• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义

    邬斌 王汝成 郭国林 李成祥 宋振涛

    邬斌, 王汝成, 郭国林, 李成祥, 宋振涛, 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义. 地球科学, 45(2): 467-478. doi: 10.3799/dqkx.2018.942
    引用本文: 邬斌, 王汝成, 郭国林, 李成祥, 宋振涛, 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义. 地球科学, 45(2): 467-478. doi: 10.3799/dqkx.2018.942
    Wu Bin, Wang Rucheng, Guo Guolin, Li Chengxiang, Song Zhentao, 2020. Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution. Earth Science, 45(2): 467-478. doi: 10.3799/dqkx.2018.942
    Citation: Wu Bin, Wang Rucheng, Guo Guolin, Li Chengxiang, Song Zhentao, 2020. Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution. Earth Science, 45(2): 467-478. doi: 10.3799/dqkx.2018.942

    辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义

    doi: 10.3799/dqkx.2018.942
    基金项目: 

    国家自然科学基金青年科学基金项目 41702033

    南京大学内生金属矿床成矿机制研究国家重点实验室开放研究基金 2017-LAMD-K07

    东华理工大学博士启动基金 DHBK2016124

    核资源与环境国家重点实验室自主基金 Z1907

    详细信息
      作者简介:

      邬斌(1990-), 男, 博士, 讲师, 主要从事碱性岩矿物学研究

    • 中图分类号: P571

    Compositional Variations of Rinkite in the Saima Alkaline Complex, Liaoning Province, and Its Implications for Alkaline Magma Evolution

    • 摘要: 辽宁赛马岩体是我国典型的产铀碱性杂岩体,但其稀土矿化机制尚不明确.通过光学显微镜、扫描电镜和电子探针分析,得知该岩体从霞石正长岩经霓霞正长伟晶岩至晚期异霞正长岩,代表性稀土矿物层硅铈钛矿[Na2Ca4REETi(Si2O72OF3]不断富集,Nb、Zr和REE(特别是HREE)等高场强元素含量不断升高,部分颗粒具Zr、REE等元素成分环带,以上成分变化与稀土等不相容元素性质、碱性岩浆成分和岩浆结晶分异过程密切相关.此外,层硅铈钛矿经历了一系列的热液蚀变,蚀变部分Ti、Ca、Sr、Na含量增加而Zr、REE含量降低,最终形成由残余层硅铈钛矿+方解石+萤石+铈硅磷灰石组成的假晶,可能与富碱质、F和CO2的自交代流体作用有关.该研究揭示了碱性岩浆演化过程中,层硅铈钛矿成分变化及热液蚀变组合对指示岩浆结晶分异程度、探究稀土元素分馏及其热液活动性的具有重要意义.

       

    • 图  1  辽宁赛马碱性岩体地质简图(据陈肇博等,1996修改)

      Fig.  1.  Simplified geological map of the Saima alkaline complex in the Liaoning Province, China

      图  2  赛马霞石正长岩、霓霞正长伟晶岩手标本及层硅铈钛矿镜下照片

      a.赛马碱性岩体霓霞正长伟晶岩脉穿插主体霞石正长岩;b.霞石正长岩与霓霞正长伟晶岩手标本照片;c.霞石正长岩中零星分布的粒状层硅铈钛矿;d.异霞正长岩中与霓石、钠锆石共生的纤维状层硅铈钛矿集合体;e.霓霞正长伟晶岩中与方解石、霓石共生的粒状层硅铈钛矿集合体; Aeg.霓石; Bt.黑云母; Cal.方解石; Ctp.钠锆石; Kfs.钾长石; Ne.霞石; Rkt.层硅铈钛矿

      Fig.  2.  Hand specimen photographs of the Saima nepheline syenite and aegirine-bearing nepheline syenite pegmatite

