Control Factors and Distribution of Chlorite-Cemented Facies in the Xujiahe Sandstone, Yuanba and Tongnanba Area
-
摘要: 川东北元坝-通南巴地区须家河组砂岩普遍超致密,仅绿泥石环边胶结物含量大于1.5%的砂岩(即绿泥石膜胶结相砂岩)物性较好.综合运用岩石学和测井地质学的方法,基于薄片、扫描电镜及粒度分析等资料分析绿泥石膜胶结相砂岩的岩石组构特征和形成控制因素,运用薄片鉴定、测录井等资料,明确绿泥石膜胶结相砂岩的测井响应特征并明确其发育分布规律.结果表明,绿泥石膜的发育具有较强的相控性和岩石组构的选择性,即发育于水下分流河道原始结构较好的砂岩.该类砂岩结构成熟度和成分成熟度较高,通常具有较低的杂基和塑性岩屑含量,且含有适量的火山岩岩屑(2%~6%).较低的杂基和塑性岩屑含量为绿泥石沉淀提供所需的孔隙空间,火山岩岩屑为绿泥石膜沉淀提供物质来源.Abstract: The sandstones reservoirs of the Xujiahe Formation in the Yuanba and Tongnanba area, Sichuan Basin have poor qualities, and only those with chlorite rim, which has a content of more than 1.5% (i.e. chlorite-cemented facies) show a higher porosity. Based on lithology and well-logging geology, composition and control factors of formation of sandstones with chloritecemented facies are analysed with thin section analysis, scanning electron microscopic analysis and grain size analysis, well log responses and distribution of sandstones with chlorite-cemented facies are identified with thin section and well logging data. The formation of chlorite rim has strong environmental specificity and sandstone composition selectivity, that is, it develops in the sandstones with good original porosity in the subaqueous distributary channel. Sandstone with chlorite-cemented facies has higher texture maturity and composition maturity, with lower contents of matrix and plastic rock fragment, and it also has a certain amount of volcanic rock fragments (2%~6%). Lower contents of matrix and plastic rock fragment provided space for precipitation of chlorite, and volcanic rock fragments provided source of chlorite precipitation.
-
Key words:
- chlorite rim /
- diagenesis /
- tight-gas sandstone /
- Xujiahe Formation /
- northeastern Sichuan Basin
-
四川盆地上三叠统须家河组是中国致密砂岩气重点勘探层系之一(刘德良等,2000;魏国齐等,2005;吴世祥等,2006).元坝-通南巴地区位于四川盆地东北部,须家河组天然气源自同层系烃源岩,有机质丰度高,生气强度大,具有形成陆相大型气田的气源条件(郭彤楼,2013).然而,须家河组储层致密化程度极高(朱如凯等,2009;盘昌林,2011),孔隙度普遍小于5%,渗透率普遍小于0.05 mD,属于超致密砂岩,虽钻遇多口高产气井,但难以稳产.国内外致密砂岩气勘探经验表明,有效孔隙发育带是天然气富集成藏的重要控制因素(Sneider et al., 1983;Shanley et al., 2004).该地区仅绿泥石膜胶结相砂岩物性较好,能形成孔隙度大于5%的相对优质储层(黄思静等,2004;孙治雷等,2008).因此,查明绿泥石膜胶结相砂岩的发育分布及其形成控制因素成为预测研究区相对优质储层发育分布关键.
自生绿泥石是碎屑岩储层中重要的成岩矿物之一,尤其在高孔隙度值砂岩层段中较为常见(Ehrenberg,1993;Hillier et al., 1996;Bloch et al., 2002;Billault et al., 2003),因此该产状的自生绿泥石受到众多学者的关注和研究,集中表现为绿泥石膜形成时间、物质来源、成因及其对储层物性的影响等方面的研究.然而,有关绿泥石膜对储层物性的影响仍存在不同的认识:(1)绿泥石膜包裹石英颗粒表面,阻止自生石英在石英颗粒表面成核,进而抑制石英次生加大,从而保留原生孔隙(Ehrenberg,1993;黄思静等,2004);(2)绿泥石膜通过占据孔隙空间来抑制石英次生加大(Billault et al., 2003);(3)绿泥石膜不能有效地阻止石英胶结作用的进行(姚泾利等,2011);(4)绿泥石膜厚度逐渐增加,能够增强岩石的机械强度和抗压实能力,平衡上覆载荷,保存原生孔隙,同时保存骨架颗粒溶蚀形成的次生孔隙(黄思静等,2004;刘金库等,2009);(5)绿泥石膜并不能够提高岩石的抗压实能力(田建锋等,2008;姚泾利等,2011;杨巍等,2012);(6)绿泥石膜能够缩小孔隙,堵塞喉道,降低原生孔隙度,同时使渗透性变差(钟广法等,1996; 曾伟,1996;刘林玉等,1998).
