Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance
-
摘要: 为了研究班公湖-怒江缝合带的壳幔电性结构及构造特征,并为其俯冲极性提供电性约束,对青藏高原中部申扎-双湖大地电磁测深剖面进行全面数据处理分析,获得了可靠的二维电性结构模型,研究表明:沿剖面上地壳分布的是规模不等的高阻体,底面埋深在10~25 km变化,高阻层之下发现由不连续的高导体构成的中下地壳高导层.通过对电性结构的分析,认为班公湖-怒江特提斯洋的俯冲消亡极性可能是双向的,随后拉萨-羌塘地体碰撞带处的上地壳高阻体发生拆沉,以上两次动力学事件可能共同作用于缝合带处的壳幔高导体,同时北拉萨地体的壳幔高导体还可能体现了构造作用、岩浆活动和成矿作用之间的关系.Abstract: To understand the crust-mantle electrical structure and the tectonic feature of Bangong-Nujiang suture, and offer the electrical constraints to its subduction polarity, the magnetotellurics data of the Shenzha-Shuanghu magnetotelluric profile in the central Himalaya-Tibetan Plateau was carefully processed and analyzed, obtaining a reliable 2-D electrical model. The study represents that there are some different scale resistors distributed along the profile in the upper crust and the bottom depth varying from 10 to 25 km, and meanwhile there is a middle-lower conductive layer composed of some discontinuous conductivities beneath the resistive layer. With the analysis of the electric structure, the study indicates that the subduction polarity of the Bangong-Nujiang Tethyan ocean may be double-sided, and subsequently the detachment of the upper crustal resistor was occurred, and so the twice dynamics above may contribute to the formation of the conductor within the suture. Furthermore, the conductor beneath the northern Lhasa terrane may also reflect the relation among the dynamics, magmatism and mineralization.
-
图 1 (a) 研究区点位图和(b)青藏高原及邻区地形图
a图包括主要大地构造和MT测点.黑色圆点表示宽频大地电磁测深测点,红色圆点表示长周期大地电磁测深测点,蓝色圆圈表示典型测点;b图红色矩形为研究区.TH.特提斯-喜马拉雅地体;LS.拉萨地体;QT.羌塘地体;SPGZ.松潘-甘孜地体;QD.柴达木盆地;TB.塔里木盆地;IYS.印度-雅鲁藏布江缝合带;LMF.洛巴堆-米拉山断裂;SNMZ.狮泉河-纳木错蛇绿岩带;BNS.班公湖-怒江缝合带;JRS.金沙江缝合带;AMS.阿尼玛卿缝合带
Fig. 1. (a) Topography map showing major tectonic structures, (b) topography of the Tibetan Plateau and its adjacent areas
图 6 二维TM模式反演模型
a.2017线二维反演单点RMS;b.2017线二维电性模型,RMS=1.34;c.500线二维电性模型,RMS=1.47;BNS.班公湖-怒江缝合带;C1和C2为高导体;R1为高阻体.莫霍面深度引自Gao et al.(2013)和Lu et al.(2015)
Fig. 6. 2⁃D electrical structure models using TM data
-
[1] Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101 [2] Cai, J.T., Chen, X.B., 2010.Refined Techniques for Data Processing and Two-Dimensional Inversion in Magnetotelluric Ⅱ:Which Data Polarization Mode Should be Used in 2D Inversion.Chinese Journal Geophysics, 53(11):2703-2714(in Chinese with English abstract). [3] Chen, J. L., Xu, J. F., Yu, H. X., et al., 2015. Late Cretaceous High-Mg# Granitoids in Southern Tibet:Implications for the Early Crustal Thickening and Tectonic Evolution of the Tibetan Plateau? Lithos, 232:12-22. https://doi.org/10.1016/j.lithos.2015.06.020 [4] Chen, W.W., Yang, T.S., Zhang, S.H., et al., 2012.Paleomagnetic Results from the Early Cretaceous Zenong Group Volcanic Rocks, Cuoqin, Tibet, and Their Paleogeographic Implications. Gondwana Research, 22(2):461-469. https://doi.org/10.1016/j.gr.2011.07.019 [5] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005 [6] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1):1-23(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.001 [7] Gao, R., Chen, C., Lu, Z.W., et al., 2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling. Tectonophysics, 606:160-170. https://doi.org/10.1016/j.tecto.2013.08.006 [8] Groom, R.W., Bailey, R.C., 1989.Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion. Journal of Geophysical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913 [9] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006.Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet.Geology, 34(6):505-508. https://doi.org/10.1130/g22453.1 [10] Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc:Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet. Lithos, 245:223-242. https://doi.org/10.1016/j.lithos.2015.09.015 [11] Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1 [12] Jin, S., Wei, W. B., Wang, S., et al., 2010. Discussion of the Formation and Dynamic Signification of the High Conductive Layer in Tibetan Crust. Chinese Journal of Geophysics, 53(10):2376-2385(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201010011 [13] Jin, S., Wei, W.B., Ye, G.F., et al., 2009.The Electrical Structure of Bangong-Nujiang Suture:Results from Magnetotelluric Sounding Detection.Chinese Journal Geophysics, 52(10):2666-2675(in Chinese with English abstract). [14] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010.Qushenla Formation Volcanic