Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes
-
摘要: 九嶷山地区砂子岭岩体作为南岭花岗岩带的有机组成部分,对其主要岩石类型开展了年代学研究,系统的LA-ICP-MS锆石定年结果表明,含斑中细粒花岗闪长岩成岩年龄为151.9±1.1 Ma、152.1±1.1 Ma,中细粒斑状二长花岗岩成岩年龄为154.1±1.2 Ma;确定其成岩年代为燕山早期,而不是以前普遍认为的印支期.岩石地球化学分析显示,砂子岭岩体具有富硅碱贫钙镁、K2O/Na2O为1.37~2.65、准铝-过铝质(0.93~1.09),FeO*/MgO比值大(5.43~15.33,平均7.14)等特点;岩石稀土含量介于186.75×10-6~413.17×10-6之间,明显高于世界花岗岩均值,稀土元素配分曲线呈右倾轻稀土富集型,具明显铕负异常,δEu值为0.095~0.224;岩石富集Ga、Y、Nb、Zr、Hf等大离子高场强元素及亏损Ni、Cr、Eu、Ti、V、P、Sr等元素,Ga/Al比值为245×10-6~582×10-6(平均值350×10-6)、Zr+Nb+Ce+Y为256.8×10-6~630.7×10-6(平均值441.95×10-6),显示A型花岗岩地球化学属性,形成于伸展构造体系的造山后环境.Sr、Nd、Hf同位素显示砂子岭岩体具较高Sr同位素初始值(ISr=0.716 03~0.718 17),较低的εNd(t)(-6.8~-7.4)、εHf(t)(4.8~-14.2)值特点;揭示其源区为地壳杂砂岩/泥质岩的部分熔融,成岩过程中有地幔物质的贡献;钕、铪模式年龄较接近,分别为1 498~1 546 Ma与1 061~1 756 Ma,暗示其源岩从地幔储库中脱离的时间为中元古代.结合南岭地区地质演化史,中生代九嶷山地区恰处于板块拼合带及太平洋板块弧后伸展的构造背景之下,具发生过岛弧岩浆作用、构造相对薄弱且存在大量具较高Lu-Hf、Sm-Nd同位素比值新生地壳物质的特点;地幔对流与软流圈上涌引发源区部分熔融形成具有类似同位素组成特征的A型花岗岩,即为砂子岭及九嶷山复式岩体的成因.Abstract: A study of LA-ICP-MS zircon U-Pb dating for Shaziling pluton composed of granodiorites and monzogranites from Jiuyishan area considered as a part of Nanling granite belt was carried out. The results of chronology indicate that the Shaziling pluton was formed during the early Yanshanian (151.9±1.1-154.1±1.2 Ma) instead of the Indosinian. The analyses of geochemistry indicate that the Shaziling pluton was characterized by rich silicon-alkali and poor calcium-magnesium with K2O/Na2O ratios of 1.37-2.65, Al2O3 of 0.93-1.09 and FeO*/MgO ratios of 5.43-15.33 (average 7.14); The content of rare earth elements in the range of 186.75 to 413.17×10-6 is significantly higher than the those of world average granite, which shows the right-leaning distribution of enriched light rare earth elements with obvious negative anomaly of Eu and δEu values of 0.095-0.224. These rocks are enriched in large ion lithophile elements (LILEs, e.g., Ga, Y, Nb, Zr, and Hf) and relatively depleted in high field strength elements (HFSEs, e.g., Ni, Cr, Eu, Ti, V, P, and Sr), with Ga/Al ratios of (245~582)×10-6 (average 350×10-6) and Zr+Nb+Ce+Y of (256.8-630.7)×10-6 (average 441.95×10-6), similar to geochemical features of A-type granites, which indicates the Shaziling pluton formed in the post- orogenic environment of the extensional tectonic system. Sr, Nd and Hf isotopes show that the Shaziling pluton has higher initial Sr isotope values of 0.71603 to 0.71817, lower εNd(t) values of -6.8 to -7.4 and εHf(t) values of 4.8 to -14.2, revealing that the source area occurred partial melting of crustal graywacke/pelite with a contribution of mantle materials during the diagenesis. Nd and Hf are relatively close in mode ages, with 1 498-1 546 Ma and 1 061-1 756 Ma, respectively, suggesting that the source rocks separated from the mantle reservoir during the Mesoproterozoic. Combined with the geological evolution of Nanling area that was in the tectonic setting of plate juncture zone and post-arc extension of Pacific plate, magmatism occurred in the Mesozoic Jiuyishan area in which the structure is relatively weak and there are a lot of new crustal materials with higher Lu/Hf and Sm/Nd isotope ratios. The Shaziling and Jiuyishan complex massif, similar to isotopic composition of A-type granites was formed by partial melting of the source area caused by mantle convection and upwelling of asthenosphere.