成岩相是沉积物在成岩与构造等作用下,经历一定成岩作用和演化阶段的产物,是决定优质储层分布的核心要素(邹才能等,2008).而成岩相研究的关键是利用测井资料纵向上的连续性和高分辨率,根据不同成岩相在测井资料的响应特征(Grigsby and Langford, 1996;刘洪平等,2008),分析取心段以外井段的成岩相类型,从而了解优质储层的分布规律(邹才能等,2008;张响响等,2011).
1. 地质背景
元坝-通南巴地区位于四川盆地东北部,北邻米仓山-大巴山前陆冲断带,西为龙门山前陆盆地.受到龙门山和米仓山北西-南东向挤压,形成5个次级构造单元,分别为:九龙山背斜构造带、池溪凹陷、通南巴背斜构造带、通江凹陷和苍溪-巴中低缓构造带(图 1)(郭彤楼,2013).研究区须家河组自下至上可划分须一段至须五段(T3x1~T3x5)5个岩性段,其中须一段、须三段、须五段以泥岩为主,主要发育湖泊相沉积;须二段、须四段以砂岩为主,主要发育辫状河三角洲相沉积,是主要的储层发育段(张健等,2006;朱如凯等,2009).据前人埋藏史、热史研究表明,研究区须家河组在白垩纪末期达到最大埋深,深度在5 800~6 300 m,镜质体反射率在1.8%~2.2%,地温高达190 ℃以上(李军等,2012;张俊武等,2015).研究区须家河组砂岩以细-中粒为主,结构成熟度中等,成分成熟度较低,岩石类型以岩屑砂岩和长石岩屑砂岩为主,发育少量岩屑石英砂岩、石英砂岩和岩屑长石砂岩(王威和岳全玲,2012;Zhang et al., 2016).
2. 绿泥石膜胶结相砂岩划分及特征
2.1 绿泥石膜相砂岩划分标准
在研究过程中发现,大部分实测物性较高的样品都发育一定量(含量大于1.5%)的绿泥石环边胶结物(图 2),且在显微镜下可以观察到残余原生孔隙和次生孔隙.该类砂岩孔隙度明显优于其他砂岩,普遍大于5%,渗透率分布区间较宽,介于0.01~1.00 mD,但主要分布范围为0.01~0.10 mD(图 2).因此我们将以绿泥石的环边胶结为特征且其含量大于1.5%的砂岩成岩相称为绿泥石膜胶结相.
2.2 岩石类型与岩石组构特征
绿泥石膜胶结相主要形成于长石岩屑砂岩中,岩屑砂岩中也可发育(图 3a),平均骨架颗粒组分为Q53.9F13.4R32.7.研究区砂岩岩屑含量高,类型丰富,根据岩屑对成岩作用和孔隙演化的影响,可划分为3种类型:塑性岩屑、脆性岩屑和碳酸盐岩岩屑.从岩屑类型三角图可以看出(图 3b),与非绿泥石膜胶结相砂岩相比,绿泥石膜胶结相砂岩中塑性岩屑和刚性岩屑含量都相对略低,碳酸盐岩岩屑几乎不发育.
图 3 元坝-通南巴地区须家河组砂岩碎屑组分含量与岩屑类型三角图(分类方案据Folk,1974)a.碎屑组分含量三角图;b.岩屑类型三角图;1.石英砂岩;2.长石石英砂岩;3.岩屑石英砂岩;4.长石砂岩;5.岩屑长石砂岩;6.长石岩屑砂岩;7.岩屑砂岩Fig. 3. Ternary diagram illustrating the detrital composition and the rock fragments composition of the Xujiahe sandstones, Yuanba and Tongnanba area2.3 绿泥石膜产状特征
元坝-通南巴地区须家河组砂岩中的自生绿泥石的产状主要为颗粒包膜和孔隙衬里(孙小龙等,2017),统称为绿泥石膜.基于铸体薄片和扫描电镜观察发现,绿泥石膜发育的砂岩颗粒通常为点-线接触,且接触部位不发育或发育极少量绿泥石膜(图 4a, 4b).绿泥石膜的厚度多为10~15 μm,含量为1%~4%,连续定向且近于等厚地环绕在颗粒表面(图 4c).扫描电镜下可观察到绿泥石膜常具有双层结构,里层绿泥石(Ⅰ期)紧贴颗粒边缘生长,相对致密,晶体较小,形态较差;外层绿泥石(Ⅱ期)呈叶片状垂直颗粒边缘生长,晶体较大,晶形较好(图 4d~4f).还可以观察到部分绿泥石膜保留的残余原生粒间孔被自生石英充填(图 4a, 4b)