      图  3  赛马碱性岩体层硅铈钛矿背散射电子像照片

      a~b,c~f,g~h分别对应霞石正长岩、霓霞正长伟晶岩和异霞正长岩中层硅铈钛矿;a.霞石正长岩中零星分布的层硅铈钛矿,边部被铈硅磷灰石交代;b.层硅铈钛矿进一步蚀变成残余层硅铈钛矿+次生钠沸石+铈硅磷灰石+榍石的蚀变组合;c.霓霞正长伟晶岩中层硅铈钛矿大量分布于方解石中,少量分布于钾长石中;d.层硅铈钛矿的成分环带;e.层硅铈钛矿核部发生热液蚀变,具微小孔洞特征,裂隙被铈硅磷灰石填充;f.由残余层硅铈钛矿+方解石+萤石+铈硅磷灰石组成的假晶;g.异霞正长岩中与霓石、钠锆石共生的纤维状层硅铈钛矿集合体;h.部分层硅铈钛矿局部被层铈硅磷灰石交代;Aeg.霓石;Brt.铈硅磷灰石;Cal.方解石;Ctp.钠锆石;Fl.萤石;Kfs.钾长石;Ne.霞石;Ntr.钠沸石;Rkt.层硅铈钛矿;Ttn.榍石

      Fig.  3.  Backscattered electron images of rinkite in different rocks of the Saima alkaline complex

      图  4  赛马碱性岩体层硅铈钛矿化学成分变化图

      a. Na-Ca-REE(+Y)(单位原子数百分比);b. LREE-MREE-HREE(+Y)(单位原子数百分比)三端元投图;c.霓霞正长伟晶岩中层硅铈钛矿内部、外部环带及蚀变区域Ti、Zr、REE、Ca、Sr和Na化学成分变化(纵坐标单位原子数取自然对数);俄罗斯Khiniby和印度Sushina Hill碱性岩中层硅铈钛矿成分作为对比(Chakrabarty et al., 2013; Konopleva et al., 2015)

      Fig.  4.  Compositional variations of rinkite grians in the Saima alkaline complex

