• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    面向高空间分辨率遥感影像的山区地形校正方法

    柳潇 吕新彪 吴春明 刘洪 黄瀚霄 李俊 李敏敏 毛晨 周文孝

    柳潇, 吕新彪, 吴春明, 刘洪, 黄瀚霄, 李俊, 李敏敏, 毛晨, 周文孝, 2020. 面向高空间分辨率遥感影像的山区地形校正方法. 地球科学, 45(2): 645-662. doi: 10.3799/dqkx.2019.012
    引用本文: 柳潇, 吕新彪, 吴春明, 刘洪, 黄瀚霄, 李俊, 李敏敏, 毛晨, 周文孝, 2020. 面向高空间分辨率遥感影像的山区地形校正方法. 地球科学, 45(2): 645-662. doi: 10.3799/dqkx.2019.012
    Liu Xiao, Lv Xinbiao, Wu Chunming, Liu Hong, Huang Hanxiao, Li Jun, Li Minmin, Mao Chen, Zhou Wenxiao, 2020. Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area. Earth Science, 45(2): 645-662. doi: 10.3799/dqkx.2019.012
    Citation: Liu Xiao, Lv Xinbiao, Wu Chunming, Liu Hong, Huang Hanxiao, Li Jun, Li Minmin, Mao Chen, Zhou Wenxiao, 2020. Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area. Earth Science, 45(2): 645-662. doi: 10.3799/dqkx.2019.012

    面向高空间分辨率遥感影像的山区地形校正方法

    doi: 10.3799/dqkx.2019.012
    基金项目: 

    中国地质调查局地质大调查项目 12120114018001

    国家重点研发计划项目 SQ2018YFC060162

    中国地质调查项目 DD20190540

    详细信息
      作者简介:

      柳潇(1988—), 男, 在读博士研究生, 主要从事成矿规律与成矿预测研究

      通讯作者:

      吕新彪

    • 中图分类号: P237

    Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area

    • 摘要: 山区地形复杂,遥感影像地形效应明显,易造成"同物异谱"、"同谱异物"现象,增大了遥感地质填图的难度.但前人对适用于复杂地形条件下地质填图的地形校正模型讨论较少,特别是校正高空间分辨率遥感影像时多缺少对应高精度数字高程模型,校正结果易受地形异常影响.在Richter"山区"校正模型基础上引入地形抹平模型,提出"Smoothed山区"校正方法,并与另14种地形校正模型在GF-1、GF-2、SPOT6山区影像上进行对比实验.结果显示,"Smoothed山区"校正模型在山区高空间分辨率遥感影像的校正效果明显优于其他模型,校正结果地形效应减弱,影像信息丰富不失真,并且直接获取地表反射率数据,可为进一步的遥感蚀变提取等工作提供基础数据.该模型适用于复杂地形山区的遥感地质填图.

       

    • 图  1  实验区1坡度直方图(a)与地形抹平后坡度直方图(b)

      Fig.  1.  Histogram of study surface slope (a) and histogram of surface slope by smoothed terrain in study area 1 (b)

      图  2  卫星观测图像像元的观测几何图

      Fig.  2.  Observational geometry in a pixel for satellite image

      图  3  地形校正前实验区1 GF-1 3(R), 2(G)1(B)波段组合影像(a)、实验区1地理位置示意图(b)及地形阴影图(c)

      Fig.  3.  Composite of GF-1 bands 3, 2 and 1in study area 1(before topographic correction) (a), Geographical location sketch map of study area (b), Topographic hill-shade map (c).

      图  4  地形校正前实验区2 GF-2 3(R), 2(G)1(B)波段组合影像(a)、实验区3 SPOT63(R), 2(G)1(B)波段组合影像(b)、实验区2与实验区3地理位置示意图(c)、及地形阴影图(d, e)

      Fig.  4.  Composite of GF-2 bands 3, 2 and 1 in study area 2 (before topographic correction) (a), Composite of SPOT6 bands 3, 2 and 1 in study area 1 (before topographic correction) (b), Geographical location sketch map of study area-2 and area-3 (c), Topographic hill-shade map (d, e)

      图  5  实验区1地形校正前后影像对比[GF-1 3(R), 2(G), 1(B)1%线性拉伸]

