• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    风化成土过程中自生矿物的气候指示意义

    方谦 洪汉烈 赵璐璐 程峰 殷科 王朝文

    方谦, 洪汉烈, 赵璐璐, 程峰, 殷科, 王朝文, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
    引用本文: 方谦, 洪汉烈, 赵璐璐, 程峰, 殷科, 王朝文, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
    Fang Qian, Hong Hanlie, Zhao Lulu, Cheng Feng, Yin Ke, Wang Chaowen, 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769. doi: 10.3799/dqkx.2018.905
    Citation: Fang Qian, Hong Hanlie, Zhao Lulu, Cheng Feng, Yin Ke, Wang Chaowen, 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769. doi: 10.3799/dqkx.2018.905

    风化成土过程中自生矿物的气候指示意义

    doi: 10.3799/dqkx.2018.905
    基金项目: 

    国家自然科学基金项目 41272053

    国家自然科学基金项目 41772032

    国家自然科学基金项目 41472041

    详细信息
      作者简介:

      方谦(1993-), 男, 博士研究生, 主要从事粘土矿物学研究

      通讯作者:

      洪汉烈

    • 中图分类号: P571

    Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes

    • 摘要: 地球表层的土壤沉积物记录了第四纪以来与气候、环境、人类等有关的地球演化信息,是重要的研究过去历史的载体.成土体系中土壤的诸多特性都与成土期的气候环境信息息息相关,通过地质学研究方法可以提取某些特性并作为反演风化强度以及古气候的风化指标,即古气候替代指标.重点讨论了成土体系中新生的矿物学风化指标——粘土矿物与铁矿物的表征意义、研究方法与实例分析,并评述了其在反演气候方面的优势与局限性.成土作用中新生的粘土矿物直接受成土期盛行的环境与气候条件的影响,所以其组成、粒度、含量、结晶度等矿物学特征充分记录了成土期的气候与环境信息.另外,成土体系中也会新生成部分铁矿物.自生的铁矿物是反映成土期的湿度条件、温度范围的有效指标,因此对当时的气候演化历史也有很好的指示意义.粘土矿物与铁矿物在一定的条件下都可以作为独立的重建古气候的替代指标,但是在使用时要充分考虑研究区域的地质背景、物源供给、气候类型、风化条件等客观局限对这些风化指标的制约.另外,对于区域内风化程度及古气候的重建,通常多指标结合对比的方法更为可靠.

       

    • 图  1  成土作用的影响因素、产物以及土壤形成的过程简图

      Brantley et al.(2007)修改

      Fig.  1.  The influence factors and products of pedogenesis and the process of the soil development

      图  2  中国南方红土沉积物中粘土矿物的TEM照片

      K.高岭石;S.蒙脱石;V.蛭石;I.伊利石;HIV.羟基间层蛭石.a.高岭石与蒙脱石的间层(Hong et al., 2012);b.蛭石与伊利石的间层(Hong et al., 2014);c.伊利石与蒙脱石、高岭石的相互间层(Hong et al., 2015);d.伊利石与羟基间层蛭石/蛭石的相互间层(Yin et al., 2013)

      Fig.  2.  TEM morphology images of clay minerals in the soils of southern China

      图  3  中国北方典型黄土-古土壤剖面的低频磁化率变化与其他风化指标的对比曲线

      a.西风剖面磁化率变化曲线(Chen et al., 2014); b.蓟县剖面磁化率变化曲线(Jahn et al., 2001); c.洛川剖面磁化率变化曲线(Guan et al., 2016); d.洛川剖面87Sr/86Sr比值变化(Yang et al., 2000); e.洛川剖面Rb/Sr比值变化(Chen et al., 1999); f.同时期全球冰芯氧同位素变化(Railsback et al., 2015)

      Fig.  3.  Correlation of magnetic susceptibility variations of loess-palaeosol sequences in northern China and other weathering indices

      图  4  部分常见粘土矿物与铁矿物在VSWIR光谱区域内的特征峰

      Clark et al.(2007)

