Main Characteristics and Evaluation of Bedrock Reservoirs in the Eastern Segment of Altun Piedmont
-
摘要: 为了解阿尔金山前带东段基岩储层主要特征,对储层进行评价.在野外露头踏勘、岩心观察描述、薄片鉴定及相关分析测试的基础上,结合普通测井资料、成像测井资料及孔渗密实验数据等进行分析.结果表明,阿尔金山前带东段基岩储层岩性主要是岩浆岩和变质岩,岩浆岩以花岗岩为主,变质岩以片麻岩为主.储集空间类型主要包括未完全充填裂缝、溶蚀孔洞和基质微孔3类.基岩储层孔隙度介于0.004%~9.760%,平均孔隙度在1.663%~3.844%;渗透率介于最大值0.002~33.239mD,平均渗透率在0.020~3.836 mD,片麻岩类物性整体好于花岗岩类,孔隙度和渗透率之间没有明显的相关性.基岩储层主控因素包括岩性及矿物组合、古地貌、先存断裂及破碎带、后期岩浆侵入及热液作用4个方面.结合基岩储层的物性特征及形成的主控因素,建立了多因素控制的基岩储层评价标准,将储层分为好、中等、较差、差4类.评价结果表明,研究区多以Ⅱ类储层为主,主要见于花岗片麻岩,其次是花岗岩、黑云母斜长片麻岩等.东坪鼻隆、牛中-牛北斜坡可见Ⅰ类储层;尖北斜坡、牛东鼻隆、冷北斜坡多为Ⅱ类储层.Abstract: Based on the field outcrop survey,core observation,section identification,scanning electron microscopy and cathodoluminescence method,combined with conventional logging,image logging,pore infiltration test data,etc.,main characteristics and evaluation of bedrock reservoirs in the eastern segment of the Altun Piedmont were studied. The results show that the lithology of the bedrock reservoirs in the eastern segment of Altun Piedmont mainly includes magmatic rocks and metamorphic rocks. The magmatic rocks are mainly granite,and the metamorphic rocks are mainly gneiss and schist. The types of reservoir space mainly include incompletely filled fractures,dissolved pores and matrix micropores. The maximum porosity of bedrock reservoir is 9.76%,the minimum is 0.004%,and the average is 1.663%~3.844%. The maximum permeability of bedrock reservoir is 33.239 mD,the minimum is 0.002 mD,and the average permeability is 0.020~3.836 mD. There is no obvious correlation between porosity and permeability. The main controlling factors of bedrock reservoirs include lithology and mineral combination,paleogeomorphology,pre-existing faults and fracture zones,late magmatic intrusion and hydrothermal action. Combined with the physical properties and the main controlling factors of the bedrock reservoir,the evaluation criteria of bedrock reservoir controlled by many factors are put forward. The reservoir is divided into four categories:good,average,fair,and poor. The results of evaluation show that the study area is mainly composed of type Ⅱ reservoirs,mainly found in granitic gneiss,followed by granite,plagioclase gneiss,feldspar hornblende schist,etc. The Dongping nasal and Niuzhong-Niubei slopes are mostly type Ⅰ reservoirs,the Jianbei slope,Niudong nasal and Lengbei slope are mostly type Ⅱ reservoirs.