      Fig.  5.  Original and corrected images in study area 1 with different topographic correction models

      图  6  实验区2地形校正前后影像对比[GF-2 3(R), 2(G), 1(B)线性1%拉伸]

      Fig.  6.  Original and corrected images in study area 2 with different topographic correction models

      图  7  实验区3地形校正前后影像对比[SPOT6 3(R), 2(G), 1(B)1%线性拉伸]

      Fig.  7.  Original and corrected images in study area 3 with different topographic correction models

      图  8  实验区1地形校正后GF-1各波段辐射度与cosis 的回归斜率和相关系数(a、c)、地形校正后GF-1各波段辐射度四分位距减少量(b, d)

      Fig.  8.  Slope and correlation coefficient of regression between cosis and the radiance of each spectral band of GF-1 after topographic correction in study area-1(a, c); Intraclass IQR reduction of each spectral band of GF-1 after topographic correction in study area-1(b, d)

      图  9  实验区2地形校正后GF-2各波段辐射度与cosis 的回归斜率和相关系数(a、c)、地形校正后GF-1各波段辐射度四分位距减少量(b, d)

      Fig.  9.  Slope and correlation coefficient of regression between cosis and the radiance of each spectral band of GF-2 after topographic correction in study area-2(a, c); Intraclass IQR reduction of each spectral band of GF-1 after topographic correction in study area-2(b, d)

      图  10  实验区3地形校正后SPOT6各波段辐射度与cosis 的回归斜率和相关系数(a、c)、地形校正后SPOT6各波段辐射度四分位距减少量(b, d)

      Fig.  10.  Slope and correlation coefficient of regression between cosis and the radiance of each spectral band of SPOT6 after topographic correction in study area-3(a, c); Intraclass IQR reduction of each spectral band of SPOT6 after topographic correction in study area-3(b, d)

      图  11  实验区1内4个岩体地形校正后GF-1各波段辐射度与cosis 的回归斜率和相关系数

      Fig.  11.  Slope and correlation coefficient of regression between cosis and the radiance of each spectral band of GF-1 after topographic correctionfor the 4 rocks in study area-1

      图  13  实验区1内4个岩体地形校正后GF-1各波段辐射度与cosis 的回归斜率和相关系数(a、b、c、d)、地形校正后GF-1各波段辐射度四分位距减少量(e、f、g、h)

      Fig.  13.  Slope and correlation coefficient of regression between cosis and the radiance of each spectral band of GF-1 after topographic correction Image for the4 rocks in study area-1 (a, b, c, d); Intraclass IQR reduction of each spectral band of GF-1 after topographic correction for the 4 rocks in study area-1 (e, f, g, h)

      图  12  实验区1内4个岩体地形校正后GF-1各波段辐射度四分位距减少量

      Fig.  12.  Intraclass IQR reduction of each spectral band of GF-1 after topographic correction for the 4 rocks in study area-1

      图  14  实验区1“Smoothed山区”校正前后影像对比

      Fig.  14.  Image of the study area 1 before and after "Smooth Mountains" correction models