    • [1] Andersen, T., Erambert, M., Larsen, A. O., et al., 2013. Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex. Mineralogia, 44(3/4): 61-98. https://doi.org/10.2478/mipo-2013-0007
      [2] Bellezza, M., Merlino, S., Perchiazzi, N., 2009. Mosandrite: Structural and Crystal-Chemical Relationships with Rinkite. The Canadian Mineralogist, 47(4): 897-908. https://doi.org/10.3749/canmin.47.4.897
      [3] Borst, A. M., Friis, H., Andersen, T., et al., 2016. Zirconosilicates in the Kakortokites of the Ilímaussaq Complex, South Greenland: Implications for Fluid Evolution and High-Field-Strength and Rare-Earth Element Mineralization in Agpaitic Systems. Mineralogical Magazine, 80(1): 5-30. https://doi.org/10.1180/minmag.2016.080.046
      [4] Cámara, F., Sokolova, E., Hawthorne, F. C., 2011. From Structure Topology to Chemical Composition. XⅡ. Titanium Silicates: The Crystal Chemistry of Rinkite, Na2Ca4REETi(Si2O7)2OF3. Mineralogical Magazine, 75(6): 2755-2774. https://doi.org/10.1180/minmag.2011.075.6.2755
      [5] Chakhmouradian, A. R., Mitchell, R. H., 2002. The Mineralogy of Ba- And Zr-Rich Alkaline Pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): Comparisons between Potassic and Sodic Agpaitic Pegmatites. Contributions to Mineralogy and Petrology, 143(1): 93-114. https://doi.org/10.1007/s00410-001-0333-6
      [6] Chakhmouradian, A. R., Wall, F., 2012. Rare Earth Elements: Minerals, Mines, Magnets (and More). Elements, 8(5): 333-340. https://doi.org/10.2113/gselements.8.5.333
      [7] Chakrabarty, A., Mitchell, R. H., Ren, M., et al., 2013. Rinkite, Cerianite-(Ce), and Hingganite-(Ce) in Syenite Gneisses from the Sushina Hill Complex, India: Occurrence, Compositional Data and Petrogenetic Significance. Mineralogical Magazine, 77(8): 3137-3153. https://doi.org/10.1180/minmag.2013.077.8.08
      [8] Chen, Z.B., Fan, J., Guo, Z.T., et al., 1996.Saima Alkaline Complex and Mineralization. Atomic Energy Press, Beijing, 1-305(in Chinese with English abstract).
      [9] Cheng, X.H., Xu, J.H., Zhang, H., et al., 2014.Inclusion Study of the Quartz Dikes in the Saima-Bailinchuan Alkaline Complex in Liaoning Province. Mineral Deposits, 33: 503-504 (in Chinese).
      [10] Kalashnikov, A. O., Konopleva, N. G., Pakhomovsky, Y. A., et al., 2016. Rare Earth Deposits of the Murmansk Region, Russia:A Review. Economic Geology, 111(7): 1529-1559. https://doi.org/10.2113/econgeo.111.7.1529
      [11] Karup-Møller, S., Rose-Hansen, J., Sørensen, H., 2010. Eudialyte Decomposition Minerals with New Hitherto Undescribed Phases from the Ilímaussaq Complex, South Greenland. Bulletin of the Geological Society of Denmark, 58: 75-88. https://doi.org/10.1007/s00280-008-0923-3
      [12] Konopleva, N. G., Ivanyuk, G. Y., Pakhomovsky, Y. A., et al., 2015. Typochemistry of Rinkite and Products of its Alteration in the Khibiny Alkaline Pluton, Kola Peninsula. Geology of Ore Deposits, 57(7): 614-625. https://doi.org/10.1134/s1075701515070065
      [13] Li, Z.J., Liu, Y., 2018. Ore Types and Genesis of Weathered Deposits in Mianning-Dechang REE Ore Belt, Western Sichuan Province, Southwestern China. Earth Science, 43(4): 1307-1320(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804024
      [14] Liaoning Bureau of Geology and Mineral Resources Exploration, 1989.Regional Geology of Liaoning Province. Geological Publishing House, Beijing (in Chinese with English abstract).
      [15] Liferovich, R. P., Mitchell, R. H., 2006. Apatite-Group Minerals from Nepheline Syenite, Pilansberg Alkaline Complex, South Africa. Mineralogical Magazine, 70(5): 463-484. https://doi.org/10.1180/0026461067050346