Rocks in North Lhasa Block; Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010022 [15] Lai, W., Hu, X. M., Zhu, D. C., et al., 2017. Discovery of the Early Jurassic Gajia Mélange in the Bangong-Nujiang Suture Zone:Southward Subduction of the Bangong-Nu-jiang Ocean? International Journal of Earth Sciences, 106(4):1277-1288. https://doi.org/10.1007/s00531-016-1405-1 [16] Liu, M., Bai, D.H., Xiao, P.F., 2010.The Electrical Conductivity Structure of the Eastern Tibetan Plateau and Its Tectonic Implications. Seismology and Geology, 32(1):51-58(in Chinese with English abstract). [17] Lu, Z. W., Gao, R., Li, H. Q., et al., 2015. Variation of Moho Depth across Bangong-Nujiang Suture in Central Tibet:Results from Deep Seismic Reflection Data.Internation-al Journal of Geosciences, 6(8):821-830. https://doi.org/10.4236/ijg.2015.68066 [18] Luo, M., Pang, F. C., Li, J. C., et al., 2015. Great Gangdise Northern Tibet Metallogenic Series Study of Ore Deposits. Acta Geologica Sinica, 89(4):715-730(in Chinese with English abstract). [19] McNeice, G.W., Jones, A.G., 2001. Multisite, Multifrequency Tensor Decomposition of Magnetotelluric Data. Geophysics, 66(1), 158-173. doi: 10.1190/1.1444891 [20] Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics, 66(1):174-187. https://doi.org/10.1190/1.1444893 [21] Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169:144-159. https://doi.org/10.1016/j.lithos.2013.01.012 [22] Swift, C.M., 1967.A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southern United States.Massachusetts Institute of Technology, Cambridge. [23] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data.Nature, 438:78-81. https://doi.org/10.1038/nature04154 [24] Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the Southern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11), 1591-1606(in Chinese). [25] Wei, W.B., Unsworth, M., Jones, A., et al., 2001.Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies.Science, 292(5517), 716-718. doi: 10.1126/science.1010580 [26] Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. https://doi.org/10.1029/98eo00426 [27] Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Terrane in the South Tibetan Plateau as Revealed by Magnetotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017 [28] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [29] Zeng, S. H., Hu, X. Y., Li, J. H., et al., 2015. Detection of the Deep Crustal Structure of the Qiangtang Terrane Using Magnetotelluric Imaging.Tectonophysics, 661:180-189. https://doi.org/10.1016/j.tecto.2015.08.038 [30] Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Structure of Crust and Upper Mantle beneath the Eastern Margin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201212025 [31] Zhao, W., Mechie, J., Brown, L.D., et al., 2001.Crustal Structure of Central Tibet as Derived from Project Indepth Wide-Angle Seismic Data.Geophysical Journal International, 145(2):486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x [32] Zhao, Y. Y., Cui, Y. B., Lv, L. N., et al., 2011. Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020 [33] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109 [34] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [35] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [36] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [37] 蔡军涛, 陈小斌, 2010.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择.地球物理学, 53(11):2703-2714. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201011018 [38] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. https://doi.org/10.3799/dqkx.2017.001 [39] 金胜, 魏文博, 汪硕, 等, 2010.青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据.地球物理学报, 53(10):2376-2385. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201010011 [40] 金胜, 魏文博, 叶高峰, 等, 2009.班公-怒江构造带的电性结构特征:大地电磁探测结果.地球物理学报, 52(10):2666-2675. doi: 10.3969/j.issn.0001-5733.2009.10.027 [41] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022 [42] 刘美, 白登海, 肖鹏飞, 2010.青藏高原东部岩石圈电性结构特征及其构造意义.地震地质, 32(1):51-58. doi: 10.3969/j.issn.0253-4967.2010.01.005 [43] 罗梅, 潘凤雏, 李巨初, 等, 2015.西藏大冈底斯北部金属矿床成矿系列研究.地质学报, 89(4):715-730. doi: 10.3969/j.issn.0001-5717.2015.04.005 [44] 魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm [45] 张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025 [46] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020 [47] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109 -
dqkx-44-6-1773-Fulu.pdf