-
图 1 阿尔金山前带东段构造纲要图(据付锁堂, 2015, 有修改)
Fig. 1. Tectonic outline of eastern segment of Altun Piedmont
图 3 阿尔金山前带东段基岩裂缝发育特征
a.东坪306井, 1 916.46 m, 花岗岩, 高角度斜交缝(70°)和近水平缝, 宽约0.2 cm, 延伸较好;网状缝发育较少;b.东坪306井, 1 907.20 m, 花岗岩, 沿构造缝发生风化淋滤形成的高角度淋滤缝, 宽约0.5 cm;c.东坪306井, 1 908.85 m, (-)2.5×10, 花岗岩, 裂缝和微裂缝发育, 宽0.05~0.10 mm, 未被充填;d.东坪306井, 1 908.85 m, (+)2.5×10, 花岗岩, 裂缝和微裂缝发育, 宽0.05~0.10 mm, 未被充填;e.东坪103井, 3 231.10 m, 片麻岩, 发育高角度构造缝, 宽约1 cm, 沿裂缝发生风化淋滤;f.东坪103井, 3 244.07 m, 片麻岩, 发育高角度裂缝及网状缝, 宽度介于0.05~0.50 cm;g.坪1-2-3, 3 411.33 m, (-)2.5×10, 花岗片麻岩, 发育两组近于正交的解理缝, 宽0.2~0.4 mm, 微裂缝发育;h.坪1-2-3, 3 411.33 m, (+)2.5×10, 花岗片麻岩, 发育两组近于正交的解理缝, 宽0.2~0.4 mm, 微裂缝发育
Fig. 3. Characteristics of bedrock fractures in the eastern segment of the Altun Piedmenta
图 6 阿尔金山前带东段基岩溶蚀孔洞发育特征
a.东坪H301井, 花岗岩, 1 880.5 m, 沿裂缝发生轻微的溶蚀作用, 溶蚀孔洞发育规模较小;b.东坪H301井, 花岗岩, 1 878.7 m, 暗色矿物发生轻微溶解, 形成规模较小的溶蚀孔洞;c.东坪H301井, 1 880.8 m, (-)2.5×10, 花岗岩, 裂缝较平直, 沿裂缝溶蚀程度较弱, 溶蚀孔洞规模较小;d.东坪H301井, 1 880.8 m, (+)2.5×10, 花岗岩, 裂缝较平直, 沿裂缝溶蚀程度较弱, 溶蚀孔洞规模较小;e.东坪105井, 3 476.6 m, 黑云母斜长片麻岩, 沿早期张开缝两侧发生溶蚀形成溶蚀孔洞;f.东坪105井, 3 467.28 m, 黑云母斜长片麻岩, 暗色矿物发生溶解形成溶蚀孔洞;g.东坪105井, 3 476.6 m, (-)2.5×10, 黑云母斜长片麻岩沿裂缝发生溶蚀形成成串珠状溶蚀孔洞;h.东坪105井, 3 476.6 m, (-)2.5×10, 黑云母斜长片麻岩, 沿裂缝发生溶蚀形成串珠状溶蚀孔洞
Fig. 6. Characteristics of bedrock dissolution pores in the eastern segment of the Altun Piedment
图 7 阿尔金山前带东段基岩基质微孔发育特征
a.尖探1井, 4 645.9 m, 花岗闪长岩能谱图, 显示矿物为铁镁质;b.尖探1井, 4 645.9 m, 花岗闪长岩, SEM, 铁镁质矿物中的基质微孔, 宽度200~300 nm;c.东坪7井, 2 170.6 m, 云母石英片岩能谱图, Si、AI、Mg、Fe元素含量高, 该颗粒为云母;d.东坪7井, 2 170.6 m, 云母石英片岩, SEM, 可见云母片晶间孔, 宽多在2 ~5 μm之间;e.东坪105井, 3 454.3 m, 黑云母斜长片麻岩能谱图, 显示矿物为方解石;f.东坪105井, 3 454.3 m, 黑云母斜长片麻岩, SEM, 充填裂缝的方解石自身溶蚀产生宽度在2~3 μm的基质微孔
Fig. 7. Characteristics of bedrock matrix pores in the eastern segment of the Altun Piedment
图 9 阿尔金山前带东段基岩储层碎裂岩发育特征
a.牛4井, 975.8~978.7 m, (-)2.5×10, 花岗片麻岩, 岩石破碎, 裂缝发育;b.牛4井, 975.8~978.7 m, (+)2.5×10, 花岗片麻岩, 岩石破碎, 裂缝发育;c.坪1-2-3 3 426.44 m, (-)2.5×10, 花岗片麻岩, 岩石破碎, 裂缝发育;d.坪1-2-3, 3 426.44 m, (-)2.5×10, 花岗片麻岩, 岩石破碎, 裂缝发育, 未被充填
Fig. 9. Characteristics of bedrock cataclastic rock in the eastern segment of the Altun Piedment
表 1 阿尔金山前带东段裂缝成因分类表
Table 1. Classification of fracture of the eastern segment of the Altun Piedmont on Genesis
裂缝类型 成因 特征 构造缝 受应力作用形成的剪切和拉张缝 组系分明、缝壁平直、切割力较强、延伸较远 解理缝 由于长石类晶体的解理发育, 基岩表面经受构造应力或风化时沿解理面形成裂缝 呈现沿一定方向平行排列的细缝 溶蚀缝 构造缝和解理缝形成后暴露于地表遭受淡水淋滤, 基岩中相对不稳定的矿物成分晶体结构发生改变, 形成溶蚀缝 呈串珠状、蛇曲状, 缝壁凹凸不平;构造溶蚀缝延伸方向一致, 延伸较远;解理溶蚀缝无方向性, 延伸较短 表 2 阿尔金山前带东段裂缝物性统计表(据李建明, 2011)
Table 2. Statistics of fracture physical properties of the eastern segment of the Altun Piedmont on Genesis