-
Key words:
- A-type granites /
- zircon U-Pb dating /
- isotope /
- geochemistry /
- tectonic setting /
- Shaziling /
- Nanling
-
图 7 砂子岭岩体(10 000×Ga/Al)vs(FeO*/MgO)/Ce /[(Na2O+K2O)/CaO]、(Zr+Nb+Ce+Y)vs(FeO*/MgO)、Nb-Y-Ce及Nb-Y-Ga判别图解(底图据Whalen et al., 1987)
Fig. 7. (10 000×Ga/Al)vs(FeO*/MgO)/Ce/[(Na2O+K2O)/CaO]、(Zr+Nb+Ce+Y)VS(FeO*/MgO)、Nb-Y-Ce and Nb-Y-Ga discrimination diagrams of Shaziling rock mass
表 3 砂子岭岩体Sr-Nd同位素数据
Table 3. Nd-Sr-Pb isotopic data for Xishan volcanic-intrusive complex rocks
样号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr 误差2σ I(Sr) εSr(0) εSr(t) fRb/Sr Sm(10-6) Nd(10-6) 147Sm/134Nd 143Nd/144Nd 误差2σ INd εNd(t) T2DM fSm/Nd D116-1 290.1 86.9 9.652 0.737 82 0.000 001 0.716 28 473.0 169.9 115.71 9.180 36.55 0.151 9 0.512 215 0.000 012 0.512 059 -7.36 1 541 -0.23 D117-1 196.1 135.2 4.188 0.726 79 0.000 009 0.717 44 316.4 186.4 49.64 10.290 49.53 0.125 7 0.512 190 0.000 070 0.512 061 -7.32 1 542 -0.36 D118-1 188.6 137.6 3.959 0.726 39 0.000 003 0.717 55 310.7 187.9 46.87 10.310 51.17 0.121 8 0.512 183 0.000 060 0.512 058 -7.38 1 546 -0.38 12D72 166.8 145.2 3.318 0.724 86 0.000 005 0.717 59 289.0 188.4 39.12 14.370 86.74 0.100 2 0.512 168 0.000 010 0.512 067 -7.27 1 537 -0.49 12D73 222.1 120.0 5.347 0.727 74 0.000 001 0.716 03 329.9 166.3 63.66 9.417 48.29 0.118 0 0.512 210 0.000 040 0.512 091 -6.80 1 498 -0.40 13D13 196.3 118.2 4.799 0.728 68 0.000 004 0.718 17 343.2 196.7 57.03 11.790 64.36 0.110 8 0.512 180 0.000 060 0.512 068 -7.25 1 535 -0.44 表 4 砂子岭岩体Hf同位素数据
Table 4. Hf isotopic data for Xishan volcanic-intrusive complex rocks
测点号 176Hf/177Hf 2σ 176Lu/177Hf 176Yb/177Hf εHf(0) Age εHf(t) 2σ TDM 2σ T2DM 2σ 12D72-01 0.282 624 0.000 013 0.000 806 0.025 352 -5.2 153 -2.0 0.5 886 38 1 326 60 12D72-02 0.282 445 0.000 019 0.000 858 0.026 673 -11.5 151 -8.3 0.7 1 137 52 1 726 83 12D72-03 0.282 630 0.000 014 0.001 153 0.036 333 -5.0 152 -1.8 0.5 885 39 1 313 62 12D72-04 0.282 463 0.000 010 0.001 318 0.042 661 -10.9 151 -7.8 0.3 1 127 28 1 691 44 12D72-05 0.282 513 0.000 019 0.001 392 0.043 024 -9.1 151 -6.0 0.7 1 057 53 1 577 84 12D72-06 0.282 816 0.000 013 0.001 095 0.034 853 1.6 154 4.8 0.4 620 36 894 57 12D72-07 0.282 744 0.000 011 0.001 654 0.052 192 -1.0 152 2.2 0.4 733 32 1 061 49 12D72-08 0.282 603 0.000 012 0.000 951 0.030 035 -6.0 155 -2.7 0.4 918 33 1 371 53 12D72-09 0.282 557 0.000 009 0.000 865 0.027 294 -7.6 152 -4.3 0.3 980 26 1 475 42 12D72-10 0.282 593 0.000 008 0.001 011 0.027 185 -6.3 151 -3.1 0.3 934 24 1 397 38 12D72-11 0.282 278 0.000 017 0.000 630 0.015 328 -17.5 153 -14.2 0.6 1 362 47 2 097 75 12D72-12 0.282 600 0.000 020 0.000 940 0.024 645 -6.1 434 3.2 0.7 922 55 1 212 88 12D72-13 0.282 600 0.000 013 0.000 853 0.021 819 -6.1 151 -2.9 0.5 921 37 1 381 59 12D72-14 0.282 607 0.000 009 0.000 991 0.026 542 -5.8 151 -2.6 0.3 914 26 1 365 42 12D72-15 0.282 557 0.000 013 0.000 650 0.016 865 -7.6 151 -4.4 0.5 975 38 1 475 60 12D72-16 0.282 507 0.000 010 0.000 899 0.023 017 -9.4 154 -6.1 0.4 1 052 28 1 588 45 12D72-17 0.282 560 0.000 012 0.000 864 0.022 860 -7.5 152 -4.3 0.4 977 34 1 469 54 12D72-18 0.282 620 0.000 011 0.000 662 0.017 171 -5.4 151 -2.1 0.4 888 32 1 335 51 12D72-19 0.282 431 0.000 015 0.000 696 0.018 064 -12.1 154 -8.8 0.5 1 152 42 1 756 67 12D72-20 0.282 672 0.000 008 0.000 835 0.021 963 -3.5 154 -0.2 0.3 818 23 1 216 37 -
