonite in the Toudaogou, southern Zhalantun, are systematically studied, and the petrogenesis and tectonic setting of the amphibolite are discussed. It is found that the protolith of amphibolite is basaltic andesite, yielding an average zircon U-Pb age of 373.0±2.6 Ma which is equivalent to the volcanic rocks of Daminshan Group. The rocks belong to sodium series, which are enriched in light rare earth elements, large ion lithophile elements, but are depleted in high field strength elements. The zircon εHf(t) values of the amphibolite range from +5.39 to +10.06, similar to the features of the Xing'an island arc, suggesting that the protolith of amphibolite may be derived from the melting of a juvenile lower crust originating from depleted mantle which were modified by fluids stemmed from altered ocean crust, and supposedly formed in an fore arc basin above the subduction zone. In the Late Devonian, back-arc basin, inter-arc basin and fore-arc basin ocurred in the southeast region of Erguan-Xing'an block. The amphibolite and its surrounding granitic mylonite experienced multistage metamorphic deformation. The amphibolite yielded a metamorphic age of about 241.5±9.6 Ma, which may be related to the extension of the late evolution of the Tianshan-Xingmeng orogenic belt.
-
图 1 研究区地质简图
a.中亚地区构造简图(据Jahn et al., 2004修改);b.中国东北地区构造简图(据潘桂棠等, 2009修改);c.扎兰屯南部地区地质简图. F1.塔源-喜桂图构造带;F2.贺根山-黑河构造带;F3.西拉沐伦-长春构造带;F4.赤峰-开源断裂带;F5.嘉荫-牡丹江构造带
Fig. 1. Geological sketch map of the study area
图 6 扎兰屯市头道沟斜长角闪岩稀土元素模式(a)及微量元素蛛网图(b)
OIB、N-MORB、E-MORB数据及标准化据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spider diagram(b) of the amphibolite from Toudaogou in Zhalantun
图 7 扎兰屯市头道沟斜长角闪岩锆石Hf同位素特征图解
a. εHf (t)-t图解(灰色区据Yang et al., 2006; 虚线区据Han et al., 2015);b. 176Hf/177Hf-t图解;c. εHf (t)-t图解
Fig. 7. Diagrams of zircon Hf isotopic of the amphibolite from Toudaogou in Zhalantun
图 8 扎兰屯市头道沟斜长角闪岩原岩成因判别图解
a.Nb/Zr-Th/Zr图(据Ben Othman et al., 1989);b.Ba/Zr-Th/Zr图(据Ishizuka et al., 2003);c.Sm/Yb-La/Sm图(据Aldanmaz et al., 2000);d. La/Yb-Zr/Nb图(据Aldanmaz et al., 2006);DM.亏损地幔;N-MORB.正常大洋中脊地幔;PM.原始地幔;E-MORB.富集地幔;MORB.洋中脊玄武岩;OIB.洋岛玄武岩
Fig. 8. Petrogenesis discrimination diagrams of the amphibolite from Toudaogou in Zhalantun
图 9 扎兰屯市头道沟斜长角闪岩原岩构造环境判别图解
a. La/Nb-La图;b. Ti-Zr图(据Pearce et al., 2003);c. Th/Yb-Ta/Yb图(据Pearce, 2003);d. V-Ti/1 000图(据Shervais, 1982);e. Th/Hf-Ta/Hf图(据汪云亮等, 2001);f. Cr-Y图(据Pearce, 2003);在图e中,Ⅰ.板块发散边缘N-MORB区,Ⅱ.板块汇聚边缘(Ⅱ1.大洋岛弧玄武岩区,Ⅱ2.陆缘岛弧及陆缘火山弧玄武岩区),Ⅲ.大洋板内洋岛、海山玄武岩区及T-MORB、E-MORB区,Ⅳ.大陆板内(Ⅳ1.陆内裂谷及陆缘裂谷拉斑玄武岩区,Ⅳ2.陆内裂谷碱性玄武岩区,Ⅳ3.大陆拉张带(或初始裂谷)玄武岩区),Ⅴ.地幔热柱玄武岩区;在其他图中,CA.钙碱性玄武岩,TH.拉斑玄武岩,TR.过渡性玄武岩,ALK.碱性玄武岩,IAB.岛弧玄武岩,IAT.岛弧拉斑玄武岩,ICA.岛弧钙碱性玄武岩,SHO.钾玄岩,MORB.洋中脊玄武岩,WPB.板内玄武岩,OIB.洋岛玄武岩,BABB.弧后盆地玄武岩,CFB.大陆溢流玄武岩
Fig. 9. Tectonic discrimination diagrams of the amphibolite from Toudaogou in Zhalantun
表 1 扎兰屯市头道沟斜长角闪岩锆石Lu-Hf同位素测试结果
Table 1. The results of zircon Lu-Hf isotopic analysis of the amphibolite from Toudaogou in Zhalantun
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf IHf εHf(0) εHf(t) TDM1 (Ma) TDM2(cc) (Ma) fLu/Hf 1 373.0 0.038 875 0.001 321 0.282 707 0.282 710 -2.2 5.69 774 928 -0.96 2 0.028 970 0.001 021 0.282 716 0.282 719 -1.9 6.09 755 906 -0.97 3 0.030 143 0.001 044 0.282 754 0.282 758 -0.5 7.43 702 831 -0.97 4 0.038 843 0.001 281 0.282 726 0.282 729 -1.5 6.37 746 890 -0.96 5 0.027 357 0.000 956 0.282 723 0.282 726 -1.6 6.35 744 891 -0.97 6 0.046 786 0.001 575 0.282 719 0.282 722 -1.8 6.05 762 908 -0.95 7 0.035 180 0.001 199 0.282 707 0.282 710 -2.2 5.72 772 926 -0.96 8 0.029 675 0.001 025 0.282 737 0.282 741 -1.1 6.85 725 863 -0.97 9 0.054 850 0.001 822 0.282 730 0.282 733 -1.4 6.39 751 889 -0.95 10 0.024 972 0.000 864 0.282 783 0.282 787 0.5 8.51 657 770 -0.97 11 0.029 171 0.001 004 0.282 828 0.282 832 2.1 10.06 596 684 -0.97 12 0.071 996 0.002 355 0.282 705 0.282 709 -2.2 5.39 798 945 -0.93 -