井名 裂缝密度(1/m) 裂缝长度(1/m) 裂缝宽度(μm) 裂缝孔隙度(%) 东坪3井区 东坪3井 17.80 18.90 16.8 0.078 东坪6井 15.60 18.20 26.5 0.139 东坪9井 6.78 8.15 49.5 0.198 东坪11井 5.46 3.85 47.5 0.223 东坪306井 18.20 14.85 18.7 0.312 东坪H301井 16.56 18.40 14.4 0.603 东坪1井区 东坪4井 19.70 14.10 20.7 0.138 东坪103井 9.14 7.10 45.6 0.412 坪1-2-3 6.54 5.83 41.7 0.140 表 3 双侧向电阻率参数识别阿尔金山前带东段基岩储层裂缝发育概率统计表
Table 3. Identification of fracture development probability of bedrock reservoir of the eastern segment of the Altun Piedmont by bilateral resistivity Parameters
井号 井段(m) |Rs/Rd-1| max ave min 东坪1井 3 100~3 230 0.319 0.086 2 0.000 024 东坪2井 3 750~3 880 0.607 0.082 7 0.000 580 东坪4井 3 530~3 630 0.376 0.232 0 0.084 100 东坪103井 3 230~3 350 0.570 0.318 0 0.020 000 东坪106井 3 240~3 550 0.677 0.205 7 0.000 055 坪1-2-3井 3 240~3 430 0.620 0.291 0 0.014 700 坪1H-2-3井 3 080~3 580 0.489 0.205 0 0.001 010 东坪3井 1 842~1 962 0.515 0.131 0 0.000 090 东坪5井 2 652~2 855 0.806 0.139 0 0.000 230 东坪6井 2 176~2 350 0.250 0.089 3 0.000 060 东坪9井 2 208~2 356 0.339 0.113 0 0.000 140 东坪11井 2 115~2 320 0.720 0.120 0 0.000 120 东坪12井 1 992~2 086 0.744 0.194 0 0.000 290 东坪306井 1 905~2 098 0.573 0.070 0 0.000 190 东坪307井 1 970~1 995 0.589 0.142 0 0.001 400 牛5井 2 400~2 713 0.452 0.124 0 0 牛4井 980~1 195 0.847 0.117 0 0.000 030 牛北1井 3 700~3 848 0.378 0.100 0 0.000 120 牛北2井 670~870 0.275 0.096 0 0.081 000 牛北3井 1 876~2 013 0.293 0.099 7 0.000 290 冷北1井 1 942~2 327 0.393 0.111 0 0.000 100 冷北2井 3 620~3 800 0.851 0.274 0 0.000 032 尖3井 4 653~5 042 0.887 0.337 0 0.000 130 尖探1井 4 720~4 970 0.946 0.517 0 0.002 500 表 4 阿尔金山前带东段基岩储集物性统计表
Table 4. Statistics of bedrock reservoir property in the eastern segment of the Altun Piedmont
灰岩 花岗岩 长石角闪石片岩 闪长岩类 片麻岩类 花岗闪长岩 闪长岩 钙质片麻岩 花岗片麻岩 黑云母斜长片麻岩 孔隙度(%) 最大 2.109 7.150 4.712 5.281 7.23 5.367 9.763 8.417 最小 1.183 0.498 1.192 1.562 0.81 1.795 0.825 0.004 平均值 1.663 3.316 2.680 3.191 5.29 3.314 3.844 2.510 渗透率(%) 最大 0.110 13.966 3.206 0.092 3.81 0.304 33.239 17.476 最小 0.020 0.050 0.050 0.013 0.05 0.050 0.020 0.020 平均值 0.065 1.206 2.052 0.035 2.23 0.171 3.836 1.392 表 5 阿尔金山前带东段东坪1井区片麻岩和东坪3井区花岗岩风化壳各结构层厚度统计表
Table 5. Statistics of thicknesses of structural layers of Weathering Crust of gneiss in Dongping 1 Block andgranite in Dongping 3 in the eastern segment of the Altun Piedmont
岩性 完全风化层(m) 半风化层溶蚀带 半风化层崩解带(未钻穿) max min ave max min ave max min ave 花岗岩类 9.8 2.3 6.2 122.5 57 98.5 135.0 42.5 84.1 片麻岩类 15.0 3.5 7.2 189.5 41 109.5 193.2 29.5 134.7 表 6 不同构造带典型井风化壳各结构层厚度统计表
Table 6. Statistics of thickness of different zones in weathering crust of typical well
井号 构造位置 完全风化层厚度(m) 半风化层溶蚀带厚度(m) 半风化层崩解带厚度(m)(未钻穿) 尖探1井 尖北斜坡 7.00 117.5 138.0 尖北101井 6.00 146.5 126.5 尖探3井 6.00 189.5 132.5 厚度均值 6.30 151.2 132.3 东坪11井 东坪鼻隆 4.00 122.5 83.5 东坪6井 8.60 91.9 78.0 东坪9井 3.50 92.5 77.5 东坪306 9.80 119.5 88.0 东坪12井 3.50 57.0 42.5 东坪5井 2.30 107.5 135.0 厚度均值 5.30 98.5 84.1 牛北1井 牛北斜坡 4.00 84.0 81.0 牛北2井 2.00 115.0 85.0 牛4井 3.00 165.8 82.2 牛5井 2.00 156.0 117.0 厚度均值 2.75 130.2 91.3 表 7 阿尔金山前带东段基岩储层评价一览表
