Geochemical Features and Geological Significance of Early Jurassic Granites in Milashan Area, Southern Tibet
-
摘要: 中南拉萨地块内部早侏罗世时期岩浆岩的成因差异对新特提斯洋的早期演化具有指示意义,本次工作选取位于洛巴堆-米拉山断裂带两侧的宗沃花岗岩体和仲达花岗岩体作为研究对象,进行详细的岩相学、年代学和全岩地球化学分析.锆石U-Pb定年结果分别为193.8±2.2 Ma和197.5±1.8 Ma,指示了区内的早侏罗世岩浆事件.宗沃花岗岩与仲达花岗岩样品均具有较高的SiO2含量(69.80%~74.64%)与较低的A/CNK值(0.98~1.07),且富集轻稀土元素及Rb、Th、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素.全岩地球化学特征指示两处样品均属典型的Ⅰ型火山弧岩浆岩.结合前人的研究成果表明,中南拉萨地块内部的早侏罗世岩浆岩形成于新特提斯洋北向俯冲下的陆内弧环境.本次工作的研究结果结合区域内早侏罗世岩浆岩的全岩地球化学和同位素数据,指示南拉萨地块内早侏罗世岩浆岩主要来源于新生下地壳,而中拉萨地块内早侏罗世岩浆岩的岩浆源区存在着更多古老下地壳成分的加入.Abstract: The petrogenetic differences of the Early Jurassic magmatic rocks within the central and southern Lhasa subterranes are indicative of the early-stage evolution of the Neo-Tethyan Ocean. In this study, we carry out petrography, geochronology and geochemistry analysis on Zongwo granitic pluton and Zhongda granitic pluton on both sides of the Luobadui-Milashan Fault. The zircon U-Pb dating results from two plutons are 193.8±2.2 Ma and 197.5±1.8 Ma, indicating the Early Jurassic magmatism in the study area. Granites samples from the Early Jurassic plutons are characterized by high SiO2 (69.80%-74.64%) contents, low A/CNK (0.98-1.07), enrichments in lighter rare earth elements (LREEs) and the large-ion-lithophile elements (LILEs) such as Rb, Th, K, and depletions in high-field strength elements (HFSEs) such as Nb, Ta, Ti. Geochemical characteristics show that both samples are typical Ⅰ-type volcanic arc magmatic rocks. Combined with previous research results, it is shown that the Early Jurassic magmatic rocks in the central and southern Lhasa subterranes were formed by the northward subduction of the Neo-Tethyan oceanic crust. Our data, in combination with geochemical and isotopic data indicate that the Early Jurassic magmatic rocks in the southern Lhasa subterrane were mainly derived from the juvenile lower crust, while the magmatic source of the magmatic rocks in the central Lhasa subterrane had more involvement of ancient lower crustal components.
-
图 1 青藏高原构造简图(a);拉萨地块地质简图(b);米拉山地区地质简图(c);宗沃岩体花岗岩(d和e);仲达岩体花岗岩(f和g)
图a据李才等(2006)修改;图b据Zhu et al.(2011)修改;图c据和钟铧等(2006)修改. JSSZ.金沙江缝合带;LSSZ.龙木错-双湖-澜沧江缝合带;BNSZ.班公湖-怒江缝合带;IYZSZ.印度-雅鲁藏布江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;Pl.斜长石;Kfs.钾长石;Qtz.石英;Bt.黑云母.图b中早侏罗世岩浆岩年龄数据来自于Chu et al.(2006);张宏飞等(2007), 陈炜等(2011)、Zhu et al.(2011)、董昕和张泽明(2013)、Guo et al.(2013)、水新芳等(2016)、Meng et al.(2016)、王旭辉等(2018), 舒楚天等(2018), 邹洁琼等(2018)、Xie et al.(2018)
Fig. 1. Tectonic framework of Tibetan Plateau (a); geological map of the Lhasa subterrane (b); geological map of Milashan area (c); field photographs and photomicrographs of granites from the Zongwo (d, e) and Zhongda plutons (f, g)
图 2 宗沃岩体和仲达岩体花岗岩Na2O+K2O-SiO2(a)、K2O-SiO2(b)、A/NK-A/CNK(c)及Zr-10 000×Ga/Al(d)图解
图a据Middlemost(1994);图b实线据Peccerillo and Taylor(1976),虚线据Middlemost(1986);图c据Maniar and Piccoli(1989);图d据Whalen et al.(1987),其中早侏罗世岩浆岩全岩地球化学数据来源与图 1相同
Fig. 2. Na2O+ K2O-SiO2 (a), K2O-SiO2 (b), A/NK-A/CNK (c) and Zr-10 000×Ga/Al (d) diagrams of granites from the Zongwo and Zhongda plutons
图 3 宗沃岩体和仲达岩体花岗岩球粒陨石标准化稀土元素配分曲线图和原始地幔标准化微量元素蛛网图
球粒陨石标准化值和原始地幔标准化值据Sun and McDonough(1989);图中早侏罗世岩浆岩全岩地球化学数据来源与图 1相同
Fig. 3. Chondrite-normalized REE patterns and primitive mantle normalized muti-element diagrams for the granites from the Zongwo and Zhongda plutons
图 6 宗沃岩体和仲达岩体花岗岩Rb-Y+Nb(a)、Nb-Y(b)、Y-Zr(c)及Th/Ta-Yb(d)构造判别图解
图a据Pearce et al.(1984);图b实线据Pearce et al.(1984);图c据Müller and Groves(1994);图d据Whalen et al.(1987),其中早侏罗世岩浆岩全岩地球化学数据来源与图 1相同
Fig. 6. Rb-Y+Nb(a), Nb-Y(b), Y-Zr(c) and Th/Ta-Yb(d)tectonic discrimination diagrams of granites from the Zongwo and Zhongda plutons
图 7 中南拉萨地块内部早侏罗世岩浆岩年龄、主微量元素含量及比值变化图解
图中早侏罗世岩浆岩全岩地球化学数据来源与图 1相同
Fig. 7. Age, major and trace element concentration and ratios diagrams for Early Jurassic magmatic rocks in the central and southern Lhasa subterrane
-