      [16] Linnen, R.L., Samson, I.M., Williams-Jones, A.E., et al., 2014. Geochemistry of the Rare-Earth Element, Nb, Ta, Hf and Zr Deposits. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Elsevier Science Press, Amsterdam, 13: 543-568. https://doi.org/ 10.1016/B978-0-08-095975-7.01124-4
      [17] Lou, F.S., Zhang, R.Y., Liu, H.R., 1988. Mineralogy of Mosandrite. Acta Petrologicaet Mineralogica, 7: 58-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW198801007.htm
      [18] Markl, G., Marks, M. A. W., Frost, B. R., 2010. On the Controls of Oxygen Fugacity in the Generation and Crystallization of Peralkaline Melts. Journal of Petrology, 51(9): 1831-1847. https://doi.org/10.1093/petrology/egq040
      [19] Marks, M.A.W., Markl, G., 2017. A Global Review on Agpaitic Rocks. Earth-Science Reviews, 173: 229-258. https://doi.org/ 10.1016/j.earscirev.2017.06.002
      [20] Mitchell, R. H., Chakrabarty, A., 2012. Paragenesis and Decomposition Assemblage of a Mn-Rich Eudialyte from the Sushina Peralkaline Nepheline Syenite Gneiss, Paschim Banga, India. Lithos, 152: 218-226. https://doi.org/10.1016/j.lithos.2012.02.003
      [21] Montel, J. M., 1993. A Model for Monazite/melt Equilibrium and Application to the Generation of Granitic Magmas. Chemical Geology, 110(1/2/3): 127-146. https://doi.org/10.1016/0009-2541(93)90250-m
      [22] Ren, K.X., 2003. Study Process of the Alkaline Rocks: A Review. Geology of Chemical, 25(3): 151-163 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGKC200303002.htm
      [23] Saima Deposit Research Group, Peking Institute of Uranium Geology. 1977. Uranium Deposit in the Saima Alkaline Massif, Northeast China. Science China (Earth Science), 5: 466-483 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JAXG197803006.htm
      [24] Salvi, S., Fontan, F., Monchoux, P., et al., 2000. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Economic Geology and the Bulletin of the Society of Economic Geologists, 95: 559-575. https://doi.org/ 10.2113/95.3.559
      [25] Shen, G.F., Xu, J.S., Yao, P., et al., 2017.Fengchengite: A New Species with the Na-Poor but Vacancy-Dominant N(5) Site in the Eudialyte Group. Acta Mineralogica Sinica, 37(1/2): 140-151 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201701018
      [26] Sokolova, E., 2006. From Structure Topology to Chemical Composition. I. Structural Hierarchy and Stereochemistry in Titanium Disilicate Minerals. The Canadian Mineralogist, 44(6): 1273-1330. https://doi.org/10.2113/gscanmin.44.6.1273
      [27] Sokolova, E., Cámara, F., 2008. From Structure Topology to Chemical Composition.Ⅷ. Titanium Silicates: The Crystal Chemistry of Mosandrite from Type Locality of Låven (Skådön), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogical Magazine, 72(4): 887-897. https://doi.org/10.1180/minmag.2008.072.4.887
      [28] Sokolova, E., Hawthorne, F. C., 2013. From Structure Topology to Chemical Composition. XIV. Titanium Silicates: Refinement of the Crystal Structure and Revision of the Chemical Formula of Mosandrite, (Ca3REE)[(H2O)2Ca0.5 < 0.5]Ti(Si2O7)2(OH)2(H2O)2, A Group-I Mineral from the Saga Mine, Morje, Porsgrunn, Norway. Mineralogical Magazine, 77(6): 2753-2771. https://doi.org/10.1180/minmag.2013.077.6.05
      [29] Sørensen, H., 1997. The Agpaitic Rocks: An Overview. Mineralogical Magazine, 61: 485-498. https://doi.org/ 10.1180/minmag.1997.061.407.02
      [30] Tan, D.B., Li, D.Y., Xiao, Y.L., 2018. Geochemical Characteristics of Niobium and Tantalum: A Review of Twin Elements. Earth Science, 43(1): 317-332(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801019
      [31] Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- And A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/ 10.1016/j.chemgeo.2017.09.033