      表  1  地形校正模型及其算法表达式

      Table  1.   algorithm Expressions of topographic correction methods

      校正模型 算法公式 参考文献 校正模型 算法公式 参考文献
      Teillet-回归 $ {L}_{\text{corr}, \mathtt{λ }}={{L}_{\lambda }}-a\cdot \text{cos}{{i}_{s}}-b+\overline{{{L}_{\mathtt{λ }}}}$ Teillet et al.(1982) Cosine ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{\text{cos}{{\theta }_{z}}}{\text{cos}{{i}_{s}}}$ Teillet et al.(1982)
      C ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{{cos}{{\theta }_{z}}+{{C}_{\mathtt{λ }}}}{\text{cos}{{i}_{s}}+{{C}_{\mathtt{λ }}}}$ Teillet et al.(1982) SCOS ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{\text{cos}{{\theta }_{z}}}{\text{cos}i{{'}_{s}}}$ 姜亢等(2014)
      sCC3 ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{{cos}{{\theta }_{z}}+{{C}_{\mathtt{λ }}}}{\text{cos}i{{'}_{s}}+{{C}_{\mathtt{λ }}}}$ Riano et al.(2003) Minnaert ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{\text{cos}\alpha }{\text{co}{{\text{s}}^{\text{k}}}{{i}_{\text{s}}}\cdot \text{co}{{\text{s}}^{\text{k}}}\alpha }$ Smith et al.(1980)
      SCS-C ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\mathtt{λ }}}\frac{{cos}{{\theta }_{z}}cos\mathtt{α}+{{C}_{\mathtt{λ }}}}{\text{cos}{{i}_{s}}+{{C}_{\mathtt{λ }}}}$ Scott et al. (2005) Minnaert-SCS ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}\frac{\text{co}{{\text{s}}^{\text{k}}}{{\theta }_{z}}\text{cos}\alpha }{\text{co}{{\text{s}}^{\text{k}}}{{i}_{s}}}$ Vincini et al.(2002)
      Smoothed Gamma ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\mathtt{λ }}}\frac{{cos}{{\theta }_{z}}+\text{cos}{{\theta }_{v}}}{\text{cos}i{{'}_{s}}+\text{cos}i{{'}_{v}}}$ 本文
      二阶段校正 1步:${{L}_{\text{first}}}={{L}_{\lambda }}+{{L}_{\lambda }}\left(\frac{{{\mu }_{k}}-{{X}_{ij}}}{{{\mu }_{k}}} \right)$;2步:${{L}_{\text{corr, }\mathtt{λ }}}={{L}_{\lambda }}+{{L}_{\lambda }}\left(\frac{{{\mu }_{k}}-{{X}_{ij}}}{{{\mu }_{k}}} \right)\begin{array}{*{35}{l}} {{C}_{\text{2sn}}} \\ \end{array}$ Civco(1989)
      坡度匹配 1步:${{L}_{\text{first}}}={{L}_{\lambda }}+\left({{L}_{\text{max}, \mathtt{λ }}}-{{L}_{\text{min}, \mathtt{λ }}} \right)\left(\frac{{{\mu }_{w}}-{{X}_{ij}}}{{{\mu }_{w}}} \right)$; 2步:${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\lambda }}+\left({{L}_{\text{max}, \mathtt{λ }}}-{{L}_{\text{min}, \mathtt{λ }}} \right)\left(\frac{{{\mu }_{w}}-{{X}_{ij}}}{{{\mu }_{w}}} \right){{C}_{2\text{sm}}}$ Nichol et al. (2006)
      3因子+C ${{L}_{\text{corr}, \mathtt{λ }}}={{L}_{\mathtt{λ }}}\left\{ \frac{\text{cos}{{\theta }_{z}}+\frac{1-T\left(\lambda, \theta \right)}{2T\left(\lambda, \theta \right)}+{{C}_{\mathtt{λ }}}}{\left(1+\left(1-{{V}_{\text{sky}}}\left(x, y \right) \right)\mathtt{ρ}_{\text{terrain}}^{\left(i-1 \right)} \right)\left\{ \Phi \left(x, y \right)\text{cos}{{i}_{\text{s}}}+\frac{1-T\left(\lambda, \theta \right)}{2}\left[ \text{cos}{{i}_{s}}+\left(1/T\left(\lambda, \theta \right)-\text{cos}{{\theta }_{z}} \right){{V}_{\text{sky}}}\left(x, y \right) \right]+{{C}_{\mathtt{λ }}} \right\}} \right\}$ Zhang and Gao(2011), 张伟阁等(2015)
      考虑地表BRDF校正 $ {{\mathtt{ρ}}_{\text{corr}, \mathtt{λ }}}=\frac{\pi \cdot\left[L_{\lambda}-L_\text{p}\right] / \tau_\text{u p}}{\mathtt{ɸ}(x, y) \frac{\left(E_\text{d i r}+E_\text{d i l} \tau_\text{d o m n}\right) \cos i_{s}}{\cos \theta_{s}} \frac{\Omega\left(i_{s}, i_{v}, \varphi\right)}{\Omega\left(\theta_{s}, \theta_{v}, \varphi\right)}+\frac{\left[E_\text{dif}\left(1-\mathtt{ɸ}(x, y)(x, y) \tau_\text{d o w n}\right) V_\text{s ky}(x, y)+E_\text{iter}^{(i)}\right]}{\pi \Omega\left(\theta_{s}, \theta_{v}, \varphi\right)} \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \Omega\left(i_{s}, i_{v}, \varphi\right) \text{d} \Omega_{i}}$ 闻建光等(2007); 蒋璐媛等(2015)
