Reflections on Model of Modern Seafloor Hydrothermal System
-
摘要: 现代海底热液活动往往与岩浆作用相伴生.传统的热液系统循环模式认为:海水沿裂隙(通道)下渗,被加热并与围岩发生水岩反应,萃取岩石中的金属元素,形成热液流体并上涌喷出海底,沉积生成多金属硫化物矿体.这一模式合理地解释了构成现代海底热液系统的3个基本要素:流体、通道和热源,与我们现今条件下所观察到的许多事实相吻合.然而,基岩渗透率、热液流体性质、热液生态系统和热液产物上的差异表明现代海底热液活动系统可能存在另一种注入式循环模式,即热液流体来自深部岩浆房流体和挥发性组分的直接注入.据此提出现代海底热液活动系统可能存在两种模式:一种是浅层循环模式,即传统的热液循环模式;另一种是岩浆后期热液注入模式(简称"注入模式").在岩浆作用强烈和构造裂隙发育的环境中,两种模式可能同时存在,形成双扩散对流循环模式.双扩散对流循环模式可以很好地解释现代海底热液活动研究中近期所发现的多种现象和事实.对弧后盆地而言,在研究其岩浆作用与热液活动时,还要考虑板块俯冲的构造背景和俯冲组分及陆壳组分加入等因素,同时构建了适用于弧后盆地海底热液活动系统的理论模型.Abstract: Modern seafloor hydrothermal activity is generally accompanied by magmatism. Traditional hydrothermal system model hypothesizes that seawater penetrates through the rifts or cracks, then is heated and reacts with the surrounding rocks gradually leaching out metal elements from the rocks and resulting in the formation of metal-rich, acidic and reductive hydrothermal fluid. Subsequently, the heated fluid moves up along a series of fissures and erupts directly out of the ocean floor leading to precipitations of hydrothermal sulfides.This model reasonably accounts for the existence of fluid, channels and heat sources which are the three fundamental elements of modern seafloor hydrothermal system, and is in accord with many phenomena we have observed so far. However, differences in rock permeability, hydrothermal fluid properties, thermal fluid ecosystem and hydrothermal product indicate that there is possibly another injected circulation pattern for modern seafloor hydrothermal systems, which means the hydrothermal fluid is derived from the direct injection of fluid and volatile components from the deep magma chamber. Accordingly, it is inferred that there possibly are two models for modern seafloor hydrothermal systems:one is the shallow circulation mode, namely the traditional mode of hydrothermal circulation; the other is a magmatic hydrothermal injection mode ("injection model"). In the environment of strong magmatism and well-developed fracture, two modes may exist simultaneously, and the double diffusive convection circulation model is proposed. The double diffusive convection circulation model can be used to explain a variety of phenomena and facts recently discovered in the study of modern seafloor hydrothermal system. Moreover, it is pointed out that the tectonic background of the subduction and the mixing of materials from both subduction component and continental crust are also considered in the study of the magmatism and hydrothermal activity in back-arc basin. Meanwhile, a theoretical model has been constructed for the sea-floor hydrothermal system in back-arc basin taking the Okinawa trough as an example.
-
图 2 现代海底热液活动(a)与岩浆作用(b)在全球范围内的分布
b.来自https://en.wikipedia.org/wiki/Volcano
Fig. 2. The global distributions of modern seafloor hydrothermal activity and magmatic activity
图 6 冲绳海槽热液区火山岩中矿物包裹体和热液成因矿物包裹体的成分对比
Fig. 6. The comparisons of mineral inclusion compositions between volcanic rock and hydrothermal deposit from the Okinawa trough
-
[1] Abers, G.A., van Keken, P.E.V., Kneller, E.A., et al., 2006.The Thermal Structure of Subduction Zones Constrained by Seismic Imaging:Implications for Slab Dehydration and Wedge Flow.Earth and Planetary Science Letters, 241(3-4):387-397. https://doi.org/10.1016/j.epsl.2005.11.055 [2] Alt, J.C., 1995.Subseafloor Processes in Mid-Ocean Ridge Hydrothennal Systems.Geophysical Monograph Series, London, 85-114. https://doi.org/10.1029/gm091p0085 [3] Alt, J.C., Anderson, T.F., Bonnell, L., et al., 1989.Mineralogy, Chemistry and Stable Isotopic Compositions of Hydrothermally Altered Sheeted Dikes:ODP Hole 504B, Leg 111.Proceedings of the Ocean Drilling Program, 111:27-40. https://doi.org/10.2973/odp.proc.sr.111.114.1989 [4] Alt, J.C., Laverne, C., Vanko, D.A., et al., 1996.Hydrothermal Alteration of a Section of Upper Oceanic Crust in the Eastern Equatorial Pacific:A Synthesis of Results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148).Proceedings