[1] Aldanmaz, E., Köprübaşı, N., Gürer, Ö., F., et al., 2006. Geochemical Constraints on the Cenozoic, OIB-Type Alkaline Volcanic Rocks of NW Turkey: Implications for Mantle Sources and Melting Processes. Lithos, 86(1-2): 50-76. https://doi.org/10.1016/j.lithos.2005.04.003 [2] Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 [3] Ben Othman, D., White, W. M., Patchett, J., 1989. The Geochemistry of Marine Sediments, Island Arc Magma Genesis, and Recycling Crust-Mantle.Earth and Planetary Science Letters, 94(1-2): 1-21. https://doi.org/10.1016/0012-821x(89)90079-4 [4] Chen, A.X., Zhou, D., Zhang, Q.K., et al., 2018. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 29(1): 78-92. https://doi.org/10.1007/s12583-017-0817-6 [5] Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3): 245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 [6] Chen, C., Lü, X.B., Wu, C.M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1): 114-129. https://doi.org/10.1007/s12583-017-0808-7 [7] Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004.Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics.Earth and Planetary Science Letters, 226(3-4): 347-366. https://doi.org/10.1016/j.epsl.2004.07.019 [8] Feng, Z. Q., Jia, J., Liu, Y. J., et al., 2015. Geochronology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks. Journal of Asian Earth Sciences, 113: 411-426. https://doi.org/10.1016/j.jseaes.2014.12.017 [9] Fu, J.Y., Wang, Y., Na, F.C., et al., 2015. Zircon U-Pb Geochronology and Geochemistry of the Hadayang Mafic-Ultramafic Rocks in Inner Mongolia: Constraints on the Late Devonian Subduction of Nenjiang-Heihe Area, Northeast China. Geology in China, 42(6): 1740-1753(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201506006.htm [10] Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007.Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China.Acta Petrologica Sinica, 23(2): 423-440(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702021 [11] Han, G. Q., Liu, Y. J., Neubauer, F., et al., 2015. U-Pb Age and Hf Isotopic Data of Detrital Zircons from the Devonian and Carboniferous Sandstones in Yimin Area, NE China: New Evidences to the Collision Timing between the Xing'an and Erguna Blocks in Eastern Segment of Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 97: 211-228. https://doi.org/10.1016/j.jseaes.2014.08.006 [12] Hong, D. W., Huang, H. Z., Xiao, Y. J., et al., 1994.The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance.Acta Geologica Sinica, 68(3): 219-230 (in Chinese with Einglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400000142 [13] Ishizuka, O., Taylor, R. N., Milton, J. A., et al., 2003. Fluid-Mantle Interaction in an Intra-Oceanic Arc: Constraints from High-Precision Pb Isotopes. Earth and Planetary Science Letters, 211(3-4): 221-236. https://doi.org/10.1016/s0012-821x(03)00201-2 [14] Jahn, B. M., Windley, B., Natal'in, B., et al., 2004.Phanerozoic Continental Growth in Central Asia.Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/s1367-9120(03)00124-x [15] Li, G.R., Chi, X.G., Dong, C.Y., et al., 2006.Rb-Sr Isotopic Dating of Mylonitize Granite in Southeast Mid-Da Hinggan Mountains.Journal of Jilin University(Earth Science Edition), 36(Suppl.): 11-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2006S1002.htm [16] Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [17] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates.Acta Petrologica Sinica, 23(3): 565-582(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200703004 [18] Li, L., Sun, F.Y., Li, B.L., et al., 2018.Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area.Earth Science, 43(2): 417-435(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802006 [19] Li, R.S., 1991. Xinlin Ophiolite. Heilongjiang Geoloy, 2(1): 19-32 (in Chinese). [20] Li, S., Wilde, S. A., Wang, T., et al., 2016. Latest Early Permian Granitic Magmatism in Southern Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 29(1): 168-180. https://doi.org/10.1016/j.gr.2014.11.006 [21] Li, S.J., Zhao, X.L., He, M., et al., 2014.The Structural Evolution and Pattern of the Late Paleozoic in Northeast China.Journal of Shandong University of Science and Technology(Natural Science), 33(4): 1-5(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb201404001 [22] Ma, Y.F., Liu, Y.J., Wen, Q.B., et al., 2017.Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm.at Central Part of Great Xing'an Range.Earth Science, 42(12): 2146-2173(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712004 [23] Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present.The Island Arc, 6(1): 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x [24] Pan, G.T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China.Geology in China, 36(1): 1-28 (in Chinese with Einglish abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003 [25] Pearce, J. A., 2003. Supra-Subduction Zone Ophiolites: The Search for Modern Analogues.In: Pearce, J. A., ed., Special Paper 373: Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, 269-293. https://doi.org/ 10.1130/0-8137-2373-6.269 [26] Qian, C., Chen, H. J., Lu, L., et al., 2018a.The Discovery of Neoarchean Granite in Longjiang Area, Heilongjiang Province. Acta Geoscientica Sinica, 39(1):27-36 (in Chinese with Einglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201801003 [27] Qian, C., Lu, L., Qin, T., et al., 2018b.The Early Late-Paleozoic Granitic Magmatism in the Zalantun Region, Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Erguna-Xing'an and Songnen Blocks.Acta Geologica Sinica, 92(11):2190-2214 (in Chinese with Einglish abstract). [28] Quan, J.Y., Chi, X.G., Zhang, R., et al., 2013. LA-ICP-MS U-Pb Geochronology of Detrital Zircon from the Neoproterozoic Dongfengshan Group in Songnen Masiff and Its Geological Significance. Geological Bulletin of China, 32(2): 353-364(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201302014 [29] Shao, J., Li, Y. F., Zhou, Y. H., et al., 2015. Neo-Archean Magmatic Event in Erguna Massif of Northeast China: Evidence from the Zircon LA-ICP-MS Dating of the Geneissic Monzogranite from the Drill. Journal of Jilin University (Earth Science Edition), 45(2): 364-373(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201502003.htm [30] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [31] Su, Y.Z., 1996. Some Problems of Paleozoic Biostratigraphy in Northeastern China.Jilin Geolgy, 15(3-4): 66-69(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600282491 [32] Sun, D.Y., Wu, F.Y., Li, H.M., et al., 2000. The Age of Post-Orogenic A-Type Granite in the Northwest of Xiaoxing'an Mountains and Its Relationship with the Eastward Extension of the Soren-Heganshan-Zhalaite Collision Zone.Chinese Science Bulletin, 45(20): 2217-2222 (in Chinese). doi: 10.1360/csb2000-45-20-2217 [33] Sun, F.T., Liu, C., Qiu, D.M., et al., 2018. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry. Journal of Jilin University(Earth Science Edition), 48(1): 145-164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201801011.htm [34] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [35] Tang, K.D., 1989. On Tectonic Development of the Fold Belts in the North Margin of Sino-Korean Platform.Geoscience, 3(2): 195-204(in Chinese with Einglish abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ198902005.htm [36] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts.Acta Petrologica Sinca, 17(3): 413-421(in Chinese with Einglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [37] Wang, Z. Y., Zheng, C. Q., Xiu, J. L., et al., 2018.Geochemistry and Its Tectonic Implictions of Metamorphic Rocks of Jiageda Formation in Moerdaoga Area, Inner Mongolia. Earth Science, 43(1): 176-198 (in Chinese with Einglish abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801011 [38] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [39] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [40] Wu, G., Chen, Y. C., Sun, F. Y., et al., 2015.Geochronology, Geochemistry, and Sr-Nd–Hf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance.Journal of Asian Earth Sciences, 97: 229-250. https://doi.org/10.1016/j.jseaes.2014.07.031 [41] Xu, B., Chen, B., 1997. Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia.Science in China (Series D), 40(5): 463-469. https://doi.org/10.1007/bf02877610 [42] Xu, B., Zhao, P., Bao, Q. Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB).Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with Einglish abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [43] Xu, W.L., Sun, D.Y., Yin, X.Y., 1999. Evolution of Hercynian Orogenic Belt in Daxing'anling Mt.: Evidence from Granitic Rocks. Journal of Changchun University of Science and Technology, 29(4): 319-323(in Chinese with English abstract). [44] Yang, B., Zhang, B., Zhang, Q. K., et al., 2018.Characteristics and Geological Significance of Early Carboniferous High-Mg Andesites in Ma'anshan Area, East Inner Mongolia.Geological Bulletin of China, 37(9): 1760-1771 (in Chinese with Einglish abstract). [45] Yang, J. H., Wu, F. Y., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3/4): 336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [46] Zhang, Y.J., Zhang, C., Wu, X.W., et al., 2016.Geochronology and Geochemistry of Late Paleozoic Marine Volcanic from the Zhalantun Area in Northern DaHinggan Mountains and Its Geological Significance.Acta Geologica Sinica, 90(10): 2706-2720(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201610011 [47] Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia–Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008 [48] Zhao, Y.D., Mo, X.X., Li, S.C., et al., 2015. Zircon U-Pb LA-ICP-MS Dating, Petrogeochemical Features of Granitic Mylonite in Northwestern Lesser Hinggan Mountains, and Tectonic Significance. Geological Review, 61(2): 443-456(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201502017 [49] Zhao, Z., Chi, X. G., Liu, J. F., et al., 2010. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258 (in Chinese with Einglish abstract). http://d.wanfangdata.com.cn/Periodical/ysxb98201011007 [50] Zhou, C. Y., Wu, F. Y., Ge, W. C., et al., 2005. Age Geochemistry and Petrogenesis of the Cumulate Gabbro in Tabe, Northern Da Hinggan Mountain.Acta Petrologica Sinica, 21(3): 763-775 (in Chinese with Einglish abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503017.htm [51] Zhou, Z. G., Liu, C. F., Wang, G. S., et al., 2019. Geochronology, Geochemistry and Tectonic Significance of the Dashizhai Ophiolitic Mélange Belt, Southeastern Xing'an-Mongolia Orogenic Belt.International Journal of Earth Sciences, 108(1): 67-88. https://doi.org/10.1007/s00531-018-1642-6 [52] Zhu, X.Y., Liu, G.P., 1995. Geochemical Characteristics of Paleozoic Marine Volcanic Rocks in Southen Hulun Buir League, Inner Mongolia, and Their Geological Significance. Acta Petrologica et Mineralogica, 14(2): 109-118(in Chinese with Einglish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500805001 [53] 付俊彧, 汪岩, 那福超, 等, 2015.内蒙古哈达阳镁铁-超镁铁质岩锆石U-Pb年代学及地球化学特征:对嫩江-黑河地区晚泥盆世俯冲背景的制约.中国地质, 42(6): 1740-1753. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201506006 [54] 葛文春, 隋振民, 吴福元, 等, 2007.