      “山区”校正 ${{\mathtt{ρ}}_{\text{corr}, \mathtt{λ }}}=\frac{\mathtt{π}\left[ {{\text{d}}^{2}}{{L}_{\lambda }}-{{L}_{\text{min}, \mathtt{λ }}} \right]}{{{\mathtt{τ }}_{\text{up}}}\left\{ \Phi \left(x, y \right){{E}_{\text{dir}}}\text{cos}{{i}_{s}}+{{E}_{\text{dif}}}\left[ \Phi \left(x, y \right){{\mathtt{τ }}_{\text{down}}}\frac{\text{cos}{{i}_{s}}}{\text{cos}{{\theta }_{z}}}+\left(1-\Phi \left(x, y \right){{\mathtt{τ }}_{\text{down}}} \right){{V}_{\text{sky}}}\left(x, y \right) \right]+E_{\text{iter}}^{\left(i \right)} \right\}} $ Richter(1998); 宋丽瑶等(2017)
      下载: 导出CSV
    • [1] Blesius, L., Weirich, F., 2005. The Use of the Minnaert Correction for Land-Cover Classification in Mountainous Terrain. International Journal of Remote Sensing, 26(17):3831-3851. https://doi.org/10.1080/01431160500104194
      [2] Civco, D. L., 1989. Topographic Normalization of Landsat Thematic Mapper Digital Imagery. Photogrammetric Engineering & Remote Sensing, 55(9):1303-1309.
      [3] Cooley, T., Anderson, G. P., Felde, G. W., et al., 2002. FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, Its Application and Validation. IEEE international Geoscience and Remote SensingSymposium, 3:1414-1418. https://doi.org/10.1109/IGARSS.2002.1026134
      [4] Ding, Y. F., You, H. J., Zhang, H., et al., 2018. Topographic Correction Method for High-Resolution Remote Sensing Images. Journal of Being University of Aeronautics and Astronautics, 44(1): 27-35(in Chinese with English abstract).
      [5] Duan, S. B., Yan, G. J., 2007. A Review of Models for TopoGraphic Correction of Remotely Sensed Images in Mountainous Area. Journal of Beijing Normal University: Natural Science, 43(3): 362-366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200703025
      [6] Duan, S. B., Yan, J. G., Mu, X. H., et al., 2007. DEM Based Remote Sensed Imagery Topographic Correction Method in Mountainous Areas. Geography and Geo-Information Science, 23(6): 18-22 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=750d09b753115dcf77498a41771ca260
      [7] Dymond, J. R., Shepherd, J. D., 1999. Correction of the Topographic Effect in Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2618-2619. https://doi.org/10.1109/36.789656
      [8] Gao, Y. N., Zhang, W. C., 2008a. Comparison Test and Research Progress of Topographic Correction on Remotely Sensed Data. Geographical Research, 27(2): 467-477(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200802024
      [9] Gao, Y. N., Zhang, W. C., 2008b. Simplification and Modification of a Physical Topographic Correction Algorithm for Remotely Sensed Data. Acta Geodaetica et Cartographica Sinica, 37(1): 89-94(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb200801016
      [10] Gao, Y.N., Zhang, W.C., 2009. A Simple Empirical Topographic Correction Method for ETM Plus Imagery. International Journal of Remote Sensing, 30(9): 2259-2275 (in Chinese with English abstract). doi: 10.1080/01431160802549336
      [11] Gou, Z. B., Liu, H., Li, J., et al., 2018. The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane. Earth Science, 43(8):2780-2794. (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808018
      [12] Gu, D. G., Gillespie, A., 1998. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun-Canopy-Sensor Geometry. Remote Sensing of Environment, 64(2): 166-175. doi: 10.1016/S0034-4257(97)00177-6
      [13] He, K. T., Gan, P. P., Wang, Y. J., 2009. The Extraction of Geological Micro-Structure and Altered Rock Information with High-Resolution Satellite Images in a Small Range. Remote Sensing For Land and Resources, 21(1):97-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200901023