of the Ocean Drilling Program, 148:417-434. https://doi.org/10.2973/odp.proc.sr.148.159.1996 [5] Altwegg, K., Balsiger, H., Bar-Nun, A., et al., 2014.67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a High D/H Ratio.Science, 347(6220):1261952. https://doi.org/10.1126/science.1261952 [6] Anderson, R.N., Hobart, M.A., 1976.The Relation between Heat Flow, Sediment Thickness, and Age in the Eastern Pacific.Journal of Geophysical Research, 81(17):2968-2989. https://doi.org/10.1029/jb081i017p02968 [7] Andrews, A.J., Fyfe, W.S., 1976.Metamorphism and Massive Sulphide Generation in Oceanic Crust.Geoscience Canada, 3(2):84-94. https://doi.org/10.12789/gs.v3i2.1139 [8] Bai, Q., Kohlstedt, D.L., 1992.Substantial Hydrogen Solubility in Olivine and Implications for Water Storage in the Mantle.Nature, 357(6380):672-674. https://doi.org/10.1038/357672a0 [9] Bard, J.P., 1984.Petrology of the Ocean Floor.Earth-Science Reviews, 21(4):305. https://doi.org/10.1016/0012-8252(84)90068-0 [10] Barriga, F., Fouquet, Y., Almeida, A., et al., 1998.Discovery of the Saldanha Hydrothermal Field on the Famous Segment of the MAR (36°30'N).EOS Trans.Am.Geophys.Union, 79:67. [11] Becker, K., 1985.Large-Scale Electrical Resistivity and Bulk Porosity of the Oceanic Crust, Deep Sea Drilling Project Hole 504B, Costa Rica Rift.Initial Reports of the Deep Sea Drilling Project, New York, 419-427. https://doi.org/10.2973/dsdp.proc.83.124.1985 [12] Bell, D.R., 1992.Water in Mantle Minerals.Nature, 357(6380):646-647. https://doi.org/10.1038/357646a0 [13] Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Minerals.Science, 255(5050):1391-1397. https://doi.org/10.1126/science.255.5050.1391 [14] Bizimis, M., Peslier, A.H., 2015.Water in Hawaiian Garnet Pyroxenites:Implications for Water Heterogeneity in the Mantle.Chemical Geology, 397:61-75. https://doi.org/10.1016/j.chemgeo.2015.01.008 [15] Bourdon, B., Turner, S., Dosseto, A., 2003.Dehydration and Partial Melting in Subduction Zones:Constraints from U-Series Disequilibria.Journal of Geophysical Research:Solid Earth, 108(B6). https://doi.org/10.1029/2002jb001839 [16] Converse, D.R., Holland, H.D., Edmond, J.M., 1984.Flow Rates in the Axial Hot Springs of the East Pacific Rise (21°N):Implications for the Heat Budget and the Formation of Massive Sulfide Deposits.Earth and Planetary Science Letters, 69(1):159-175. https://doi.org/10.1016/0012-821x(84)90080-3 [17] Corliss, J.B., Dymond, J., Gordon, L.I., et al., 1979.Submarine Thermal Springs on the Galapagos Rift.Science, 203(4385):1073-1083. https://doi.org/10.1126/science.203.4385.1073 [18] Cottin, H., 2015. 67P/Churyumov-Gerasimenko. https://en.wikipedia.org/wiki/67P/Churyumov%E2%80%93Gerasimenko [19] Dick, H.J.B., Lin, J., Schouten, H., 2003.An Ultraslow-Spreading Class of Ocean Ridge.Nature, 426(6965):405-412. https://doi.org/10.1038/nature02128 [20] Doucet, L.S., Peslier, A.H., Ionov, D.A., et al., 2014.High Water Contents in the Siberian Cratonic Mantle Linked to Metasomatism:An FTIR Study of Udachnaya Peridotite Xenoliths.Geochimica et Cosmochimica Acta, 137:159-187. https://doi.org/10.1016/j.gca.2014.04.011 [21] Edmond, J.M., von Damm, K., 1983.Hot Springs on the Ocean Floor.Sci.Am.(United States), 248(4):78-93. https://doi.org/10.1038/scientificamerican0483-78 [22] Edmond, J.M., von Damm, K.L., McDuff, R.E., et al., 1982.Chemistry of Hot Springs on the East Pacific Rise and Their Effluent Dispersal.Nature, 297(5863):187-191. https://doi.org/10.1038/297187a0 [23] Elder, J.W., 2013.Physical Processes in Geothermal Areas.Geophysical Monograph Series, 211-239. https://doi.org/10.1029/gm008p0211 [24] Evans, R.L., Hirth, G., Baba, K., et al., 2005.Geophysical Evidence from the MELT Area for Compositional Controls on Oceanic Plates.Nature, 437(7056):249-252. https://doi.org/10.1038/nature04014 [25] Faure, G., 1987.Principles of Isotope Geology.John Wiley & Sons Inc., 14(2):190-191. https://doi.org/10.1016/0016-7037(87)90361-9 [26] Finger, L.W., Prewitt, C.T., 1989.Predicted Compositions for High-Density Hydrous Magnesium Silicates.Geophysical Research Letters, 16(12):1395-1397. https://doi.org/10.1029/gl016i012p01395 [27] Franklin, J.M., Lydon, J.W., Sangster, D.F., 1981.Volcanic-Associated Massive Sulphide Deposits.Economic Geology, 75:485-627. [28] Fyfe, W.S., 1974.Heats of Chemical Reactions and Submarine Heat Production.Geophysical Journal International, 37(1):213-215. https://doi.org/10.1111/j.1365-246x.1974.tb02454.x [29] Gamo, T., Masuda, H., Yamanaka, T., et al., 2004.Discovery of a New Hydrothermal Venting Site in the Southernmost Mariana Arc:Al-Rich Hydrothermal Plumes and White Smoker Activity Associated with Biogenic Methane.Geochemical Journal, 38(6):527-534. https://doi.org/10.2343/geochemj.38.527 [30] Germanovich, L.N., Lowell, R.P., Astakhov, D.K., 2000.Stress-Dependent Permeability and the Formation of Seafloor Event Plumes.Journal of Geophysical Research:Solid Earth, 105(B4):8341-8354. https://doi.org/10.1029/1999jb900431 [31] Glasby, G.P., Notsu, K., 2003.Submarine Hydrothermal Mineralization in the Okinawa Trough, SW of Japan:An Overview.Ore Geology Reviews, 23(3-4):299-339. https://doi.org/10.1016/j.oregeorev.2003.07.001 [32] Gosnell, S. R., 2006. Numerical Modeling of Induced Diffuse Flow in Seafloor Hydrothermal Systems (Dissertation). Georgia Institute of Technology, Georgia. [33] Green, D.H., Hibberson, W.O., Kovács, I., et al., 2010.Water and Its Influence on the Lithosphere-Asthenosphere Boundary.Nature, 467(7314):448-451. https://doi.org/10.1038/nature09369 [34] Green, D.H., Liebermann, R.C., 1976.Phase Equilibria and Elastic Properties of a Pyrolite Model for the Oceanic Upper Mantle.Tectonophysics, 32(1-2):61-92. https://doi.org/10.1016/0040-1951(76)90086-x [35] Guerin, G., Goldberg, D.S., Iturrino, G.J., 2008.Velocity and Attenuation in Young Oceanic Crust:New Downhole Log Results from DSDP/ODP/IODP Holes 504B and 1256D.Geochemistry, Geophysics, Geosystems, 9(12):178-196. https://doi.org/10.1029/2008gc002203 [36] Guo, K., Zhai, S.K., Yu, Z.H., et al., 2016.Determination and Tectonic Significance of Volcanic Rock Series in the Okinawa Trough.Earth Science, 41(10):1655-1664.(in Chinese with English abstract). [37] Hacker, B.R., Peacock, S.M., Abers, G.A., et al., 2003.Subduction Factory 2 are Intermediate-Depth Earthquakes in Subducting Slabs Linked to Metamorphic Dehydration Reactions? Journal of Geophysical Research:Solid Earth, 108(B1). https://doi.org/10.1029/2001jb001129 [38] Hallis, L.J., Huss, G.R., Nagashima, K., et al., 2015.Evidence for Primordial Water in Earth's Deep Mantle.Science, 350(6262):795-797. https://doi.org/10.1126/science.aac4834 [39] Hannington, M. D., de Ronde, C. D. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Washington, D. C., 111-141. [40] Hannington, M.D., Jonasson, I.R., Herzig, P.M., et al., 1995.Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges.Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions, American Geophysical Union, Washington, D.C., 115-157. https://doi.org/10.1029/GM091p0115 [41] Hashimoto, J., Ohta, S., Gamo, T., et al., 2001a.Hydrothermal Vents and Associated Biological Communities in the Indian Ocean.Inter Ridge News, 10(1):21-22. doi: 10.1007/978-4-431-54865-2_12 [42] Hashimoto, J., Ohta, S., Gamo, T., et al., 2001b.First Hydrothermal Vent Communities from the Indian Ocean Discovered.Zoological Science, 18(5):717-721. https://doi.org/10.2108/zsj.18.717 [43] Herzig, P.M., Hannington, M.D., Arribas, Jr.A., 1998.Sulfur Isotopic Composition of Hydrothermal Precipitates from the Lau Back-Arc:Implications for Magmatic Contributions to Seafloor Hydrothermal Systems.Mineralium Deposita, 33(3):226-237. https://doi.org/10.1007/s001260050143 [44] Hill, R.E.T., Boettcher, A.L., 1970.Water in the Earth's Mantle:Melting Curves of Basalt-Water and Basalt-Water-Carbon Dioxide.Science, 167(3920):980-982. https://doi.org/10.1126/science.167.3920.980 [45] Hirschmann, M.M., 2006.Water, Melting, and the Deep Earth H2O Cycle.Annual Review of Earth and Planetary Sciences, 34(1):629-653. https://doi.org/10.1146/annurev.earth.34.031405.125211 [46] Hirth, G., Kohlstedt, D., 2003.Rheology of the Upper Mantle and the Mantle Wedge:A View from the Experimentalists.Geophysical Monograph Series, 83-105. https://doi.org/10.1029/138gm06 [47] Hirth, G., Kohlstedt, D.L., 1996.Water in the Oceanic Upper Mantle:Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere.Earth and Planetary Science Letters, 144(1-2):93-108. https://doi.org/10.1016/0012-821x(96)00154-9 [48] Höink, T., Jellinek, A.M., Lenardic, A., 2011.Viscous Coupling at the Lithosphere-Asthenosphere Boundary.Geochemistry, Geophysics, Geosystems, 12(10). https://doi.org/10.1029/2011gc003698 [49] Inoue, T., Wada, T., Sasaki, R., et al., 2010.Water Partitioning in the Earth's Mantle.Physics of the Earth and Planetary Interiors, 183(1-2):245-251. https://doi.org/10.1016/j.pepi.2010.08.003 [50] Joint Oceangraphic Institute Incorporated, 1990.Long Range Plan, Ocean Drilling Program, New York. [51] Jia, S.F., 2015.Where is the Water on Earth Come from?The Encyclopedia of Knowledge, (3):22-23 (in Chinese). https://www.coursehero.com/file/p2ffeen/Where-did-the-water-on-Earth-come-from-8-Habitable-zone-Water-is-common-in-the/ [52] Jørgensen, B.B., d'Hondt, S., 2006.Ecology:A Starving Majority Deep beneath the Seafloor.Science, 314(5801):932-934. https://doi.org/10.1126/science.1133796 [53] Karato, S.I., 2010.Rheology of the Deep Upper Mantle and Its Implications for the Preservation of the Continental Roots:A Review.Tectonophysics, 481(1-4):82-98. https://doi.org/10.1016/j.tecto.2009.04.011 [54] Karato, S.I., 2012.On the Origin of the Asthenosphere.Earth and Planetary Science Letters, 321-322:95-103. https://doi.org/10.1016/j.epsl.2012.01.001 [55] Karato, S.I., Jung, H., 2003.Effects of Pressure on High-Temperature Dislocation Creep in Olivine.Philosophical Magazine, 83(3):401-414. https://doi.org/10.1080/0141861021000025829 [56] Kelley, D.S., Karson, J.A., Blackman, D.K., et al., 2001.An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30°N.Nature, 412(6843):145-149. https://doi.org/10.1038/35084000 [57] Kim, J., Lee, I., Lee, K.Y., 2004.S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific:Evaluation of Magmatic Contribution to Hydrothermal System.Journal of Geophysical Research, 109(B12):159-163. https://doi.org/10.1029/2003jb002912 [58] Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996.Solubility of Water in the α, β and γ Phases of (Mg, Fe)2 SiO4.Contributions to Mineralogy and Petrology, 123(4):345-357. https://doi.org/10.1007/s004100050161 [59] Kormas, K.A., Tivey, M.K., von Damm, K.V., et al., 2006.Bacterial and Archaeal Phylotypes Associated with Distinct Mineralogical Layers of a White Smoker Spire from a Deep-Sea Hydrothermal Vent Site (9°N, East Pacific Rise).Environmental Microbiology, 8(5):909-920. https://doi.org/10.1111/j.1462-2920.2005.00978.x [60] Kushiro, I., 1970.Stability of Amphibole and Phlogopite in the Upper Mantle.Carnegie Inst.Washington Yearb., 68:245-247. [61] Kushiro, I., Syono, Y., Akimoto, S.I., 1968.Melting of a Peridotite Nodule at High Pressures and High Water Pressures.Journal of Geophysical Research, 73(18):6023-6029. https://doi.org/10.1029/jb073i018p06023 [62] Lambert, I.B., Wyllie, P.J., 1970.Low-Velocity Zone of the Earth's Mantle:Incipient Melting Caused by Water.Science, 169(3947):764-766. https://doi.org/10.1126/science.169.3947.764 [63] Large, R.R., 1992.Australian Volcanic-Hosted Massive Sulfide Deposits:Features, Styles, and Genetic Models.Economic Geology, 87(3):471-510. https://doi.org/10.2113/gsecongeo.87.3.471 [64] Li, H.M., Zhai, S.K., Tao, C.H., et al., 2009.Advances on the Magmatism Processes in the Subduction Zones.Advances in Marine Science, 27(1):98-105(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-6647.2009.01.013 [65] Li, W.Y., 2010.Hydrothermal Mineralization on the Modern Seafloor.Journal of Earth Sciences and Environment, 32(1):15-23(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-6561.2010.01.002 [66] Li, Y.X., 1984.The Origin of Water on the Earth and Genesis of Underground Water.Journal of Xi'an College of Geology, (2):80-87 (in Chinese). [67] Lister, C.R.B., 1980.Heat Flow and Hydrothermal Circulation.Annual Review of Earth and Planetary Sciences, 8(1):95-117. https://doi.org/10.1146/annurev.ea.08.050180.000523 [68] Liu, L.G., 1987.Effects of H2O on the Phase Behaviour of the Forsterite-Enstatite System at High Pressures and Temperatures and Implications for the Earth.Physics of the Earth and Planetary Interiors, 49(1/2):142-167. https://doi.org/10.1016/0031-9201(87)90138-5 [69] Lowell, R.P., 2002.Seafloor Hydrothermal Systems Driven by the Serpentinization of Peridotite.Geophysical Research Letters, 29(11):26-1. https://doi.org/10.1029/2001gl014411 [70] Lowell, R.P., Germanovich, L.N., 2004.Hydrothermal Processes at Mid-Ocean Ridges:Results from Scale Analysis and Single-Pass Models.Mid-Ocean Ridges, 219-244. https://doi.org/10.1029/148GM09 [71] Mei, S., Kohlstedt, D.L., 2000a.Influence of Water on Plastic Deformation of Olivine Aggregates:1.Diffusion Creep Regime.Journal of Geophysical Research:Solid Earth, 105(B9):21457-21469. https://doi.org/10.1029/2000jb900179 [72] Mei, S., Kohlstedt, D.L., 2000b.Influence of Water on Plastic Deformation of Olivine Aggregates:2.Dislocation Creep Regime.Journal of Geophysical Research:Solid Earth, 105(B9):21471-21481. https://doi.org/10.1029/2000jb900180 [73] Mével, C., 2003.Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges.Comptes Rendus Geoscience, 335(10/11):825-852. https://doi.org/10.1016/j.crte.2003.08.006 [74] Newmark, R.L., Anderson, R.N., Moos, D., et al., 1985.Structure, Porosity and Stress Regime of the Upper Oceanic Crust:Sonic and Ultrasonic Logging of DSDP Hole 504B.Tectonophysics, 118(1/2):1-42. https://doi.org/10.1016/0040-1951(85)90153-2 [75] Ohira, I., Ohtani, E., Sakai, T., et al., 2014.Stability of a Hydrous Δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle.Earth and Planetary Science Letters, 401:12-17. https://doi.org/10.13039/501100001691 [76] Ohtani, E., 2015.Hydrous Minerals and the Storage of Water in the Deep Mantle.Chemical Geology, 418:6-15. https://doi.org/10.13039/501100003443 [77] Parsons, B., Sclater, J.G., 1977.An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age.Journal of Geophysical Research, 82(5):803-827. https://doi.org/10.1029/jb082i005p00803 [78] Peacock, S.M., 1999.Seismic Consequences of Warm versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan.Science, 286(5441):937-939. https://doi.org/10.1126/science.286.5441.937 [79] Pearson, D.G., Brenker, F.E., Nestola, F., et al., 2014.Water and Slabs in the Transition Zone-Hydrous Ringwoodite in Diamond.AGU Fall Meeting Abstracts, 1:1. http://adsabs.harvard.edu/abs/2014AGUFMDI32A..01P [80] Pedersen, R.B., Furnes, H., 2001.Nd-and Pb-Isotopic Variations through the Upper Oceanic Crust in DSDP/ODP Hole 504B, Costa Rica Rift.Earth and Planetary Science Letters, 189(3/4):221-235. https://doi.org/10.1016/s0012-821x(01)00349-1 [81] Perfit, M.R., Davidson, J.P., 2000.Plate Tectonics and Volcanism.Encyclopedia of Volcanoes.Elsevier, Amsterdam, 89-113. https://doi.org/10.1016/B978-0-12-385938-9.00003-1 [82] Peslier, A.H., 2010.A Review of Water Contents of Nominally Anhydrous Natural Minerals in the Mantles of Earth, Mars and the Moon.Journal of Volcanology and Geothermal Research, 197(1/2/3/4):239-258. https://doi.org/10.1016/j.jvolgeores.2009.10.006 [83] Pezard, P.A., 1990.Electrical Properties of Mid-Ocean Ridge Basalt and Implications for the Structure of the Upper Oceanic Crust in Hole 504B.Journal of Geophysical Research, 95(B6):9237. https://doi.org/10.1029/jb095ib06p09237 [84] Presnall, D.C., Gudfinnsson, G.H., 2005.Carbonate-Rich