Table 7. The list of bedrock reservoir evaluation in the eastern segment of the Altun Piedment
储层分类 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 储集空间类型 裂缝-孔洞型 孔洞-裂缝型 裂缝型 孔洞类 储层主要岩类 片麻岩、花岗岩片麻岩、黑云母斜长片麻岩、变质花岗岩 花岗闪长岩、角闪斜长片麻岩、花岗岩、闪长岩 钙质片麻岩、云母石英片岩 致密花岗岩、致密片麻岩、板岩 构造位置 东坪鼻隆 东坪鼻隆、尖北斜坡、牛中斜坡 东坪鼻隆、冷北斜坡 原岩带、完全风化层半风化层崩解带 半风化层溶蚀带 半风化层溶蚀带、半风化层崩解带 半风化层崩解带 有效孔隙度(%) > 5 > 5 5~2 5~2 > 2 2~1 2~1 < 1.00 有效渗透率(mD) > 5 5.00~0.05 > 5 5~0.05 0.05~0.01 > 0.05 0.05~0.01 < 0.01 基质孔隙度(%) > 4 4~1 1.0~0.1 < 0.10 基质渗透率(mD) > 1 1.0~0.1 0.10~0.02 < 0.02 裂缝孔隙度(%) > 1 1.0~0.5 0.5~0.1 < 0.10 裂缝密度(%) > 15 15~10 10~5 < 5.00 裂缝长度(m) > 15 15~5 5.0~0.5 < 0.50 裂缝开度(um) > 20 10~20 5~10 < 5.00 储层类型 好 中等 较差 差 -
[1] Beceлob, Κ., E., Mиxaйлob, И., H., 1995. Oil and Gas in Deep Crystalline Bedrock. Translated by Ren, Y., Reservoir Evaluation and Development, 18(2): 33-37(in Chinese). [2] Chen, H. Q., Ding, C., Du, Y. J., et al., 2015 Advance of Reservoir Evaluation Researches. Geological Science and Technology Information, 34(5): 66-74(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201604001 [3] Cheng, L. H., Men, D. W., Yang, Y., et al., 2018. Characteristic and Rational Development Indexes of the Basement Gas Reservoir in the Dongping Block, Qaidam Basin. Natural Gas Industry, 38(8):69-74(in Chinese with English abstract). [4] Chen, W. L., Zhou, W., 2012. Important Exploration Areas in Petaliferous Basins the Basement Hydrocarbon Reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 34(5): 17-24(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb201205003 [5] Chen, Y., Li, D. X., 2006. Analysis of Error for Pore Structure of Porous Materials Measured by MIP. Bulletin of the Chinese Ceramic Society, 25(4): 198-202.(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsytb200604044 [6] Coung, T. X., Warren, J. K., 2009. Bach Hopfield, A Fractured Granitic Basement Reservoir, Cu Long Basin, Offshore Se Vietnam: A "Buried-Hill" Play. Journal of Petroleum Geology, 32(2): 129-156. https://doi.org/10.1111/j.1747-5457.2009.00440.x [7] Einsele, G., Gieskes, J. M., Curray, J., et al., 1980. Intrusion of Basaltic Sills into Highly Porous Sediments, and Resulting Hydrothermal Activity. Nature, 283(5746): 441-445. https://doi.org/10.1038/283441a0 [8] Fookes, P. D., 1997. Tropical Residual Social: A Geological Society Engineering Group Working Party Revised Report Quarterly. Journal of Engineering Geology, 30: 1-98. https://doi.org/10.1144/gsl.qjeg.1990.023.001.01 [9] Fu, S.T., Ma, D. D., Chen, Y., et al., 2015. Natural