图 4 元坝-通南巴地区须家河组绿泥石膜镜下特征照片a.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,单偏光,×100,颗粒接触部位不发育或发育极少量绿泥石膜(白色箭头),绿泥石膜呈叶片状围绕颗粒边缘生长,可见残余原生粒间孔;b.元陆175井,4 602.3 m,须四上亚段,中粒长石岩屑砂岩,单偏光,×100,可见火山岩岩屑;c.元陆175井,4 602.6 m,须四上亚段,中粒长石岩屑砂岩,扫描电镜,×2 400,绿泥石膜围绕石英颗粒生长;d.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,单偏光,×100,绿泥石膜呈叶片状围绕颗粒边缘生长,可见两期绿泥石膜;e.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,×6 000,两期绿泥石膜;f.马201井,3 374.92 m,须二上亚段,中粒长石岩屑砂岩,×6 000,两期绿泥石膜Fig. 4. Thin section and SEM images showing the characteristics of chlorite rim in the Xujiahe sandstones, Yuanba and Tongnanba area3. 绿泥石膜的形成机理及其对储层物性的影响
3.1 绿泥石膜的形成时间
基于岩石中各组分之间的交接、切割关系可以判断绿泥石膜的相对形成时间.镜下观察发现,绿泥石膜近于等厚包裹石英颗粒,在颗粒接触处不发育或仅极少量发育,保存了部分原生残余粒间孔,这表明绿泥石膜形成于早期机械压实作用之后,完全压实之前(Anjos et al., 2003; Billault et al., 2003;黄思静等,2004),对应早成岩B期阶段.薄片镜下可观察到绿泥石膜环绕石英颗粒生长,与石英颗粒之间没有其他胶结物;而相邻未发育绿泥石膜的砂岩中,最早期的胶结物为石英加大边,因此绿泥石膜形成于石英加大边之前.研究区石英加大边中的流体包裹体均一温度测定表明(图 5),石英Ⅰ期加大最早形成于70~90 ℃.根据上述分析,绿泥石膜开始形成于早成岩B期,地层温度小于70 ℃时.
3.2 绿泥石膜的物质来源
已有研究表明,自生绿泥石的形成主要存在3种方式:(1)非粘土矿物(黑云母、角闪石及火山岩岩屑等)在富铁、镁离子的孔隙水中被绿泥石交代;(2)早期粘土矿物,如蒙脱石、富铁粘土或高岭石,在富铁、镁环境中转化为绿泥石;(3)富铁、镁离子的孔隙水新生沉淀形成绿泥石(Anjos et al., 2003;Berger et al., 2009).研究区须家河组砂岩中极少见黑云母和火山岩岩屑蚀变为绿泥石,同时扫描电镜下观察到自生绿泥石结晶形态较好(图 4d~4f),并无先驱粘土矿物转化后遗留的蜂巢状形态(Ehrenberg,1993;Hillier et al., 1996),且并未发现绿泥石/蒙脱石或蒙脱石/绿泥石的间层矿物,因此研究区自生绿泥石是由富铁、镁离子的孔隙水新生沉淀形成的.
自生绿泥石的形成需要大量的铁、镁离子,其主要有3个来源:(1)中-基性火山岩岩屑水解(Anjos et al., 2003;Berger et al., 2009);(2)黑云母等暗色铁镁矿物水解(Grigsby,2001);(3)富铁、镁河流注入产生絮凝沉淀,提供物质来源(Ehrenberg,1993; Bloch et al., 2002).
研究区须家河组砂岩中黑云母等暗色铁镁矿物不发育,平均含量仅为0.6%,故铁、镁离子并不是由黑云母水解提供.四川盆地须家河时期湖盆是淡水-半咸水,因此在河流进入湖泊时,河流中溶解的铁、镁离子不会大量产生絮凝沉淀.通过对比绿泥石膜胶结相和非绿泥石膜胶结相砂岩的岩石组分(图 6)可以看出,绿泥石膜胶结相砂岩中通常都含有一定量的中-基性玄武质火山岩岩屑,而非绿泥石膜胶结相砂岩中火山岩岩屑含量极低或不发育.因此推测研究区绿泥石膜胶结相砂岩中绿泥石膜形成所需的铁、镁离子来自于中-基性火山岩岩屑水解(式1).
$$ 中基性火山物质 +\rm{CO_{2}+H_{2}O}→ 绿泥石 +\rm{SiO_{2}+CaCO_{3}}, $$ (1) 3.3 绿泥石膜的形成控制因素
(1)沉积环境
国外学者认为绿泥石膜主要形成于海水影响下的近岸三角洲环境,其次为陆相河流环境(Baker et al., 2000;Berger et al., 2009; Dowey et al., 2012).国内学者普遍认为发育绿泥石膜的砂岩沉积于水动力较强的陆相三角洲前缘亚相,如水下分流河道和河口坝微相中,具有环境专属性(黄思静等,2004;刘金库等,2009;姚泾利等,2011).研究区绿泥石膜胶结相的发育分布具有相控性,主要发育在辫状河三角洲前缘水下分流河道微相中.由绿泥石膜含量与砂岩平均粒径和颗粒分选的关系(图 7)可以看出,绿泥石膜主要发育在细-中粒(1.7~2.5 Φ)、分选好(标准偏差0.40~0.55 Φ)的砂岩中.但该颗粒结构的砂岩并不全都发育绿泥石膜,这表明绿泥石膜的形成不仅受沉积环境和砂岩结构控制,还由砂岩的原始岩石组构决定.