Melts in the Oceanic Low-Velocity Zone and Deep Mantle.Geological Society of America Special Papers, 388:207-216. https://doi.org/10.1130/2005.2388(13) [85] Ragozin, A.L., Karimova, A.A., Litasov, K.D., et al., 2014.Water Content in Minerals of Mantle Xenoliths from the Udachnaya Pipe Kimberlites (Yakutia).Russian Geology and Geophysics, 55(4):428-442. https://doi.org/10.1016/j.rgg.2014.03.002 [86] Revelle, R., Maxwell, A.E., 1952.Heat Flow through the Floor of the Eastern North Pacific Ocean.Nature, 170(4318):199-200. https://doi.org/10.1038/170199a0 [87] Ringwood, A.E., 1969.Composition and Evolution of the Upper Mantle.The Earth's Crust and Upper Mantle.Wiley Online, 1-17. https://doi.org/10.1029/GM013p0001 [88] Rona, P.A., 1976.Pattern of Hydrothermal Mineral Deposition:Mid-Atlantic Ridge Crest at Latitude 26°N.Marine Geology, 21(4):59-66. https://doi.org/10.1016/0025-3227(76)90009-8 [89] Rona, P.A., 1984.Hydrothermal Mineralization at Seafloor Spreading Centers.Earth-Science Reviews, 20(1):1-104. https://doi.org/10.1016/0012-8252(84)90080-1 [90] Rona, P.A., Widenfalk, L., Boström, K., 1987.Serpentinized Ultramafics and Hydrothermal Activity at the Mid-Atlantic Ridge Crest near 15°N.Journal of Geophysical Research, 92(B2):1417. https://doi.org/10.1029/jb092ib02p01417 [91] Rossman, G.R., 1996.Studies of OH in Nominally Anhydrous Minerals.Physics and Chemistry of Minerals, 23(4/5):299-304. https://doi.org/10.1007/bf00207777 [92] Rossman, G.R., 2006.Analytical Methods for Measuring Water in Nominally Anhydrous Minerals.Reviews in Mineralogy and Geochemistry, 62(1):1-28. https://doi.org/10.2138/rmg.2006.62.1 [93] Rossvra, N.G.R., Svrvrn, J.R., 1990.Hydroxyl Contents of Accessory Minerals in Mantle Eclogites and Related Rocks.American Mineralogist, 75(5):775-780. http://rruff.info/doclib/am/vol75/AM75_775.pdf [94] Roussel, E.G., Bonavita, M.A.C., Querellou, J., et al., 2008.Extending the Sub-Sea-Floor Biosphere.Science, 320(5879):1046-1046. https://doi.org/10.1126/science.1154545 [95] Santelli, C.M., Orcutt, B.N., Banning, E., et al., 2008.Abundance and Diversity of Microbial Life in Ocean Crust.Nature, 453(7195):653-656. https://doi.org/10.1038/nature06899 [96] Schmidt, R., Schmincke, H.U., 2000.Seamounts and Island Building.Encyclopedia of Volcanoes.Elsevier, Amsterdam, 383-402. https://www.sciencedirect.com/science/article/pii/B9780123859389000225 [97] Schroeder, T., John, B., Frost, B.R., 2002.Geologic Implications of Seawater Circulation through Peridotite Exposed at Slow-Spreading Mid-Ocean Ridges.Geology, 30(4):367.https://doi.org/10.1130/0091-7613(2002)030<0367:giosct>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0367:giosct>2.0.co;2 [98] Schultz, A., Dickson, P., Elderfield, H., 1996.Temporal Variations in Diffuse Hydrothermal Flow at TAG.Geophysical Research Letters, 23(23):3471-3474. https://doi.org/10.1029/96gl02081 [99] Sclater, J.G., Jaupart, C., Galson, D., 1980.The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth.Reviews of Geophysics, 18(1):269. https://doi.org/10.1029/rg018i001p00269 [100] Sclater, J.G., Parsons, B., Jaupart, C., 1981.Oceans and Continents:Similarities and Differences in the Mechanisms of Heat Loss.Journal of Geophysical Research, 86(B12):11535. https://doi.org/10.1029/jb086ib12p11535 [101] Scott, R., Hajash, A., 1975. Hydrothermal Process in the Atlantic Ocean Crust. PUBL, 119, Int, Ass. of Hidrol. Sci., Gentbrugge, Belgium. [102] Scott, S.D., 1985.Seafloor Polymetallic Sulfide Deposits:Modern and Ancient.Marine Mining, 5(2):191-212. https://doi.org/10.1016/S0016-7037(03)00459-9 [103] Sifré, D., Gardés, E., Massuyeau, M., et al., 2014.Electrical Conductivity during Incipient Melting in the Oceanic Low-Velocity Zone.Nature, 509(7498):81-85. https://doi.org/10.1038/nature13245 [104] Sleep, N.H., Wolery, T.J., 1978.Egress of Hot Water from Midocean Ridge Hydrothermal Systems:Some Thermal Constraints.Journal of Geophysical Research:Solid Earth, 83(B12):5913-5922. https://doi.org/10.1029/jb083ib12p05913 [105] Tarasov, V.G., Gebruk, A.V., Mironov, A.N., et al., 2005.Deep-Sea and Shallow-Water Hydrothermal Vent Communities:Two Different Phenomena?Chemical Geology, 224(1/2/3):5-39. https://doi.org/10.1016/j.chemgeo.2005.07.021 [106] Teagle, D.A.H., Bickle, M.J., Alt, J.C., 2003.Recharge Flux to Ocean-Ridge Black Smoker Systems:A Geochemical Estimate from ODP Hole 504B.Earth and Planetary Science Letters, 210(1/2):81-89. https://doi.org/10.1016/s0012-821x(03)00126-2 [107] Tivey, M., 2007.Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits.Oceanography, 20(1):50-65. https://doi.org/10.5670/oceanog.2007.80 [108] Tsuji, T., Ken, T.K., Oiwane, H., et al., 2012.Hydrothermal Fluid Flow System around the Iheya North Knoll in the Mid-Okinawa trough Based on Seismic Reflection Data.Journal of Volcanology and Geothermal Research, 213-214:41-50. https://doi.org/10.1016/j.jvolgeores.2011.11.007 [109] Turcotte, D.L., Schubert, G., 2014.Geodynamics.Cambridge University Press, Cambridge, 626. [110] van Dover, C.L., 2001.Biogeography and Ecological Setting of Indian Ocean Hydrothermal Vents.Science, 294(5543):818-823. https://doi.org/10.1126/science.1064574 [111] von Damm, K.L., Lilley, M.D., 2004.Diffuse Flow Hydrothermal Fluids from 9°50'N East Pacific Rise:Origin, Evolution and Biogeochemical Controls.The Subseafloor Biosphere at Mid-Ocean Ridges, London, 245-268. https://doi.org/10.1029/144GM16 [112] Wallace, M.E., Green, D.H., 1988.An Experimental Determination of Primary Carbonatite Magma Composition.Nature, 335(6188):343-346. https://doi.org/10.1038/335343a0 [113] Wang, J. J., 2012. Preliminary Studies on the Benthos from Deep-Sea Hydrothermal Field in Indian Ocean and East Pacific Rise (Dissertation). Third Institute of Oceanography, State Oceanic Administration, Xiamen (in Chinese with English abstract). [114] Wang, Q., 2010.A Review of Water Contents and Ductile Deformation Mechanisms of Olivine:Implications for the Lithosphere-Asthenosphere Boundary of Continents.Lithos, 120(1/2):30-41. https://doi.org/10.1016/j.lithos.2010.05.010 [115] Withers, A.C., Hirschmann, M.M., 2008.Influence of Temperature, Composition, Silica Activity and Oxygen Fugacity on the H2O Storage Capacity of Olivine at 8 GPa.Contributions to Mineralogy and Petrology, 156(5):595-605. https://doi.org/10.1007/s00410-008-0303-3 [116] Withers, A.C., Hirschmann, M.M., Tenner, T.J., 2011.The Effect of Fe on Olivine H2O Storage Capacity:Consequences for H2O in the Martian Mantle.American Mineralogist, 96(7):1039-1053. https://doi.org/10.2138/am.2011.3669 [117] Wolfgang, B., Bernhard, P., Hart, S.R., et al., 2003.Correction to"Geochemistry of Hydrothermally Altered Oceanic Crust:DSDP/ODP Hole 504B-Implications for Seawater-Crust Exchange Budgets and Sr-and Pb-Isotopic Evolution of the Mantle".Geochemistry, Geophysics, Geosystems, 4(3):1-12. https://doi.org/10.1029/2002GC000419 [118] Wyllie, P.J., 1988.Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth.Reviews of Geophysics, 26(3):370. https://doi.org/10.1029/rg026i003p00370 [119] Xia, Q.K., Hao, Y.T., Li, P., et al., 2010.Low Water Content of the Cenozoic Lithospheric Mantle beneath the Eastern Part of the North China Craton.Journal of Geophysical Research, 115(B7):1-22. https://doi.org/10.1029/2009jb006694 [120] Xie, Y., 2016.Study the Origin of Water on the Earth by the "Luo Sai Ta".Space Exploration, (1):46-49 (in Chinese). [121] Yamamoto, K., Akimoto, S., 1977.The System MgO-SiO2-H2O at High Pressures and Temperatures; Stability Field for Hydroxyl-Chondrodite, Hydroxyl-Clinohumite and 10 a O-Phase.American Journal of Science, 277(3):288-312. https://doi.org/10.2475/ajs.277.3.288 [122] Yang, C.P., Jin Z.M., Wu, Y., 2010.Water in the Mantle Transition Zone and Its Geodynamic Implications.Earth Science Frontiers, 17(3):114-126. [123] Yang, K.H., Scott, S.D., 1996.Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System.Nature, 383(6599):420-423. https://doi.org/10.1038/383420a0 [124] Yang, X.Z., Liu, D.D., Xia, Q.K., 2014.CO2-Induced Small Water Solubility in Olivine and Implications for Properties of the Shallow Mantle.Earth and Planetary Science Letters, 403:37-47. https://doi.org/10.13039/501100001809 [125] Yoerger, D., Bradley, A., Jakuba, M., et al., 2007.Mid-Ocean Ridge Exploration with an Autonomous Underwater Vehicle.Oceanography, 20(4):52-61. https://doi.org/10.5670/oceanog.2007.05 [126] Yu, Z. H., 2000. Study of the Inclusions and the Isotopic Compositions of Volatile Components in Volcanic Rocks in the Okinawa Trough (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao(in Chinese with English abstract). [127] Zekely, J., Van Dover, C.L., Nemeschkal, H.L., et al., 2006.Hydrothermal Vent Meiobenthos Associated with Mytilid Mussel Aggregations from the Mid-Atlantic Ridge and the East Pacific Rise.Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 53(8):1363-1378. https://doi.org/10.1016/j.dsr.2006.05.010 [128] Zeng, Z.G., 2011.Seafloor Hydrothermal Geology.Science Press, Beijing (in Chinese). [129] Zhai, S.K., Chen, L.R., Wang, Z., et al., 1997.Primary Analysis on Pumice Magmatism Model of the Okinawa Trough.Marine Geology & Quaternary Geology, 17(1):59-66 (in Chinese with English abstract). [130] Zhai, S.K., Chen, L.R., Zhang, H.Q., 2001.Magmatism and Seafloor Hydrothermal Activities in the Okinawa Trough.China Ocean Press, Beijing (in Chinese). [131] Zhao, H.B., Xu, W.B., Ma, Y.H., 2005.Deep Space Exploration of Asteroids:The Science Objectives and Exploration Program.The First Annual Meeting of Committee of Deep Space Exploration Technology, Chinese Society of Astronautics, Beijing(in Chinese). [132] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 46(3):253-286.https://doi.org/10.1007/s11430-015-5258-4 (in Chinese). doi: 10.1007/s11430-015-5258-4(inChinese) [133] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93 [134] Zhou, X.H., Zhang, H.F., Zheng, J.P., et al., 2013.Progresses of Mantle Geochemistry in China during the First Decade of the 21th Century.Bulletin of Mineralogy Petrology & Geochemistry, 26(2):163-172. [135] Zhu, H.J., Bozda, E., Duffy, T.S., et al., 2013.Seismic Attenuation beneath Europe and the North Atlantic:Implications for Water in the Mantle.Earth and Planetary Science Letters, 381(4):1-11. https://doi.org/10.1016/j.epsl.2013.08.030 [136] Zong, T., Zhai.S.K., Yu, Z.H., 2016.Regional Differences of Magmatism in the Okinawa Trough.Earth Science, 41(6):1031-1040 (in Chinese with English abstract). https://www.researchgate.net/publication/305417408_Regional_differences_of_magmatism_in_the_Okinawa_trough [137] 国坤, 翟世奎, 于增慧, 等, 2016.冲绳海槽火山岩岩石系列的厘定及构造环境意义.地球科学, 41(10):1655-1664. http://www.earth-science.net/WebPage/Article.aspx?id=3369 [138] 贾绍凤, 2015.地球上的水来自哪里?百科知识, (3):22-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=czsfd200832014 [139] 李怀明, 翟世奎, 陶春辉, 等, 2009.板块俯冲带岩浆作用过程的研究.海洋科学进展, 27(1):98-105. http://d.old.wanfangdata.com.cn/Periodical/hbhhy200901013 [140] 李文渊, 2010.现代海底热液成矿作用.地球科学与环境学报, 32(1):15-23. https://www.wenkuxiazai.com/doc/af3037d2c1c708a1284a445e.html [141] 李雨新, 1984.关于地球上水的起源与地下水的成因问题.西安地质学院学报, (2):80-87. https://www.natureasia.com/zh-cn/nature/highlights/24772 [142] 王建佳, 2012. 印度洋与东太平洋海隆深海热液区底栖动物初探(硕士学位论文). 厦门: 国家海洋局第三海洋研究所. [143] 谢懿, 2016."罗塞塔"探秘地球上水的起源.太空探索, (1):46-49. http://d.wanfangdata.com.cn/Periodical_kxdgy201503031.aspx [144] 于增慧, 2000. 冲绳海槽火山岩中岩浆包裹体及气体同位素组成研究(博士学位论文). 青岛: 中国科学院海洋研究所. [145] 曾志刚, 2011.海底热液地质学.北京:科学出版社. [146] 翟世奎, 陈丽蓉, 王镇, 等, 1997.冲绳海槽浮岩岩浆活动模式浅析.海洋地质与第四纪地质, 17(1):59-66. [147] 翟世奎, 陈丽蓉, 张海启, 2001.冲绳海槽的岩浆作用与海底热液活动.北京:海洋出版社. [148] 赵海斌, 徐伟彪, 马月华, 2005.小行星深空探测的科学目标与探测计划.中国宇航学会深空探测技术专业委员会学术会议, 北京. [149] 郑永飞, 陈仁旭, 徐峥, 等, 2016.俯冲带中的水迁移.中国科学:地球科学, 46(3):253-286. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201603001.htm [150] 宗统, 翟世奎, 于增慧, 2016.冲绳海槽岩浆作用的区域性差异.地球科学, 41(6):1031-1040. http://www.earth-science.net/WebPage/Article.aspx?id=3314