Gas Exploration in Eastern Segment of Alton Piedmont, Northern Qaidam Basin. China Petroleum Exploration, 20(6): 1-13(in Chinese with English abstract). [10] Hou, R. Y., Liu, Z. Q., 2012. Reservoir Evaluation and Development Strategies of Daniudi Tight Sand Gas Field in the Ordos Basin. Oil & Gas Geology, 33(1):118-128(in Chinese with English abstract). [11] Hou, Z. S., Zhou, L.H., Chen, S. Y., et al., 2018. Reservoir Types and Controlling Factors of Upper Paleozoic in Dagang Exploration Area. Journal of China University of Mining & Technology, 47(5): 1021-1037(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201805011 [12] Huang, J. H., Tan, X. F., Cheng, C. J., et al., 2016. Structural Features of Weathering Crust of Granitic Basement Rock and Its Petroleum Geological Significance: A Case Study of Basement Weathering Crust of Dongping Area in Qaidam Basin. Earth Science, 41(16): 2041-2060(in Chinese with English abstract). [13] Kou, F. D., Chen, Y. Y., Zhao, G., Z., et al., 2017. Characteristics and Pattern Construction of Bedrock Gas Reservoirs in Dongping Area of Qaidam Basin. Petroleum Geology and Engineering, 31(2):6-8(in Chinese with English abstract). [14] Li, J. M., Shi, L. L., Wang, L. Q., et al., 2011. Characteristics of Basement Reservoir in Kunbei Fault Terrace Belt in Southwestern Qaidam Basin. Litholigic Reservoirs, 23(2): 20-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201102004 [15] Li, X., Liu, Y. G., Chai, X.Y., et al., 2018. Patterns and Comprehensive Predications of Fracture Development in Bedrock Gas Reservoirs in Dongping, Qaidam Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 1-8(in Chinese with English abstract). [16] Li, X. G., Liu, B.H, Cai, G. G., et al., 2009. Genetic Analysis of Interior Reservoirs in the Metamorphic Buried Hill of Liaohe Depression. Special Oil and Gas Reservoirs, 16(4): 1-7(in Chinese with English abstract). [17] Liu, C., Xie, Q. B., Wang, G. W., et al., 2015. The Influence of Igneous Intrusion to Detrital Reservoir: Advances and Outlook. Advances in Earth Science, 30(6): 654-667(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201506004 [18] Liu, S. C., 2017.Improvement and Application of Helium Porosity Meter. Scientific Management, (8): 247-248(in Chinese with English abstract). [19] Liu, W. X., Cheng, Q. Q., Wang, Y. B., et al., 2006. Micro Analysis and Its Application of Oil and Gas Reservoir Characteristics. Petroleum Geology & Experiment, 28(5):489-492(in Chinese with English abstract). [20] Liu, W. X., Shi, Z. H., Zhu, Y., et al., 2006. Application of SEM/EDX Analysis in Petroleum Exploration and Production. Petroleum Geology & Experiment, 