      [32] Wang, L. X., Marks, M. A. W., Wenzel, T., et al., 2016. Halogen-Bearing Minerals from the Tamazeght Complex (Morocco): Constraints on Halogen Distribution and Evolution in Alkaline to Peralkaline Magmatic Systems. The Canadian Mineralogist, 54(6): 1347-1368. https://doi.org/10.3749/canmin.1600007
      [33] Williams-Jones, A. E., Migdisov, A. A., Samson, I. M., 2012. Hydrothermal Mobilisation of the Rare Earth Element: A Tale of "Ceria" and "Yttria". Elements, 8(5): 355-360. https://doi.org/10.2113/gselements.8.5.355
      [34] Wu, B., Wang, R. C., Yang, J. H., et al., 2015. Wadeite (K2ZrSi3O9), An Alkali-Zirconosilicate from the Saima Agpaitic Rocks in Northeastern China: Its Origin and Response to Multi-Stage Activities of Alkaline Fluids. Lithos, 224-225: 126-142. https://doi.org/10.1016/j.lithos.2015.02.008
      [35] Wu, B., Wang, R. C., Yang, J. H., et al., 2016. Zr and REE Mineralization in Sodic Lujavrite from the Saima Alkaline Complex, Northeastern China: A Mineralogical Study and Comparison with Potassic Rocks. Lithos, 262: 232-246. https://doi.org/10.1016/j.lithos.2016.07.013
      [36] Wu, B., Wang, R.C., Liu, X.D., et al., 2018.Chemical Composition and Alteration Assemblages of Eudialyte in the Saima Alkaline Complex, Liaoning Province, and Its Implication for Alkaline Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 6: 1741-1757 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201806012
      [37] Wu, F. Y., Yang, Y. H., Marks, M. A. W., et al., 2010. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1/2): 8-34. https://doi.org/ 10.1016/j.chemgeo.2010.02.007
      [38] Yang, Z. M., Giester, G., Ding, K. S., et al., 2012. Hezuolinite, (Sr, REE)4Zr(Ti, Fe3+, Fe2+)2Ti2O8(Si2O7)2, a New Mineral Species of the Chevkinite Group from Saima Alkaline Complex, Liaoning Province, NE China. European Journal of Mineralogy, 24(1): 189-196. https://doi.org/10.1127/0935-1221/2011/0023-2158
      [39] Zhu, Y. S., Yang, J. H., Sun, J. F., et al., 2017. Zircon Hf-O Isotope Evidence for Recycled Oceanic and Continental Crust in the Sources of Alkaline Rocks. Geology, 45(5): 407-410. https://doi.org/10.1130/g38872.1
      [40] Zhu, Y.S., Yang, J.H., Sun, J.F., et al., 2016. Petrogenesis of Coeval Silica-Saturated and Silica-Undersaturated Alkaline Rocks: Mineralogical and Geochemical Evidence from the Saima Alkaline Complex, NE China. Journal of Asian Earth Sciences, 117: 184-207. https://doi.org/ 10.1016/j.jseaes.2015.12.014
      [41] 北京铀矿地质研究所赛马矿床研究组, 1977.我国东北赛马碱性岩体中的铀矿床.中国科学(D辑), 5: 466-483.
      [42] 陈肇博, 范军, 郭智添, 等, 1996.赛马碱性岩与成矿作用.北京:原子能出版社, 1-305.
      [43] 成曦晖, 张九华, 张辉, 等, 2014.辽宁赛马-柏林川碱性岩区石英脉中的包裹体.矿床地质, (S1): 503-504. http://d.wanfangdata.com.cn/Conference/8450444
      [44] 李自静, 刘琰, 2018.川西冕宁-德昌REE矿带风化型矿床的矿石类型及成因.地球科学, 43(4): 1307-1320. doi: 10.3799/dqkx.2018.722
      [45] 辽宁省地质矿产局, 1989.辽宁省区域地质志.北京:地质出版社, 1-856.
      [46] 楼凤升, 张荣英, 刘汉儒, 1988.层硅铈钛矿的矿物学研究.岩石矿物学杂志, 7: 58-64.
      [47] 任康绪. 2003.碱性岩研究进展评述.化工矿产地质, 25(3): 151-163. doi: 10.3969/j.issn.1006-5296.2003.03.003
      [48] 沈敢富, 徐金沙, 姚鹏, 等, 2017.凤城石:异性石族矿物N(5)位贫钠的空位类似物新种.矿物学报, Z1: 140-151. http://d.old.wanfangdata.com.cn/Periodical/ysky200904009
      [49] 谭东波, 李东永, 肖益林, 2018. "孪生元素"铌-钽的地球化学特征和研究进展.地球科学, 43(1): 317-332. doi: 10.3799/dqkx.2018.019
      [50] 邬斌, 王汝成, 刘晓东, 等, 2018.辽宁赛马碱性岩异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义.岩石学报, 6:1741-1757.
    • dqkx-45-2-467-Table1-2.pdf
    • 加载中
    图(4)
    计量
    • 文章访问数:  3023
    • HTML全文浏览量:  1224
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-16
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回