      [14] Huang, W., Zhang, L. P., Li, X. P., 2005. An Improved Topographic Correction Approach for Satellite Image. Journal of Image and Graphics, 10(9): 1124-1128(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtxtxxb-a200509009
      [15] Ion, S., María, G. A., Jesús, Á., M., 2016.Multi-Criteria Evaluation of Topographic Correction Methods. Remote Sensing of Environment, 184: 247-262. https://doi.org/10.1016/j.rse.2016.07.002
      [16] Jiang, K., Hu, C. M., Yu, K., et al., 2014. Landsat TM/ETM+Topographic Correction Method Based on Smoothed Terrain and Semi-Empirical Model. Journal of Remote Sensing, 18(2): 287-306 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb201402004
      [17] Jiang, L. Y., Xiao, P. F., Feng, X. Z., et al., 2015. Calculation of Snow Reflectance from GF-1 Satellite Image in Rugged Mountain Areas. Journal of Nanjing University(Natural Sciences), 51(5):944-954 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201505005
      [18] Kotchenova, S. Y., Vermote, E. F., 2007. Validation of a Vector Version of the 6S Radiative Transfer Code for Atmospheric Correction of Satellite Data Part II Homogeneous Lambertian and Anisotropic Surfaces. Applied Optics, 46(20): 4455. https://doi.org/10.1364/ao.46.004455
      [19] Law, K. H., Nichol, J., 2004. Topographic Correction for Differential Illumination Effects on iKONOS Satellite Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci., 641-646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211211548
      [20] Li, A. N., Wang, Q. F., Bian, J. H., et al., 2015. An Improved Physics-Based Model for Topographic Correction of Landsat TM Images. Remote Sensing, 7(5): 6296-6319. https://doi.org/10.3390/rs70506296
      [21] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700. (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808011
      [22] Liu, H., Zhang, L. K., Huang, H. X., et al., 2018. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper Deposit from the Western Gangdise. Earth Science.(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906014.htm
      [23] Minnaert, M., 1941. The Reciprocity Principle in Lunar Photometry. The Astrophysical Journal, 93: 403. https://doi.org/10.1086/144279
      [24] Nichol, J., Hang, L. K., Sing, W. M., 2006. Empirical Correction of Low Sun Angle Images in Steeply Sloping Terrain: A Slope-Matching Technique. International Journal of Remote Sensing, 27(3): 629-635. https://doi.org/10.1080/02781070500293414
      [25] Oke, T.R., 1987. Boundary Layer Climates. Routledge, London and New York, 405-410.
      [26] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1):1-28.(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003
      [27] Proy, C., Tanre, D., Deschamps, P., 1989. Evaluation of Topographic Effects in Remotely Sensed Data. Remote Sensing of Environment, 30(1): 21-32. https://doi.org/10.1016/0034-4257(89)90044-8
      [28] Pu, R. L., Gong, P., 2000. Hyperspectral Remote Sensing and Its Application. Higher Education Press, Beijing, 47-80.
      [29] Riano, D., Chuvieco, E., Salas, J., et al., 2003. Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061. https://doi.org/10.1109/tgrs.2003.811693
      [30] Richter, R., 1998. Correction of Satellite Imagery over Mountainous Terrain. Applied Optics, 37(18): 4004. https://doi.org/10.1364/ao.37.004004
      [31] Richter, R., Kellenberger, T., Kaufmann, H., 2009. Comparison of Topographic Correction Methods. Remote Sensing, 1(3): 184-196. https://doi.org/10.3390/rs1030184