      Fig.  4.  Representative reflectance spectra of some common clay minerals and Fe-oxide minerals

    • [1] Abrajevitch, A., van der Voo, R.V.D., Rea, D.K., 2009.Variations in Relative Abundances of Goethite and Hematite in Bengal Fan Sediments:Climatic vs.Diagenetic Signals.Marine Geology, 267(3-4):191-206. https://doi.org/10.1016/j.margeo.2009.10.010
      [2] An, Z., Kutzbach, J.E., Prell, W.L., et al., 2001.Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times.Nature, 411(6833):62-66. doi: 10.1038/35075035
      [3] An, Z.S., 2000.The History and Variability of the East Asian Paleomonsoon Climate.Quaternary Science Reviews, 19(1-5):171-187. https://doi.org/10.1016/s0277-3791(99)00060-8
      [4] Anderson, S.P., Blum, J., Brantley, S.L., et al., 2004.Proposed Initiative Would Study Earth's Weathering Engine.EOS, Transactions American Geophysical Union, 85(28):265. https://doi.org/10.1029/2004eo280001
      [5] Balsam, W., Ji, J.F., Chen, J., 2004.Climatic Interpretation of the Luochuan and Lingtai Loess Sections, China, Based on Changing Iron Oxide Mineralogy and Magnetic Susceptibility.Earth and Planetary Science Letters, 223(3-4):335-348. https://doi.org/10.1016/j.epsl.2004.04.023
      [6] Blum, A.E., Yund, R.A., Lasaga, A.C., 1990.The Effect of Dislocation Density on the Dissolution Rate of Quartz.Geochimica et Cosmochimica Acta, 54(2):283-297. https://doi.org/10.1016/0016-7037(90)90318-f
      [7] Bourne, M.D., Feinberg, J.M., Strauss, B.E., et al., 2015.Long-Term Changes in Precipitation Recorded by Magnetic Minerals in Speleothems.Geology, 43(7):595-598. https://doi.org/10.1130/g36695.1
      [8] Brady, N.C., Weil, R.R., 2004.Elements of the Nature and Properties of Soils.Upper Saddle River, New Jersey, Prentice-Hall, 960. http://www.doc88.com/p-3973908298255.html
      [9] Brantley, S.L., Goldhaber, M.B., Ragnarsdottir, K.V., 2007.Crossing Disciplines and Scales to Understand the Critical Zone.Elements, 3(5):307-314. https://doi.org/10.2113/gselements.3.5.307
      [10] Buggle, B., Glaser, B., Hambach, U., et al., 2011.An Evaluation of Geochemical Weathering Indices in Loess-Paleosol Studies.Quaternary International, 240(1-2):12-21. https://doi.org/10.1016/j.quaint.2010.07.019
      [11] Buggle, B., Hambach, U., Müller, K., et al., 2014.Iron Mineralogical Proxies and Quaternary Climate Change in SE-European Loess-Paleosol Sequences.Catena, 117:4-22. https://doi.org/10.1016/j.catena.2013.06.012
      [12] Chadwick, O.A., Chorover, J., 2001.The Chemistry of Pedogenic Thresholds.Geoderma, 100(3-4):321-353. https://doi.org/10.1016/s0016-7061(01)00027-1
      [13] Chamley, H., 1989, Clay Sedimentology.Springer, Berlin, 623. http://www.springer.com/us/book/9783642859182
      [14] Chen, J., An, Z.S., Head, J., 1999.Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130 000 Years and Their Implications for Monsoon Paleoclimatology.Quaternary Research, 51(3):215-219. https://doi.org/10.1006/qres.1999.2038
      [15] Chen, J.S., Liu, X.M., Kravchinsky, V.A., 2014.Response of the High-Resolution Chinese Loess Grain Size Record to the 50°N Integrated Winter Insolation during the Last 500 000 Years.Geophysical Research Letters, 41(17):6244-6251. https://doi.org/10.1002/2014gl060239