(2)原始岩石组构
薄片镜下观察可见,绿泥石膜胶结相砂岩杂基和塑性岩屑含量较低,且可见玄武质火山岩岩屑(图 3b).基于薄片定量统计可以看出,绿泥石膜胶结相砂岩中,杂基含量通常低于5%,塑性岩屑含量低于20%,碳酸盐岩岩屑含量低于10%,火山岩岩屑含量在2%~6%之间(图 8).该类砂岩较低的杂基和塑性岩屑含量使得砂岩在早期机械压实作用进行过程中,原生孔隙和渗透率得以保存,可供绿泥石生长的空间较为充足,有利于绿泥石膜的发育(Billault et al., 2003;刘金库等,2009;Gould et al., 2010),同时火山岩岩屑又能够为绿泥石膜生长提供物质来源(Anjos et al., 2003;Berger et al., 2009);反之压实过程中杂基和塑性岩屑堵塞孔喉,孔隙水流动性变差,同时绿泥石生长空间受限,绿泥石膜不发育.
3.4 绿泥石膜对储层物性的影响
在成岩作用早期,绿泥石膜占据孔隙空间,降低原生孔隙度.随着埋藏成岩作用的进行,绿泥石膜胶结相砂岩后期胶结物含量低,保存了残余原生粒间孔.这是由于绿泥石膜包裹石英颗粒表面,使其与孔隙水分离,阻止自生石英在石英颗粒表面成核,抑制石英次生加大(Ehrenberg,1993;黄思静等,2004);同时绿泥石膜的包裹还降低了石英颗粒间的接触面积,抑制了压溶作用的进行(刘金库等,2009).也有学者认为绿泥石膜含量在超过一定含量(5%)后,会明显降低砂岩孔隙度和渗透率(刘翔等,2013).研究区绿泥石膜含量普遍在1%~4%,且并未观察到孔隙充填式的绿泥石,因此在成岩后期,绿泥石膜对储层物性有积极影响.
4. 绿泥石膜胶结相砂岩发育分布规律
4.1 绿泥石膜胶结相测井识别
绿泥石膜胶结相砂岩与非绿泥石膜胶结相砂岩由于岩石组分和孔隙结构的不同,即岩石成岩强度的不同,在测井曲线上表现出不同的响应特征(Grigsby et al., 1996;张响响等,2011).在研究区取心井成岩相划分的基础上,结合测井资料,识别取心段绿泥石膜胶结相的伽马(GR)、声波时差(AC)、密度(DEN)和电阻率(RS/RD)测井响应.绿泥石膜胶结相砂岩伽马值主要分布在30~90 API,并表现出低密度(DEN < 2.6 g/cm3)、高声波时差(AC=60~70 µs/ft)的特征,由此可得出取心段绿泥石膜胶结相的测井解释模板(图 9).
4.2 绿泥石膜胶结相平面展布
将绿泥石膜胶结相砂岩的测井识别标准推广到未取心井段,提取各层位绿泥石膜胶结相厚度数据,在沉积相平面展布的基础上,预测绿泥石膜胶结相的平面展布(图 10).从层位上看,绿泥石膜胶结相主要发育在元坝地区西部的须二下亚段地层和元坝地区东部的须四上亚段地层.从沉积环境上看,绿泥石膜胶结相主要发育在水动力相对较强的辫状河三角洲前缘水下分流河道微相中部,在近物源的辫状河三角洲平原亚相辫状河道微相和远物源近滨浅湖亚相的砂体中均不发育.
5. 结论
(1)元坝-通南巴地区须家河组砂岩绿泥石膜主要发育在长石岩屑砂岩和岩屑砂岩中,发育塑性岩屑和刚性岩屑,碳酸盐岩岩屑几乎不发育.绿泥石膜的厚度通常为10~15 μm,连续定向且近于等厚环绕在颗粒表面,通常具有双层结构.
(2)绿泥石膜开始形成于早成岩B期,地层温度小于70℃时,形成所需的铁、镁离子来自于中-基性火山岩岩屑水解.
(3)绿泥石膜胶结相砂岩表现出低密度、高声波时差的测井响应特征,主要发育在元坝地区西部须二下亚段地层和元坝地区东部须四上亚段地层.