28(5): 341-343(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200103017 [21] Ma, F., Yan, C. F., Ma, D. D., et al., 2015. Bedrock Gas Reservoirs in Dongping Area of Qaidam Basin, NW China. Petroleum Exploration and Development, 42(3):266-273(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201503002 [22] Ma, L., Liu, Q. X., Zhang, J. L., et al., 2006. A Discussion of Exploration Potentials of Basement Hydrocarbon Reservoir. Natural Gas Industry, 26(1): 8-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200601003 [23] Nelson, R. A., Bueno, E., Moldovanyi, E. P., et al., 2000. Production Characteristics of the Fractured Reservoirs of La Paz Filed, Maracaibo Basin, Venezuela. AAPG Bulletin, 84(11): 1791-1809. https://doi.org/10.1306/8626c393-173b-11d7-8645000102c1865d [24] Sircar, A., 2004.Hydrocarbon Production from Fractured Basement Formations. Current Science, 87(2): 147-1511. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025015006/ [25] Walters, R. E., 1953. Oil Production from Fractured Pre-Cambrian Basement Rocks in Central Kansas. AAPG Bull., 37(2): 300-313. https://doi.org/10.1306/5ceadc59-16bb-11d7-8645000102c1865d [26] North, C. H., 1990. Petroleum Geology, Second Edition. Unwin Hyman, Boston. [27] Wang, X., Zhou, X. H., Xu, G.S., et al., 2015. Characteristic and Controlling Factors of Reservoir in Penglai 9-1 Large-Scale Oilfield in Buried Granite Hills, Bohai Sea. Oil & Gas Geology, (36): 262-271(in Chinese with English abstract). [28] Wang, Y. J., Wang, Y. B., 2013. Comprehensive Evaluation of Lower Porosity and Permeability Reservoirs in Upper Paleozoic of Daniudi Gas Field. Journal of Southwest Petroleum University (Science & Technology Edition), 35(5):57-64(in Chinese with English abstract). [29] Wu, C. Z., Gu, L. X., Zhang, Z. Z., et al., 2006. Formation Mechanisms of Hydrocarbon Reservoirs Associated with Volcanic and Subvolcanic Intrusive Rocks: Examples in Mesozoic-Cenozoic Basins of Eastern China. AAPG Bulletin, 90(1): 137-147. https://doi.org/10.1306/07130505004 [30] Wu, L. R., Huang, C. G., Yuan, J.Y., et al., 2015. Discovery of Matrix Pore of High Efficiency Bedrock Gas Reservoir in Saline Basin and Its Significance. Journal of Earth Science and Environment, 37(4): 54-62(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201504009 [31] Wu, J., Gao, X. Z., Ma, D. D., et al., 2017. Characteristics of the Basement Weathering Crust in Dongping Area, Qaidam Basin. Geoscience, 31(1):129-141(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201701011 [32] Xie, G. J., 1981. Occurrence of the Oil Pool in the Metamorphosed Basement in Yaerxia in the Western Part of the