[1] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2):365-401. https://doi.org/10.1093/petrology/32.2.365 [2] Chen, S. S., Shi, R. D., Zou, H. B., et al., 2015. Late Triassic Island-Arc-Back-Arc Basin Development along the Bangong-Nujiang Suture Zone (Central Tibet):Geological, Geochemical and Chronological Evidence from Volcanic Rocks. Lithos, 230:30-45. https://doi.org/10.1016/j.lithos.2015.05.009 [3] Chen, S. Y., Yang, J. S., Zhang, C., et al., 2017. Development of the Sumdo Suture in the Lhasa Block, Tibet, China. Acta Geologica Sinica (English Edition), 91(S1):7-7. https://doi.org/10.1111/1755-6724.13150 [4] Chen, W., Ma, C. Q., Song, Z. Q., et al., 2011. Subduction-Related Early Jurassic Granodiorite in Xiaodasongdu, the South of Middle Gangdise in Tibet:Evidences from Zircon U-Pb Geochronology and Geochemistry. Geological Science and Technology Information, 30(6):1-12 (in Chinese with English abstract). [5] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1 [6] Dewey, J. F., Shackleton, R. M., Chengfa, C., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society B-Biological Sciences, 327(1594):379-413. doi: 10.1098/rsta.1988.0135 [7] Dong, X., Zhang, Z. M., 2013. Genesis and Tectonic Significance of the Early Jurassic Magmatic Rocks from the Southern Lhasa Terrane. Acta Petrologica Sinica, 29(6):1933-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006 [8] Geng, Q. R., Pan, G. T., Wang, L. Q., et al., 2006. Isotopic Geochronology of the Volcanic Rocks from the Yeba Formation in the Gangdise Zone, Xizang. Sedimentary Geology and Tethyan Geology, 26(1):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200601001 [9] Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [10] Govindaraju, K., 1994. 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards and Geoanalytical Research, 18(1):1-158. https://doi.org/10.1111/j.1751-908x.1994.tb00502.x [11] Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys. Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011 [12] Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6):505. https://doi.org/10.1130/g22453.1 [13] He, Z. H., Yang, D. M., Zheng, C. Q., et al., 2006. Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys. Geological Review, 52(1):100-106 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004928 [14] Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4):423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [15] Hu, Z. C., Gao, S., 2008. Upper Crustal Abundances of Trace Elements:A Revision and Update. Chemical Geology, 253(3-4):205-221. https://doi.org/10.1016/j.chemgeo.2008.05.010 [16] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [17] Ji, X. F., Wei, Q. R., Li, S. J., et al., 2018. Geochronology, Geochemistry and Tectonic Settings of Granodiorite in Lalong Area, Namling, Tibet. Earth Science, 43(12):4566-4585 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.271 [18] Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019 [19] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1 [20] Li, C., Huang, X. P., Zhai, Q. G., et al., 2006. The Longmu Co-Shuanghu-Jitang Plate Suture and the Northern Boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4):136-147 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604011 [21] Li, C., Zhai, G. Y., Wang, L. Q., et al., 2009. An Important Window for Understanding the Qinghai-Tibet Plateau-A Review on Research Progress in Recent Years of Qiangtang Area, Tibet, China. Geological Bulletin of China, 28(9):1169-1177 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909001 [22] Li, H. Q., Xu, Z. Q., Yang, J. S., et al., 2011. Syn-Collisional Exhumation of Sumdo Eclogite in the Lhasa Terrane, Tibet:Evidences from Structural Deformation and 40Ar-39Ar Geochronology. Earth Science Frontiers, 18(3):66-78 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008 [23] Li, T., 1995. Element Abundances of China's Continental Crust and Its Sedimentary Layer and Upper Continental Crust. Geochimica, 23(2):140-145 (in Chinese with English abstract). doi: 10.1007-BF02840380/ [24] Liu, J. H., Xie, C. M., Li, C., et al., 2018. Early