      [32] Richter, R., Schläpfer, D., 2002. Geo-Atmospheric Processing of Airborne Imaging Spectrometry Data. Part 2: Atmospheric/topographic Correction. International Journal of Remote Sensing, 23(13): 2631-2649. https://doi.org/10.1080/01431160110115834
      [33] Sandmeier, S., Itten, K. I., 1997. A Physically-Based Model to Correct Atmospheric and Illumination Effects in Optical Satellite Data of Rugged Terrain. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 708-717. https://doi.org/10.1109/36.581991
      [34] Scott, A. S., Derek, R., Craig, A. C., 2005. SCS +C : A modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Transaction on Geoscience and Remote Sensing, 43(9):2148-2159. https://doi.org/10.1109/TGRS.2005.852480
      [35] Smith, J. A., Lin, T. L., Ranson, K. J., 1980. The Lambertian Assumption and Landsat Data. Photogrammetric Engineering & Remote Sensing, 46(9):1183-1189. http://www.cabdirect.org/abstracts/19800667141.html
      [36] Song, L. Y., Zhang, H., Lin, F., 2017. Impact and Analysis of Shadow Area Extracting to the Terrain Radiation Correction for High Resolution Image. Bulletin of Surveying and Mapping, (3):29-33 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/chtb201703008
      [37] Szantoi, Z., Simonetti, D., 2013. Fast and Robust Topographic Correction Method for Medium Resolution Satellite Imagery Using a Stratified Approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4): 1921-1933. https://doi.org/10.1109/jstars.2012.2229260
      [38] Teillet, P. M., Guindon, B., Goodenough, D. G., 1982. On the Slope-Aspect Correction of Multispectral Scanner Data. Canadian Journal of Remote Sensing, 8(2): 84-106. https://doi.org/10.1080/07038992.1982.10855028
      [39] Tokola, T., Sarkeala, J., Van Der Linden, M., 2001. Use of Topographic Correction in Landsat TM-Based Forest Interpretation in Nepal. International Journal of Remote Sensing, 22(4): 551-563. https://doi.org/10.1080/01431160050505856
      [40] Tong, Q. X., Zhang, B., Zheng, L. F., 2006. Hyperspectral Remote Sensing and Its Multidisciplinary Applications. Publishing House of Electronics Industry, Beijing, 153-177.
      [41] Vincini, M., Reeder, D., Frazzi, E., 2002. An Empirical Topographic Normalization Method for Forest TM Data. IEEE Transactions on Geoscience and Remote Sensing, 4(4): 2091-2093. https://doi.org/10.1109/IGARSS.2002.1026454
      [42] Wang, J. G., Feng, X. Z., Xiao, P. F., et al., 2018. Snow Grain-Size Estimation over Mountainous Areas from MODIS Imagery. IEEE Geoscience and Remote Sensing Letters, 15(1): 97-101. doi: 10.1109/LGRS.2017.2775207
      [43] Wang, R. S., Xiong, S. Q., Nie, H. F., et al., 2001. Remote Sensing Technology and its Application in Geological Exploration. Acta Geologica Sinica. 85(11):1699-1744 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a306b0564393f5bccaf8dcf876afb8ca
      [44] Wang, Z. H., Lin, W. L., Ding, R. X., 2017. Quantitative Measurement of Bedding Orientation Using Remote Sensing Data: Yili Basin, Northwest China. Journal of Earth Science, 29(3): 689-694. https://doi.org/10.1007/s12583-017-0943-1
      [45] Wen, J. G., Liu, Q. H., Xiao, Q., 2007. Assessment of Different Topographic Correction Methods and Validation. Journal of Beijing Normal University: Natural Science, 43(3):255-263 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200703007
      [46] Xu, C. K., Liu, S. B., Zhao, Z. J., et al., 2012. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai. Acta Geologica Sinica. 86(10):1621-1678 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201210006