Jiuquan Basin. Acta Petroleum Sinica, 2(3):23-30(in Chinese with English abstract). [33] Yang, F., Xu, S. Y., 2011. Global Distribution and Hydrocarbon Accumulation of Basement Reservoirs. Special Oil & Gas Reservoirs, 18(1): 7-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201101002 [34] Yang, Z. M, Zhang, Y. P, Li H. B, . et al., 2017. Application Basis of Nuclear Magnetic Technology in the Unconventional Reservoirs. Earth Science, 42(8): 1333-1339(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201708010 [35] Zhang, X. F., Li, H. F., Jia, F. et al., 2011. Application of Quantitative Identification of Fracture Technology by Conventional Logging Data. Inner Mongolia Petrochemical Industry, 15:101-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210002075 [36] Zhou, X. H., Xiang, H., Yu, S., et al., 2005.Reservoir Characteristics and Development Controlling Factors of JZS Neo Archean Metamorphic Buried Hill Oil Pool in Bohai Sea. Petroleum Exploration and Development, 32(6):17-20(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200506004 [37] Zhou, Y., Wei, G.Q., Guo, H.Q., 2011. Impact Factors Analysis and Decision Tree Correction of NMR Porosity Measurements. Well Logging Technology, 35(3): 210-214(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjjs201103004 [38] Zhu, R. K., Jin, X., Sun, L., et al. 2018. Muti-Scale Digital Evaluation on Complex Reservoir. Earth Science, 43(5):1773-1782(in Chinese with English abstract). [39] Zou, C. N., Hou, L. H., Tao, S. Z., et al., 2011. Hydrocarbon Accumulation Mechanism and Structure of Large-Scale Volcanic Weathering Crust of the Carboniferous in Northern Xinjiang. Earth Science, 41(11): 1613-1626(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201111006 [40] 陈欢庆, 丁超, 杜宜静, 等, 2015.储层评价研究进展.地质科技情报, 34(5):66-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201505011 [41] 程立华, 孟德伟、杨云, 等, 2018.柴达木盆地东坪基岩气藏的特征及合理开发指标.天然气工业, 38(8):69-74. http://d.old.wanfangdata.com.cn/Periodical/trqgy201808010 [42] 陈文玲, 周文, 2012.含油气盆地重要勘探领域——基岩油气藏.西南石油大学学报(自然科学版), 34(5):17-24. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201205003 [43] 陈悦, 李东旭, 2006.压汞法测井材料孔结构的误差分析.硅酸盐通报, 25(4):198-202. [44] 付锁堂, 马达德, 陈琰, 等, 2015.柴达木盆地阿尔金山前带东段天然气勘探.石油勘探与开发, 20(6):1-13. [45] 黄建红, 谭先锋, 程承吉, 等, 2016.花岗质基岩风化壳结构及油气地质意义:以柴达木盆地东坪地区基岩风化壳为例.地球科学, 41(12):2041-2060. doi: 10.3799/dqkx.2016.528 [46] 侯瑞云, 刘忠群, 2012.鄂尔多斯盆地大牛地气田致密低渗储层评价与开发对策.石油与天然气地质, 33(1):118-128. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201201015 [47] 侯中帅, 周立宏, 陈世悦, 等, 2018.大港探趣上古生界储层类型及控制因素.中国矿业大学(学报), 47(5):1021-1037. [48] 寇福德, 陈园园, 赵国忠, 等, 2017.柴达木盆地东坪地区基岩气藏特征及模式构建.