(4)绿泥石膜胶结相砂岩主要发育在水动力相对较强的水下分流河道中部,远离物源和湖泊;结构成熟度和成分成熟度较高,通常具有较低的杂基和塑性岩屑含量,同时含有一定量的火山岩岩屑.
-
图 3 元坝-通南巴地区须家河组砂岩碎屑组分含量与岩屑类型三角图(分类方案据Folk,1974)
a.碎屑组分含量三角图;b.岩屑类型三角图;1.石英砂岩;2.长石石英砂岩;3.岩屑石英砂岩;4.长石砂岩;5.岩屑长石砂岩;6.长石岩屑砂岩;7.岩屑砂岩
Fig. 3. Ternary diagram illustrating the detrital composition and the rock fragments composition of the Xujiahe sandstones, Yuanba and Tongnanba area
图 4 元坝-通南巴地区须家河组绿泥石膜镜下特征照片
a.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,单偏光,×100,颗粒接触部位不发育或发育极少量绿泥石膜(白色箭头),绿泥石膜呈叶片状围绕颗粒边缘生长,可见残余原生粒间孔;b.元陆175井,4 602.3 m,须四上亚段,中粒长石岩屑砂岩,单偏光,×100,可见火山岩岩屑;c.元陆175井,4 602.6 m,须四上亚段,中粒长石岩屑砂岩,扫描电镜,×2 400,绿泥石膜围绕石英颗粒生长;d.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,单偏光,×100,绿泥石膜呈叶片状围绕颗粒边缘生长,可见两期绿泥石膜;e.元陆6井,4 464.8 m,须二下亚段,中粒长石岩屑砂岩,×6 000,两期绿泥石膜;f.马201井,3 374.92 m,须二上亚段,中粒长石岩屑砂岩,×6 000,两期绿泥石膜
Fig. 4. Thin section and SEM images showing the characteristics of chlorite rim in the Xujiahe sandstones, Yuanba and Tongnanba area
-
[1] Anjos, S.M.C., De Ros, L.F., Silva, C.M.A., et al., 2003. Chlorite Authigenesis and Porosity Preservation in the Upper Cretaceous Marine Sandstones of the Santos Basin, Offshore Eastern Brazil. Clay Mineral Cements in Sandstones, 34:289-316. doi: 10.1002/9781444304336.ch13/summary [2] Baker, J.C., Havord, P.J., Martin, K.R., et al., 2000. Diagenesis and Petrophysics of the Early Permian Moogooloo Sandstone, Southern Carnarvon Basin, Western Australia. AAPG Bulletin, 84:250-265. https://doi.org/10.1306/c9ebcdbf-1735-11d7-8645000102c1865d [3] Berger, A., Gier, S., Krois, P., 2009. Porosity-Preserving Chlorite Cements in Shallow-Marine Volcaniclastic Sandstones: Evidence from Cretaceous Sandstones of the Sawan Gas Field, Pakistan. AAPG Bulletin, 93(5): 595-615. https://doi.org/10.1306/01300908096 [4] Billault, V., Beaufort, D., Baronnet, A., et al., 2003. A Nanopetrographic and Textural Study of Grain-Coating Chlorites in Sandstone Reservoirs. Clay Minerals, 38(3): 315-328. https://doi.org/10.1180/0009855033830098 [5] Bloch, S., Lander, R.H., Bonnel, L., 2002. Anomalously High Porosity and Permeability in Deeply-Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 85: 301-328. https://doi.org/10.1306/61eed634-173e-11d7-8645000102c1865d [6] Dowey, P. J., Hodgson, D. M., Worden, R. H., 2012. Pre-Requisites, Processes, and Prediction of Chlorite Grain Coatings in Petroleum Reservoirs: A Review of Subsurface Examples. Marine and Petroleum Geology, 32(1): 63-75. https://doi.org/10.1016/j.marpetgeo.2011.11.007 [7] Ehrenberg, S. N., 1993. Preservation of Anomalously High Porosity in Deeply Buried Sandstones by Grain-Coating Chlorite: Examples from the Norwegian Continental Shelf. AAPG Bulletin, 76: 1260-1286. https://doi.org/10.1306/f4c8e062-1712-11d7-8645000102c1865d [8] Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Texas, 64-95. [9] Gould, K., Pe-Piper, G., Piper, D. J. W., 2010. Relationship of Diagenetic Chlorite Rims to Depositional Facies in Lower Cretaceous Reservoir Sandstones of the Scotian Basin. Sedimentology, 57(2): 587-610. https://doi.org/10.1111/j.1365-3091.2009.01106.x [10] Grigsby, J.D., Langford, R.P., 1996. Effects of Diagenesis on Enhanced-Resolution Bulk Density Logs in Tertiary Gulf Coast Sandstones: An Example from the Lower Vicksburg Formation, McAllen Ranch Field, South Texas. AAPG Bulletin, 80: 1801-1819. https://doi.org/10.1306/64eda172-1724-11d7-8645000102c1865d [11] Grigsby, J. D., 2001. Origin and Growth Mechanism of Authigenic Chlorite in Sandstones of the Lower