[1] Anderson, J. L., Morrison, J., 1992.The Role of Anorogenic Granites in the Proterozoic Crustal Development Of North America. In: Anderson, J. L., Morrison, J., eds. Proterozoic Crustal Evolution. Elsevier, Amsterdam, 263-299. [2] Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 [3] Chen, J.F., Cuo, X.S., Tang, J.F., et al., 1999. Nd Isotopic Model Ages: Implications of the Grouth of the Continental Crust of Southeastern China. Journal of Nanjing University, 35(6): 649-658 (in Chinese with English abstract). [4] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian Posh-Orogenic Grani Toids in the Nanjing Region:Pelrological Conslraints and Geodynamic Setting. Sci. China (D), 45(8):755-768(in Chinese with English abstract). [5] Cheng, Y.Y., Wang, X.Y., Ren, J.S., et al., 1985.Iostopic Geochronology of the Jiuyishan and Baimashan Composite Cranitic Intrusions, Hunan. Geological Review, 32(5):433-439(in Chinese with English abstract). [6] Cheng, S.B., Fu, J.M., Cui, S., et al., 2018.Zircon U-Pb Chronology, Geochemistry of the Indonesian Granitic Rocks from Northern Yuechengling Batholithin Guangxi-Hunan Junction. Earth Science, 43(7): 2330-2349(in Chinese with English abstract). [7] Cheng, S.B., Fu, J.M., Xu, DM., et al., 2008.Geochemical Characteristics and Petrogenensis of Xuehuading Granitic Batholith and Its Enclaves, South China. Geotectonica et Metallogenia, 33(4): 588-597(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200904013 [8] Clemens, J.D., Holloway, J.R., White, A.J.R., 1986. Origin of An A-Type Granite: Experimental Constraints. Am. Mineral., 71:317-324. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c36ea62522e377cc9baeff814130f09b [9] Diwu, C.R, Sun, Y, Yuan, K.L., et al., 2008. Geochronology and Hf Isotopes of Detrital Zircons from Songshan Quartzite of Dengfeng inHenan Province End Its Geological Significance. Chinese Science Bulletin, 53(16):1923-1934(in Chinese). doi: 10.1360/csb2008-53-16-1923 [10] Eby, G. N., 1990. The A-Type Granitoids: A Review of their Occurrence and Chemical Characteristics and Speculations on their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z [11] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020 < 0641:csotat > 2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [12] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004a.Geochemistry and Tectonic Setting of Xishan Aluminous A-Type Granitic Volcanic-Intrusive Complex, Southern Hunan. Journal of Earth Sciences and Environment, 26(4): 15-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200404004 [13] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004b. SHRIMP U-Pb Zircon Dating of the Jiuyishan Composite Granite in Hunan and Its Geological Significance. Geotectonica et Metallogenia, 34(3):215-226(in Chinese with English abstract). doi: 10.1007-s10067-011-1805-3/ [14] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2005. Ascertainment of the Jinjiling Aluminous A-Type Granite, Hunan Province and Its Tectonic Settings. Geochimica, 34(3):215-226(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200503002 [15] Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662 [16] Guo, C. L., Zeng, L. S., Li, Q. L., et al., 2016. Hybrid Genesis of Jurassic Fayalite-Bearing Felsic Subvolcanic Rocks in South China: Inspired by Petrography, Geochronology, and Sr-Nd-O-Hf Isotopes. Lithos, 264: 175-188. doi: 10.1016/j.lithos.2016.08.020 [17] Guo, X.N., Lv, X.Q., Zhao, Z., et al., 2014.Petrological and Mineralogical Characteristics of Two Granitoid Formed during the Mesozoic Period Types of Metallogenic Nanjing Region. Acte Geologica Sinica, 88(12):2423-2436(in Chinese with English abstract). [18] Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1 [19] Hunan Bureau of Geology and Mineral Resources., 1998.Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese with English abstract). [20] Hunan Bureau of Geology and Mineral Resources., 2016.Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese with English abstract). [21] Jia, X.H., Wang, Q., Tang, J.G., 2009.A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200903017 [22] Jiang, Y. H., Jiang, S. Y., Zhao, K. D., et al., 2006. Petrogenesis of Late Jurassic Qianlishan Granites and Mafic Dykes, Southeast China: Implications for a Back-Arc Extension Setting. Geological Magazine, 143(4): 457-474. https://doi.org/10.1017/s0016756805001652 [23] King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A‐type Granites the High‐temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x [24] Landenberger, B., Collins, W. J., 1996. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1): 145-170. https://doi.org/10.1093/petrology/37.1.145 [25] Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0 [26] Li, Y., Dong, S. W., Zhang, Y.Q., et al., 2016. Episodic Mesozoic Constructional Events of Central South China: Constraints from Lines of Evidence of Superimposed Folds, Fault Kinematic Analysis, and Magma Geochronology. International Geology Review, 58(9): 1076-1107. https://doi.org/10.1080/00206814.2016.1146999 [27] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003.Subdivision, Discrimination Criteria and Genesis for A-Type Rock Suites. Geological Journal of China Universities, 9 (4):573-591 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [28] Liu, F., Li, K., Huang, G.C., et al., 2018.Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807009 [29] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [30] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [31] Loiselle, M.C., Wones, D.R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11:468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9108a701005035f04fb9accc13dc243b [32] Mason, B., Moore, C.B., 1982. Principles of Geochemistry, 4th Edition. Wiley, New York. [33] Mo, Z.S., Yi, B.D., 1980. Geology of Granite in Nanling Range.Geological Publishing House, Beijing(in Chinese). [34] Shu, L.S., 2012.An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7):1035-1053(in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 [35] Shu, L. S., Wang, B., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. doi: 10.1002/2015TC003835 [36] Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05 [37] Shu, X.J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanjing, South China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [38] Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 Kbar of a Biotite and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263. https://doi.org/10.1130/0091-7613(1992)020 < 0263:vamako > 2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0263:vamako>2.3.co;2 [39] Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086/629302 [40] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London, 1-312. [41] Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-x [42] Wang, D.Z., Zhao, G.T., Qiu, J.S., 1995. The Tectonic Constraint on the Late Mesozoic A-Type Granitoids in Eastern China. Geological Journalof Gniversities, 1(2):13-21(in Chinese with English abstract). [43] Wang, D.Z., Zhou, X.M., 2002.Origin of the Late Mesozoic Granitic Volcano Intrusive Complex Rocks and Crnst Evolution in the Southeastern China. Science Press, Beijing, 131-159 (in Chinese). [44] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [45] Whalen, J. B., Jenner, G. A., Longstaffe, F. J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, New Found Land Appalachians. Journal of Petrology, 37(6): 1463-1489. https://doi.org/10.1093/petrology/37.6.1463 [46] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [47] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [48] Zhang, B.T., Dai, Y.S., Wang, J., et al., 2001.Geology and Magma-Dynamical Features of Jinjiling Composite Granitic Batholith in the Western Nanling Region. Geological Journal of China Universities, 7 (1):50-61(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200101006 [49] Zhang, B.T., Wu, J.Q., Ling, H.F., et al., 2012.Magma Dynamical Evidence for Indosinian Emplacement of the Uranium-Bearing Jinjiling Granite Batholith and its Tectonic Implication Uranium. Geology, 28(1): 11-20(in Chinese with English abstract). [50] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Suhduction-Related Tectonic System in South