      [16] Chen, T., Xu, H., Xie, Q., et al., 2005.Characteristics and Genesis of Maghemite in Chinese Loess and Paleosols:Mechanism for Magnetic Susceptibility Enhancement in Paleosols.Earth and Planetary Science Letters, 240(3-4):790-802. https://doi.org/10.1016/j.epsl.2005.09.026
      [17] Chen, T.H., Xie, Q.Q., Xu, H.F., et al., 2010.Characteristics and Formation Mechanism of Pedogenic Hematite in Quaternary Chinese Loess and Paleosols.Catena, 81(3):217-225. https://doi.org/10.1016/j.catena.2010.04.001
      [18] Cheng, F., Hong, H.L., Gu, Y.S., et al., 2014.Clay Mineralogy and Its Paleoclimate Interpretation of the Pleistocene Sediments in Baise Basin, Southern China.Quaternary Sciences, 34(3):560-569 (in Chinese with English abstract).
      [19] Chevrier, V., Mathé, P.E., Rochette, P., et al., 2006.Magnetic Study of an Antarctic Weathering Profile on Basalt:Implications for Recent Weathering on Mars.Earth and Planetary Science Letters, 244(3-4):501-514. https://doi.org/10.1016/j.epsl.2006.02.033
      [20] Clark, R.N., Swayze, G.A., Wise, R., et al., 2007.USGS Digital Spectral Library Splib06a.US Geological Survey, Digital Data Series, 231.
      [21] Clemens, S.C., 2015.Late Cenozoic Climate Change in Asia:Loess, Monsoon and Monsoon-Arid Environment Evolution.Quaternary Science Reviews, 107:274-275. https://doi.org/10.1016/j.quascirev.2014.10.026
      [22] Clift, P.D., Wan, S.M., Blusztajn, J., 2014.Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea:A Review of Competing Proxies.Earth-Science Reviews, 130:86-102. https://doi.org/10.1016/j.earscirev.2014.01.002
      [23] Cornell, R.M., Schwertmann, U., 2003, The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses.Wiley VCH, Weinheim. http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527606440.html
      [24] Cudahy, T., Caccetta, M., Thomas, M., et al., 2016.Satellite-Derived Mineral Mapping and Monitoring of Weathering, Deposition and Erosion.Scientific Reports, 6(1):1-12. https://doi.org/10.1038/srep23702
      [25] da Cruz, R.S.D., Fernandes, C.M.D., Villas, R.N.N., et al., 2015.A Study of the Hydrothermal Alteration in Paleoproterozoic Volcanic Centers, São Félix do Xingu Region, Amazonian Craton, Brazil, Using Short-Wave Infrared Spectroscopy.Journal of Volcanology and Geothermal Research, 304:324-335. https://doi.org/10.1016/j.jvolgeores.2015.09.005
      [26] de Menocal, P.B., 2004.African Climate Change and Faunal Evolution during the Pliocene-Pleistocene.Earth and Planetary Science Letters, 220(1-2):3-24. https://doi.org/10.1016/s0012-821x(04)00003-2
      [27] Deng, C.L., Zhu, R.X., Verosub, K.L., et al., 2004.Mineral Magnetic Properties of Loess/Paleosol Couplets of the Central Loess Plateau of China over the Last 1.2 Myr.Journal of Geophysical Research:Solid Earth, 109(B1):241-262. https://doi.org/10.1029/2003jb002532
      [28] Dixon, J.L., Chadwick, O.A., Vitousek, P.M., 2016.Climate-Driven Thresholds for Chemical Weathering in Postglacial Soils of New Zealand.Journal of Geophysical Research:Earth Surface, 121(9):1619-1634. https://doi.org/10.1002/2016jf003864
      [29] Dixon, J.L., Heimsath, A.M., Kaste, J., et al., 2009.Climate-Driven Processes of Hillslope Weathering.Geology, 37(11):975-978. https://doi.org/10.1130/g30045a.1
      [30] Dixon, J.B., Weed, S.B., 1989.Minerals in Soil Environments (2nd ed.).Soil Science Society of America, Madison, WI.