      [47] Zang, X., Yang, B., Qi, J. W., et al., 2015. An Improved Topographic Correction Method of Remote-Sensing Images. Bulletin of Surveying and Mapping, (1):75-80 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/chtb201501015
      [48] Zhang, K., Ma, S. B., Li, Z. R., et al., 2016.Geological Interpretation of GF-1 Satellite Imagery. Remote Sensing Information, (1): 115-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXX201601019.htm
      [49] Zhang, W. C., Gao, Y. N., 2011. Topographic Correction Algorithm for Remotely Sensed Data Accounting for Indirect Irradiance. International Journal of Remote Sensing, 32(7): 1807-1824. https://doi.org/10.1080/01431161003623441
      [50] Zhang, W.G., Yang, L., Cao, L.Z, et al., 2015. An Improved Topographic Correction Based on the Three Factor + C Model. Remote Sensing for Land and Resources, 27(2):36-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201502007
      [51] Zhang, X.T., Yang, S.D., Yang, Z.J., 2007. The Regional Geology of Qinhai Province. Geological Publishing House, Beijing, 7-170.
      [52] 丁一帆, 尤红建, 张浩, 等, 2018.面向高分辨率遥感影像的地形辐射校正方法.北京航空航天大学学报, 44(1):27-35. doi: 10.3969/j.issn.1005-4561.2018.01.009
      [53] 段四波, 闫广建, 2007.山区遥感图像地形校正模型研究综述.北京师范大学学报:自然科学版, 43(3):362-366. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb200703025
      [54] 段四波, 闫广建, 穆西晗, 等, 2007.基于DEM的山区遥感图像地形校正方法.地理与地理信息科学, 23(6):18-22. doi: 10.3969/j.issn.1672-0504.2007.06.004
      [55] 高永年, 张万昌, 2008a.遥感影像地形校正研究进展及其比较实验地理研究.地理研究, 27(2):467-477.
      [56] 高永年, 张万昌, 2008b.遥感地形校正物理模型的简化与改进.测绘学报, 37(1):89-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb200801016
      [57] 苟正彬, 刘函, 李俊, 等, 2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学, 43(8):2780-2794. doi: 10.3799/dqkx.2018.153
      [58] 何凯涛, 甘甫平, 王永江, 2009.高空间分辨率卫星遥感地质微构造及蚀变信息识别.国土资源遥感, 21(1):97-99. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg200901023
      [59] 黄微, 张良培, 李平湘, 2005.一种改进的卫星影像地形校正算法.中国图象图形学报, 10(9):1124-1128. doi: 10.3969/j.issn.1006-8961.2005.09.009
      [60] 姜亢, 胡昌苗, 于凯, 等, 2014.地形抹平与半经验模型的Landsat TM /ETM+地形校正方法.遥感学报, 18(2):287-306.
      [61] 蒋璐媛, 肖鹏峰, 冯学智, 等, 2015.山区复杂地形条件下GF-1卫星遥感雪面反射率计算.南京大学学报(自然科学), 51(5):944-954. http://d.old.wanfangdata.com.cn/Periodical/njdxxb201505005
      [62] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. doi: 10.3799/dqkx.2018.170
      [63] 刘洪, 张林奎, 黄瀚霄, 等, 2018.冈底斯西段鲁尔玛斑岩型铜矿成矿流体性质及演化.地球科学. doi: 10.3799/dqkx.2018.370
      [64] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001
      [65] 浦瑞良, 宫鹏, 2000.高光谱遥感及其应用.北京:高等教育出版社, 47-80.
      [66] 宋丽瑶, 张浩, 林峰, 2017.阴影区提取对高分辨率影像地形辐射校正的影响与分析.测绘通报, (3):29-33. http://d.old.wanfangdata.com.cn/Periodical/chtb201703008
      [67] 童庆禧, 张兵, 郑兰芬, 2006.高光谱遥感的多学科应用.北京:电子工业出版社, 153-177.
      [68] 王润生, 熊盛青, 聂洪峰, 等, 2011.遥感地质勘查技术与应用研究.地质学报, 85(11):1699-1744. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201111002
      [69] 闻建光, 柳钦火, 肖青, 2007.基于模拟数据分析地形校正模型效果及检验.北京师范大学学报:自然科学版, 43(3):255-263. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb200703007
      [70] 许长坤, 刘世宝, 赵子基, 等, 2012.青海省东昆仑成矿带铁矿成矿规律与找矿方向研究.地质学报, 86(10):1621-1678. doi: 10.3969/j.issn.0001-5717.2012.10.006
      [71] 臧熹, 杨博, 齐建伟, 等, 2015.一种改进的遥感影像地形校正方.测绘通报, (1):75-80. http://d.old.wanfangdata.com.cn/Periodical/chtb201501015
      [72] 张焜, 马世斌, 李宗仁, 等, 2016.高分一号卫星数据遥感地质解译.遥感信息, (1):115-123. doi: 10.3969/j.issn.1000-3177.2016.01.019
      [73] 张伟阁, 杨辽, 曹良中, 等, 2015.基于Three Factor + C模型改进的地形辐射校正方法.国土资源遥感, 27(2):36-43. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201502007
      [74] 张雪亭, 杨生德, 杨占君, 2007.青海省区域地质概论.北京:地质出版社, 7-170.
    • 加载中
    图(14) / 表(1)
    计量
    • 文章访问数:  3042
    • HTML全文浏览量:  882
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-22
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回