China During the Early Mesozoic. Earth Science Frontiers, 16(1):234-247(in Chinese with English abstract). [51] Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 [52] Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [53] Zhou, Z. M., Ma, C. Q., Wang, L. X., et al., 2018. A Source-Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300-301: 278-290. doi: 10.1016/j.lithos.2017.11.017 [54] Zhou, Z.M., 2015. Late Mesozoic Polycyclic Tectono Magmatic Evolution and Forming Mechanism of the Geothermal Systems in South China-New Constraints from Typical Plutons in Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [55] Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3/4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005 [56] 陈江峰, 郭新生, 汤加富, 等, 1999.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学), 35(6):649-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901025350 [57] 陈培荣, 华仁民, 章邦桐, 等, 2002.南岭燕山期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学D辑, 2002, 32(4): 279-289. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200204002.htm [58] 陈廷愚, 王雪英, 任纪舜, 等, 1986.湖南九嶷山及白马山复式花岗岩体的同位素地质年代测定.地质论评, 32(5):433-439. doi: 10.3321/j.issn:0371-5736.1986.05.003 [59] 程顺波, 付建明, 徐德明, 等, 2009.湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析.大地构造与成矿学, 33(4):588-597. doi: 10.3969/j.issn.1001-1552.2009.04.013 [60] 程顺波, 付建明, 崔森, 等, 2018.湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征, 地球科学, 43(7): 2330-2349 doi: 10.3799/dqkx.2018.178 [61] 第五春荣, 孙勇, 袁洪林, 等.2008.河南登封地区篙山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义.科学通报, 53(16):1923-1934. doi: 10.3321/j.issn:0023-074X.2008.16.009 [62] 付建明, 马昌前, 谢才富, 等, 2004a.湘南西山铝质A型花岗质火山-侵入杂岩的地球化学及其形成环境.地球科学与环境学报, 26(4): 15-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb200404004 [63] 付建明, 马昌前, 谢才富, 等, 2004b.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义.大地构造与成矿学, 28(4):370-378. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200404002 [64] 付建明, 马昌前, 谢才富, 等, 2005.湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析, 地球化学, 34(3):215-226. doi: 10.3321/j.issn:0379-1726.2005.03.002 [65] 郭娜欣, 吕晓强, 赵正, 等, 2014.南岭地区中生代两种成矿花岗质岩的岩石学和矿物学特征探讨.地质学报, 88(12):2423-2436. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412020 [66] 湖南省地质矿产局, 1998.湖南省区域地质志.北京:地质出版社. [67] 湖南省地质矿产局, 2016.湖南省区域地质志.北京:地质出版社. [68] 华仁民, 陈培荣, 张文兰, 等, 2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报, 11(3): 291-304. doi: 10.3969/j.issn.1006-7493.2005.03.002 [69] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义.大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 [70] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 62(9):981- 991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [71] 刘昌实, 陈小明, 陈培荣, 等, 2003.A型岩套的分类、判别标志和成因.高校地质学报.9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 [72] 刘飞, 李堃, 黄圭成, 等, 2018.桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征, 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180 [73] 莫柱孙, 叶伯丹, 潘维祖, 等, 1980.南岭花岗岩地质学.北京:地质出版社.1-363. [74] 舒良树, 2012.华南构造演化基本特征.地质通报, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [75] 舒徐洁, 2014.华南南岭地区中生代花岗岩成因与地壳演化(博士学位论文).南京: 南京大学, 1-204. http://cdmd.cnki.com.cn/Article/CDMD-10284-1016057901.htm [76] 王德滋, 赵广涛, 邱检生, 1995.中国东部晚中生代A型花岗岩的构造制约.高校地质学报, (2): 13-21. http://www.cnki.com.cn/Article/CJFDTotal-GXDX502.001.htm [77] 王德滋, 周新民, 2002.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化.北京:科学出版社, 131-159. [78] 吴福元, 李献华, 郑永飞, 等, 2007. Lu博士学位论文Hf同位素体系及其岩石学应用.岩石学报, 23:185-220. [79] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [80] 章邦桐, 戴永善, 王驹, 等, 2001.南岭西段金鸡岭复式花岗岩基地质及岩浆动力学特征.高校地质学报, 7(1): 50-61. doi: 10.3969/j.issn.1006-7493.2001.01.006 [81] 章邦桐, 吴俊奇, 凌洪飞, 等, 2012.金鸡岭产铀花岗岩体印支期侵位的岩浆动力学证据及其构造意义.铀矿地质, 28(1): 11-20. doi: 10.3969/j.issn.1000-0658.2012.01.002 [82] 周佐民, 2015.华南晚中生代多旋回构造-岩浆演化及地热成因机制——来自广东典型岩体的制约(博士学位论文).武汉: 中国地质大学. -
dqkx-45-2-374-Table1-2.pdf