Vicksburg Formation, South Texas. Journal of Sedimentary Research, 71(1): 27-36. https://doi.org/10.1306/060100710027 [12] Guo, T.L., 2013. Key Controls on Accumulation and High Production of Large Non-Marine Gas Fields in Northern Sichuan Basin. Petroleum Exploration and Development, 40(2):139-149 (in Chinese with English abstract). doi: 10.1016/S1876-3804(13)60017-8 [13] Guo, Z.W., Deng, K.L., Han, Y.H., et al., 1996. Sichuan Basin Formation and Development. Geological Publishing House, Beijing, 105-120(in Chinese). [14] Hillier, S., Fallick, A. E., Matter, A., 1996. Origin of Pore-Lining Chlorite in the Aeolian Rotliegend of Northern Germany. Clay Minerals, 31(2): 153-171. https://doi.org/10.1180/claymin.1996.031.2.02 [15] Huang, S.J., Xie, L.W., Zhang, M., et al., 2004. Formation Mechanism of Authigenic Chlorite and Relation to Preservation of Porosity in Nonmarine Triassic Reservoir Sandstones, Ordos Basin and Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(3):273-281 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200403009 [16] Liu, H.P., Luo, Y., Zhao, Y.C., et al., 2008. Effects of Diagenetic Facies on Rock Electrical Properties in Tight Gas Sandstones. Earth Science, 42(4):652-66 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201704015 [17] Li, J., Guo, T.L., Zou, H.Y., et al., 2012. Hydrocarbon Generation History of Coal-Measure Source Rocks in the Upper Triassic Xujiahe Formation of the Nortern Sichuan Basin. Natural Gas Industry, 32(3):25-28 (in Chinese with English abstract). [18] Liu, L.Y., Qu, Z.H., Sun, W., et al., 1998. Properties of Clay Mineral of Clastic Rock in Shanshan Oil Field, Xinjiang. Journal of Northwest University (Natural Science Edition), 28(5):77-80 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800611499 [19] Liu, J.K., Peng, J., Liu, J.J., et al., 2009. Pore-Preserving Mechanism of Chlorite Rims in Tight Sandstone: an Example from the T3x Formation of Baojie Area in the Transitional Zone from the Central to Southern Sichuan Basin. Oil & Gas Geology, 30(1):53-58 (in Chinese with English abstract). [20] Liu, X., Ding, X., Yang, J.J., et al., 2013. Quantitative Analysis of Diagenesis and Porosity Evolution of Reservoirs in the 2nd Member of Xujiahe Formation of Hechuan Gas Field. Journal of Oil and Gas Technology, 35(3):20-25 (in Chinese with English abstract). [21] Pan, C.L., 2011. Reservoir Forming Condition of the Xujiahe Formation of the Upper Triassic in Yuanba area Sichuan Basin(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [22] Shanley, K. W., Cluff, R. M., Robinson, J. W., 2004. Factors Controlling Prolific Gas Production from Low-Permeability Sandstone Reservoirs: Implications for Resource Assessment, Prospect Development, and Risk Analysis. AAPG Bulletin, 88(8): 1083-1121. https://doi.org/10.1306/03250403051 [23] Sneider, R. M., King, H. R., Hawkes, H. E., et al., 1983. Methods for Detection and Characterization of Reservoir Rock, Deep Basin Gas Area, Western Canada. Journal of Petroleum Technology, 35(9): 1725-1734. https://doi.org/10.2118/10072-pa [24] Sun, X.L., Lin, C.Y., Dong, C.M., et al., 2017. Influence of Chlorite on Siliceous Cement under Control of Reservoir Lithology. Earth Science, 42(9): 1599-1607 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201709013 [25] Sun, Z.L., Huang, S.J., Zhang, Y.X., et al., 2008. Origin and Diagenesis of Authigenic Chlorite within the Sandstone Reservoirs of Xujiahe Formation, Sichuan Basin, China. Acta