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报, 23(2): 423-440. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702021 [55] 洪大卫, 黄怀曾, 肖宜君, 等, 1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报, 68(3): 219-230. doi: 10.3321/j.issn:0001-5717.1994.03.001 [56] 黎广荣, 迟效国, 董春艳, 等, 2006.大兴安岭中段东南部糜棱岩化花岗岩的Rb-Sr年龄.吉林大学学报(地球科学版), 36(S1): 11-14. http://www.cqvip.com/Main/Detail.aspx?id=1000197248 [57] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3): 565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004 [58] 李良, 孙丰月, 李碧乐, 等, 2018.漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因.地球科学, 43(2): 417-435. http://d.old.wanfangdata.com.cn/Periodical/dqkx201802006 [59] 李瑞山, 1991.新林蛇绿岩.黑龙江地质, 2(1):19-32. http://d.old.wanfangdata.com.cn/Periodical/hljkjxx201303041 [60] 李守军, 赵秀丽, 贺淼, 等, 2014.东北地区晚古生代构造演化与格局.山东科技大学学报(自然科学版), 33(4): 1-5. doi: 10.3969/j.issn.1672-3767.2014.04.001 [61] 马永非, 刘永江, 温泉波, 等, 2017.大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景.地球科学, 42(12): 2146-2173. doi: 10.3799/dqkx.2017.138 [62] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1): 1-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200901001 [63] 钱程, 陈会军, 陆露, 等, 2018a.黑龙江省龙江地区新太古代花岗岩的发现.地球学报, 39(1): 27-36. http://d.old.wanfangdata.com.cn/Periodical/dqxb201801003 [64] 钱程, 陆露, 秦涛, 等, 2018b.大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用:对额尔古纳-兴安地块和松嫩地块拼合时限的制约.地质学报, 92(11): 2190-2214. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201811002 [65] 权京玉, 迟效国, 张蕊, 等, 2013.松嫩地块东部新元古代东风山群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义.地质通报, 32(2): 353-364. doi: 10.3969/j.issn.1671-2552.2013.02.014 [66] 邵军, 李永飞, 周永恒, 等, 2015.中国东北额尔古纳地块新太古代岩浆事件钻孔片麻状二长花岗岩锆石LA ICP MS测年证据.吉林大学学报(地球科学版), 45(2): 364-373. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201502004 [67] 苏养正, 1996.中国东北区古生代生物地层学几个问题.吉林地质, 15(3-4): 66-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600282491 [68] 孙德有, 吴福元, 李惠民, 等, 2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报, 45(20): 2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019 [69] 孙凡婷, 刘晨, 邱殿明, 等, 2018.大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据.吉林大学学报(地球科学版), 48(1): 145-164. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201801011 [70] 唐克东, 1989.中朝陆台北侧褶皱带构造发展的几个问题.现代地质, 3(2): 195-204. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ198902005.htm [71] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3): 413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [72] 王照元, 郑常青, 徐久磊, 等, 2018.内蒙古莫尔道嘎佳疙瘩组变质岩地球化学特征及构造意义.地球科学, 43(1): 176-198. doi: 10.3799/dqkx.2018.011 [73] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7): 1841-1857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407001 [74] 许文良, 孙德有, 尹秀英, 1999.大兴安岭海西期造山带的演化:来自花岗质岩石的证据.长春科技大学学报, 29(4): 319-323. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ199904002.htm [75] 杨宾, 张彬, 张庆奎, 等, 2018.内蒙古东部马鞍山地区早石炭世高镁安山岩特征及地质意义.地质通报, 37(9): 1760-1771. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201809022 [76] 张渝金, 张超, 吴新伟, 等, 2016.大兴安岭北段扎兰屯地区晚古生代海相火山岩年代学和地球化学特征及其构造意义.地质学报, 90(10): 2706-2720. doi: 10.3969/j.issn.0001-5717.2016.10.011 [77] 赵院冬, 莫宣学, 李士超, 等, 2015.小兴安岭西北部花岗质糜棱岩锆石LA-ICP-MS U-Pb年龄、岩石地球化学特征及地质意义.地质论评, 61(2): 443-456. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502017 [78] 赵芝, 迟效国, 刘建峰, 等, 2010.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据.岩石学报, 26(11): 3245-3258. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011007 [79] 周长勇, 吴福元, 葛文春, 等, 2005.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因.岩石学报, 21(3): 763-775. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503016 [80] 祝新友, 刘国平, 1995.内蒙古呼盟南部地区古生代海相火山岩地球化学特征及其地质意义.岩石矿物学杂志, 14(2): 109-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500805001 -
dqkx-44-10-3193-TableS1-2.pdf