石油地质与工程, 31(2):6-8. http://d.old.wanfangdata.com.cn/Periodical/hnsy201702002 [49] 李建明, 史玲玲, 汪立群, 等, 2011.柴西南地区昆北断阶带基岩油藏储层特征分析.岩性油气藏, 23(2):20-23. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201102004 [50] 李翔, 刘应如, 柴小颖, 等, 2018.柴达木盆地东坪基岩气藏裂缝发育规律研究.西南石油大学学报(自然科学版), 1-8. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201901006 [51] 李晓光, 刘宝鸿, 蔡国刚, 等, 2009.辽河坳陷变质岩潜山内幕油藏成因分析.特种油气藏, 16(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/tzyqc200904001 [52] 刘超, 谢庆宾, 王贵文, 等, 2015.岩浆侵入作用影响碎屑围岩储层的研究进展与展望.地球科学进展, 30(6):654-667. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201506004 [53] 刘世超, 2017.氦孔隙仪的改进与应用.科学管理, (8):247-248. http://d.old.wanfangdata.com.cn/Periodical/shihjs201708212 [54] 刘伟新, 承秋泉, 王延斌, 等, 2006.油气储层特征微观分析技术及其应用.石油实验地质, 28(5):489-492. http://d.old.wanfangdata.com.cn/Periodical/sysydz200605017 [55] 刘伟新, 史志华, 朱樱, 等, 2001.扫描电镜/能谱分析在油气勘探开发中的应用.石油实验地质, 23(3):341-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200103017 [56] 马峰, 阎存凤, 马达德, 等, 2015.柴达木盆地东坪地区基岩储集层气藏特征.石油勘探与开发, 42(03):266-273. http://d.old.wanfangdata.com.cn/Periodical/syktykf201503002 [57] 马龙, 刘全新, 张景廉, 等, 2006.论基岩油气藏的勘探前景.天然气工业地质与勘探, 26(1):8-12. http://d.old.wanfangdata.com.cn/Periodical/trqgy200601003 [58] 王昕, 周心怀, 徐国胜, 等, 2015.渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素.石油与天然气地质, 36(2):262-271. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201502011 [59] 王永健, 王延斌, 2013.大牛地气田上古生界低渗储层综合评价.西南石油大学学报自然科学版, 35(5):57-64. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201305008 [60] 维谢洛夫, 米哈伊洛夫, 1995.深部结晶基岩内的油气.任愈, 译, 石油物探译丛, 18(2): 33-37. [61] 吴丽荣, 黄成刚, 袁建英, 等, 2015.咸化湖盆高效基岩气藏储层中基质孔隙的发现及意义.地球科学与环境学报, 37(4):54-62. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201504009 [62] 伍劲, 高先志, 马达德, 等, 2017.柴达木盆地东坪地区基岩风化壳特征.现代地质, 31(1):129-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201701011 [63] 谢恭俭, 1981.酒泉盆地西部鸭儿峡变质基岩油藏的形成条件.石油学报, 2(3):23-30 [64] 杨飞, 徐守余, 2011.全球基岩油气藏分布及成藏规律.特种油气藏, 18(1):7-11. http://d.old.wanfangdata.com.cn/Periodical/tzyqc201101002 [65] 杨正明, 张亚蒲, 李海波, 等, 2017.核磁共振技术在非常规油气藏的应用基础.地球科学, 42(8):1333-1339. doi: 10.3799/dqkx.2017.506 [66] 张孝富, 李鸿范, 贾帆, 等, 2011.常规测井资料定量识别裂缝技术应用.内蒙古石油化工, 15:101-102. http://d.old.wanfangdata.com.cn/Periodical/nmgsyhg201115051 [67] 周心怀, 项华, 于水, 等, 2005.渤海锦州南变质岩潜山油藏储集层特征与发育控制因素.石油勘探与开发, 32(6):17-20. http://d.old.wanfangdata.com.cn/Periodical/syktykf200506004 [68] 周宇, 魏国齐, 郭和坤, 2011.核磁共振孔隙度影响因素分析与校准.测井技术, 35(3):210-214. http://d.old.wanfangdata.com.cn/Periodical/cjjs201103004 [69] 朱如凯, 金旭, 孙亮, 等, 2018.复杂储层多尺度数字岩石评价.地球科学, 43(5):1773-1782. doi: 10.3799/dqkx.2018.429 [70] 邹才能, 侯连华, 陶士振, 等, 2011.新疆北部石炭系大型火山岩风化体结构与地层油气成藏机制.地球科学, 41(11):1613-1626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201111006