Carboniferous Adakite-Like and Ⅰ-Type Granites in Central Qiangtang, Northern Tibet:Implications for Intra-Oceanic Subduction and Back-Arc Basin Formation within the Paleo-Tethys Ocean. Lithos, 296-299:265-280. https://doi.org/10.1016/j.lithos.2017.11.005 [25] Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [26] Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8 [27] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [28] Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016. The Early-Stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94-95:34-49. https://doi.org/10.1016/j.jog.2016.01.003 [29] Middlemost, E. A. K., 1986. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London. [30] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [31] Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005 [32] Müller, D., Groves, D. I., 1994. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Springer, New York. [33] Muttoni, G., Gaetani, M., Kent, D., et al., 2009. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A Transformation during the Permian. GeoArabia, 14(4):17-48. [34] Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [35] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [36] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [37] Pitcher, W. S., 1997. The Nature and Origin of Granite (2nd Edition). Chapman & Hall, London. [38] Ringwood, A. E., 1990. Slab-Mantle Interactions:3. Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82(3-4):187-207. https://doi.org/10.1016/0009-2541(90)90081-H [39] Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, Wiley, New York. [40] Shu, C. T., Long, X. P., Wang, Q., et al., 2018. Mixing of Early Jurassic Crustal and Mantle-Derived Magmas Induced by Subduction of the Neo-Tethyan Ocean:Evidence from the Dongga Dioritic Pluton, South Tibet. Geochimica, 47(5):478-490 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx201805003 [41] Shui, X. F., He, Z. Y., Zhang, Z. M., et al., 2016. Magma Origin of Early Jurassic Tonalites in the Eastern Gangdese Magmatic Belt, Southern Tibet and Its Implications for the Crustal Evolution of the Lhasa Terrane. Acta Geologica Sinica, 90(11):3129-3152 (in Chinese with English abstract). [42] Song, S. W., Liu, Z., Zhu, D. C., et al., 2014. Zircon U-Pb Chronology and Hf Isotope of the Late Triassic andesitic magmatism in Dajiacuo, Tibet. Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023 [43] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [44] van de Zedde, D. M. A., Wortel, M. J. R., 2001. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 20(6):868-882. https://doi.org/10.1029/2001tc900018 [45] Wang, C., Ding, L., Zhang, L. Y., et al., 2016. Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere. Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021 [46] Wang, R., Tafti, R., Hou, Z. Q., et al., 2017. Across-Arc Geochemical Variation in the Jurassic Magmatic Zone, Southern Tibet:Implication for Continental Arc-Related Porphyry Cu Au Mineralization. Chemical Geology, 451:116-134. https://doi.org/10.1016/j.chemgeo.2017.01.010 [47] Wang, X. H., Lang, X. H., Deng, Y. L., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of the Tangbai Porphyritic Granite Pluton in Southern Margin of Gangdese, Tibet. Geological Journal of China Universities, 24(1):41-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201801004 [48] Whalen, J. B., Chappell, B. W., 1988. Opaque Mineralogy and Mafic Mineral Chemistry of I- and S-Type Granites of the Lachlan Fold Belt, Southeast Australia. American Mineralogist, 73:281-296. [49] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [50] Xie, F. W., Tang, J. X., Lang, X. H., et al., 2018. The Different Sources and Petrogenesis of Jurassic Intrusive Rocks in the Southern Lhasa Subterrane, Tibet:Evidence from the Trace Element Compositions of Zircon, Apatite, and Titanite. Lithos, 314-315:447-462. https://doi.org/10.1016/j.lithos.2018.06.024 [51] Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001 [52] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [53] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [54] Zhang, H. F., Xu, W. C., Guo, J. Q., et al., 2007. Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Terrane, Tibet:Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese with English abstract). [55] Zhang, L. X., Wang, Q., Zhu, D. C., et al., 2019. Generation of Leucogranites Via Fractional Crystallization:A Case from the Late Triassic Luoza Batholith in the Lhasa Terrane, Southern Tibet. Gondwana Research, 66:63-76. https://doi.org/10.1016/j.gr.2018.08.008 [56] Zhang, S. Q., Qi, X. X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.711 [57] Zhao, Z. H., Xiong, X. L., Wang, Q., et al., 2008. Some Aspects on Geochemistry of Nb and Ta. Geochimica, 37(4):304-320 (in Chinese with English abstract). [58] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse Throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [59] Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5):442-471. https://doi.org/10.2747/0020-6814.50.5.442 [60] Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2005. Geochemistry and Petrogenesis of the Sangxiu Formation Basalts in the Central Segment of Tethyan Himalaya. Geochimica, 34(1):7-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200501002 [61] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [62] Zou, J. Q., Yu, H. X., Wang, B. D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8):2795-2810 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.589 [63] 陈炜, 马昌前, 宋志强, 等, 2011.西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩:锆石U-Pb年代学及地球化学证据.地质科技情报, 30(6):1-12. doi: 10.3969/j.issn.1000-7849.2011.06.001 [64] 董昕, 张泽明, 2013.拉萨地体南部早侏罗世岩浆岩的成因和构造意义.岩石学报, 29(6):1933-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006 [65] 耿全如, 潘桂棠, 王立全, 等, 2006.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质, 26(1):1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001 [66] 和钟铧, 杨德明, 郑常青, 等, 2006.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1):100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013 [67] 吉雪峰, 魏启荣, 李世杰, 等, 2018.西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景.地球科学, 43(12):4566-4585. http://earth-science.net/WebPage/Article.aspx?id=4077 [68] 李才, 黄小鹏, 翟庆国, 等, 2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘, 13(4):136-147 doi: 10.3321/j.issn:1005-2321.2006.04.011 [69] 李才, 翟刚毅, 王立全, 等, 2009.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序).地质通报, 28(9):1169-1177. doi: 10.3969/j.issn.1671-2552.2009.09.001 [70] 李化启, 许志琴, 杨经绥, 等, 2011.拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar/39Ar年代学的证据.地学前缘, 18(3):66-78. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008 [71] 黎彤, 1995.中国陆壳及其沉积层和上陆壳的化学元素丰度.地球化学, 23(2):140-145. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX402.004.htm [72] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [73] 舒楚天, 龙晓平, 王强, 等, 2018.藏南早侏罗世新特提斯洋俯冲过程中壳幔混合作用:来自日喀则东嘎闪长质岩体的证据.地球化学, 47(5):478-490. http://d.old.wanfangdata.com.cn/Periodical/dqhx201805003 [74] 水新芳, 贺振宇, 张泽明, 等, 2016.西藏冈底斯带东段早侏罗世英云闪长岩的岩浆起源及其对拉萨地体地壳演化的意义.地质学报, 90(11):3129-3152. doi: 10.3969/j.issn.0001-5717.2016.11.011 [75] 宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世安山质岩浆作用的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023 [76] 王旭辉, 郎兴海, 邓煜霖, 等, 2018.西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义.高校地质学报, 24(1):41-55. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201801004 [77] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 [78] 张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. http://earth-science.net/WebPage/Article.aspx?id=3797 [79] 赵振华, 熊小林, 王强, 等, 2008.铌与钽的某些地球化学问题.地球化学, 37(4):304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005 [80] 朱弟成, 潘桂棠, 莫宣学, 等, 2005.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因.地球化学, 34(1):7-9. http://d.old.wanfangdata.com.cn/Periodical/dqhx200501002 [81] 邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. http://earth-science.net/WebPage/Article.aspx?id=3913