Sedimentologica Sinica, 26(3): 459-468 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200803013 [26] Tian, J.F., Chen, Z.L., Yang, Y.Y., 2008. Protection Mechanism of Authigenic Chlorite on Sandstone Reservoir Pores. Geological Science and Technology Information, 27(4):49-54 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200804008 [27] Wang, W., Yue, Q.L., 2012. Genetic Mechanisms for Tight Sandstone Reservoir of Xujiahe Formation, Northern Sichuan Basin. Natural Gas Exploration & Development, 35(1):13-17, 31 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-trkt201201004.htm [28] Wei, G.Q., Liu, D.L., Zhang, L., et al., 2005. The Exploration Region and Natural Gas Accumulation in Sichuan Basin. Natural Gas Geoscience, 16(4):437-442 (in Chinese with English abstract). [29] Wu, S.X., Tang, L.J., Wei, G.Q., et al., 2006. Promising Natural Gas Exploration Belts in Clastic Rock Formations, Sichuan Basin. Journal of Xi'an Shiyou University (Natural Science Edition), 21(1):20-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb200601005 [30] Yang, W., Chen, G.L., Zhang, M.J., et al., 2012. Influence of Authigenic Chlorite on Reservoir Properties of Chang 8 Oil Reservoir Set in Zhenbei Area, Ordos Basin. Lithologic Reservoirs, 24(3):27-32 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201203006 [31] Yao, J.L., Wang, Q., Zhang, R., et al., 2011. Forming Mechanism and Their Environmental Implications of Chlorite-Coatings in Chang 6 Sandstone (Upper Triassic) of Hua-Qing Area, Ordos Basin. Acta Sedimentologica Sinica, 29(1):72-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201101008 [32] Zeng, W., 1996. Diagenesis and Reservoir Distribution of Upper Jurassic Series in Zhangqiang Hollow. Journal of Southwest Petroleum Institute, 18(4):11-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY604.001.htm [33] Zhang, L., Guo, X. S., Hao, F., et al., 2016. Lithologic Characteristics and Diagenesis of the Upper Triassic Xujiahe Formation, Yuanba Area, Northeastern Sichuan Basin. Journal of Natural Gas Science and Engineering, 35: 1320-1335. doi: 10.1016/j.jngse.2016.09.067 [34] Zhang, J., Li, G.H., Xie, J.R., et al., 2006. Stratigraphic Division and Correlation of Upper Triassic in Sichuan Basin. Natural Gas Industry, 26(1):12-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200601004.htm [35] Zhang, J.W., Zou, H.Y., Li, P.P., 2015. A New PVT Simulation Method for Hydrocarbon-Containing Inclusions and Its Application to Reconstructing Paleo-Pressure of Gas Reservoirs. Petroleum Geology & Experiment, 37(1):102-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201501018 [36] Zhang, X.X., Zou, C.N., Zhu, R.K., et al., 2011. Reservoir Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Central Sichuan Basin. Acta Petrolei Sinica, 32(2):257-264 (in Chinese with English abstract). [37] Zhong, G.F., Lin, S.Q., Hou, F.H., 1996. Diagenesis and its Reservoir Quality for Sandstones of Lower He-3 Member (Paleogene) East Beyang Depression, Henan, China. Mineral Petrol., 16(2):40-46 (in Chinese with English abstract). [38] Zhu, R. K., Zhao, X., Liu, L. H., et al., 2009. Depositional System and Favorable Reservoir Distribution of Xujiahe Formation in Sichuan Basin. Petroleum Exploration and Development, 36(1):46-55 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60110-5 [39] Zou, C. N., Tao, S. Z., Zhou, H., et al., 2008. Genesis, Classification and Evaluation Method of Diagenetic Facies. Petroleum Exploration and Development, 26(3): 459-468 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200805002 [40] 曾伟, 1996.张强凹陷上侏罗统成岩作用及储层分布.西南石油学院学报, 18(4):11-16. http://www.cnki.com.cn/Article/CJFDTotal-XNSY604.001.htm [41] 郭彤楼, 2013.四川盆地北部陆相大气田形成与高产主控因素.石油勘探与开发, 40(2):139-149. http://d.old.wanfangdata.com.cn/Periodical/syktykf201302004 [42] 黄思静, 谢连文, 张萌, 等, 2004.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系.成都理工大学学报(自然科学版), 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009 [43] 李军, 郭彤楼, 邹华耀, 等, 2012.四川盆地北部上三叠统须家河组煤系烃源岩生烃史.天然气工业, 32(3):25-28. doi: 10.3787/j.issn.1000-0976.2012.03.005 [44] 刘德良, 宋岩, 薛爱民, 2000.四川盆地构造与天然气聚集区带综合研究.北京:石油工业出版社. [45] 刘洪平, 骆杨, 赵彦超, 等, 2008.致密砂岩气层中成岩相对岩电特征的影响.地球科学, 42(4):652-660. doi: 10.3799/dqkx.2017.053 [46] 刘金库, 彭军, 刘建军, 等, 2009.绿泥石环边胶结物对致密砂岩孔隙的保存机制——以川中-川南过渡带包界地区须家河组储层为例.石油与天然气地质, 30(1):53-58. doi: 10.3321/j.issn:0253-9985.2009.01.008 [47] 刘林玉, 曲志浩, 孙卫, 等, 1998.新疆鄯善油田碎屑岩中的粘土矿物特征.西北大学学报(自然科学版), 28(5):77-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800611499 [48] 刘翔, 丁熊, 杨家静, 等, 2013.合川气田须二段储层成岩与孔隙演化定量分析.石油天然气学报(江汉石油学院学报), 35(3):20-25. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201303005 [49] 盘昌林, 2011.四川盆地元坝地区上三叠统须家河组天然气成藏条件研究(硕士学位论文).成都: 成都理工大学. [50] 孙小龙, 林承焰, 董春梅, 等, 2017.储层岩性控制下的绿泥石对硅质胶结的影响.地球科学, 42(9):1599-1607. doi: 10.3799/dqkx.2017.528 [51] 孙治雷, 黄思静, 张玉修, 等, 2008.四川盆地须家河组砂岩储层中自生绿泥石的来源与成岩演化.沉积学报, 26(3):459-468. http://d.old.wanfangdata.com.cn/Periodical/cjxb200803013 [52] 田建锋, 陈振林, 杨友运, 2008.自生绿泥石对砂岩储层孔隙的保护机理.地质科技情报, 27(4):49-54. doi: 10.3969/j.issn.1000-7849.2008.04.008 [53] 王威, 岳全玲, 2012.四川盆地北部须家河组致密砂岩储层成因机制.天然气勘探与开发, 35(1):13-17, 31. doi: 10.3969/j.issn.1673-3177.2012.01.003 [54] 魏国齐, 刘德来, 张林, 等, 2005.四川盆地天然气分布规律与有利勘探领域.天然气地球科学, 16(4):437-442. doi: 10.3969/j.issn.1672-1926.2005.04.008 [55] 吴世祥, 汤良杰, 魏国齐, 等, 2006.四川盆地碎屑岩领域有利天然气勘探方向浅析.西安石油大学学报(自然科学版), 21(1):20-24. doi: 10.3969/j.issn.1673-064X.2006.01.005 [56] 杨巍, 陈国俊, 张铭杰, 等, 2012.鄂尔多斯盆地镇北地区长8油层组自生绿泥石对储层物性的影响.岩性油气藏, 24(3):27-32. doi: 10.3969/j.issn.1673-8926.2012.03.006 [57] 姚泾利, 王琪, 张瑞, 等, 2011.鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义.沉积学报, 29(1):72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201101008 [58] 张健, 李国辉, 谢继荣, 等, 2006.四川盆地上三叠统划分对比研究.天然气工业, 26(1):12-15. doi: 10.3321/j.issn:1000-0976.2006.01.004 [59] 张俊武, 邹华耀, 李平平, 2015.含烃盐水包裹体PVT模拟新方法及其在气藏古压力恢复中的应用.石油实验地质, 37(1):102-108. http://www.cnki.com.cn/Article/CJFDTotal-SYSD201501018.htm [60] 张响响, 邹才能, 朱如凯, 等, 2011.川中地区上三叠统须家河组储层成岩相.石油学报, 32(2):257-264. http://d.old.wanfangdata.com.cn/Periodical/syxb201102010 [61] 钟广法, 林社卿, 侯方浩, 1996.泌阳凹陷核三下亚段砂岩成岩作用及储集性.矿物岩石, 16(2):40-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600751149 [62] 朱如凯, 赵霞, 刘柳红, 等, 2009.四川盆地须家河组沉积体系与有利储集层分布.石油勘探与开发, 36(1):46-55. doi: 10.3321/j.issn:1000-0747.2009.01.005 [63] 邹才能, 陶士振, 周慧, 等, 2008.成岩相的形成、分类与定量评价方法.石油勘探与开发, 35(5):526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002 期刊类型引用(6)
1. 金惠,崔俊峰,杨桂茹,杨威,肖佃师,王志宏,王民,武雪琼,薄冬梅. 川中—川西须家河组三段致密砂岩储集层分类及成因. 古地理学报. 2024(06): 1452-1466 . 百度学术
2. 马德龙,王宏斌,张希晨,何登发,凡睿,王彦君,黄林军,崔键,刘文强,杨秀磊. 川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟. 地球科学. 2023(04): 1307-1320 . 本站查看
3. 蔡来星,杨田,田景春,易娟子,任启强. 致密砂岩储层中黏土矿物发育特征及其生长机理研究进展. 沉积学报. 2023(06): 1859-1889 . 百度学术
4. 白国帅,蒋有录,赵承锦,刘明,王宇. 元坝地区须二下亚段砂岩储层致密化与天然气充注关系. 断块油气田. 2022(01): 20-25 . 百度学术
5. 朱讯,冯林杰,吕乐,蒋裕强,王小娟,李明秋,李雪松. 致密砂岩储层成岩相及孔隙演化过程——以川中北部地区沙二~1亚段为例. 断块油气田. 2022(02): 265-270 . 百度学术
6. 吉园园,高一龙,郑锟. 镇泾地区东北部长8_1~2低渗透碎屑岩储层成岩演化及致密化成因. 非常规油气. 2020(02): 11-17 . 百度学术
其他类型引用(1)
-