      [31] Dou, Y., Li, J., Zhao, J., et al., 2014.Clay Mineral Distributions in Surface Sediments of the Liaodong Bay, Bohai Sea and Surrounding River Sediments:Sources and Transport Patterns.Continental Shelf Research, 73:72-82. https://doi.org/10.1016/j.csr.2013.11.023
      [32] Dou, Y., Yang, S., Liu, Z., et al., 2010.Clay Mineral Evolution in the Central Okinawa trough since 28 ka:Implications for Sediment Provenance and Paleoenvironmental Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1-4):108-117. https://doi.org/10.1016/j.palaeo.2010.01.040
      [33] Ehrmann, W., Seidel, M., Schmiedl, G., 2013.Dynamics of Late Quaternary North African Humid Periods Documented in the Clay Mineral Record of Central Aegean Sea Sediments.Global and Planetary Change, 107:186-195. https://doi.org/10.1016/j.gloplacha.2013.05.010
      [34] Eiriksdottir, E.S., Gislason, S.R., Oelkers, E.H., 2013.Does Temperature or Runoff Control the Feedback between Chemical Denudation and Climate? Insights from NE Iceland.Geochimica et Cosmochimica Acta, 107:65-81. https://doi.org/10.1016/j.gca.2012.12.034
      [35] Fairchild, I.J., Smith, C.L., Baker, A., et al., 2006.Modification and Preservation of Environmental Signals in Speleothems.Earth-Science Reviews, 75(1-4):105-153. https://doi.org/10.1016/j.earscirev.2005.08.003
      [36] Fang, Q., Hong, H.L., Chen, Z.Q., et al., 2017.Microbial Proliferation Coinciding with Volcanism during the Permian-Triassic Transition:New, Direct Evidence from Volcanic Ashes, South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 474:164-186. https://doi.org/10.1016/j.palaeo.2016.06.026
      [37] Gingele, F.X., de Deckker, P., 2004.Fingerprinting Australia's Rivers with Clay Minerals and the Application for the Marine Record of Climate Change.Australian Journal of Earth Sciences, 51(3):339-348. https://doi.org/10.1111/j.1400-0952.2004.01061.x
      [38] Gingele, F., de Deckker, P., Norman, M., 2007.Late Pleistocene and Holocene Climate of SE Australia Reconstructed from Dust and River Loads Deposited Offshore the River Murray Mouth.Earth and Planetary Science Letters, 255(3-4):257-272. https://doi.org/10.1016/j.epsl.2006.12.019
      [39] Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., et al., 2009.Direct Evidence of the Feedback between Climate and Weathering.Earth and Planetary Science Letters, 277(1-2):213-222. https://doi.org/10.1016/j.epsl.2008.10.018
      [40] Goldich, S.S., 1938.A Study in Rock-Weathering.The Journal of Geology, 46(1):17-58. https://doi.org/10.1086/624619
      [41] Guan, H., Zhu, C., Zhu, T., et al., 2016.Grain Size, Magnetic Susceptibility and Geochemical Characteristics of the Loess in the Chaohu Lake Basin:Implications for the Origin, Palaeoclimatic Change and Provenance.Journal of Asian Earth Sciences, 117:170-183. https://doi.org/10.1016/j.jseaes.2015.12.013
      [42] Guo, Z., Biscaye, P., Wei, L., et al., 2000. Summer Monsoon Variations over the Last 1.2 Ma from the Weathering of Loess-Soil Sequences in China.Geophysical Research Letters, 27(12):1751-1754. https://doi.org/10.1029/1999gl008419
      [43] Guyot, J.L., Jouanneau, J.M., Soares, L., et al., 2007.Clay Mineral Composition of River Sediments in the Amazon Basin.Catena, 71(2):340-356. https://doi.org/10.1016/j.catena.2007.02.002
      [44] Gylesjö, S., Arnold, E., 2006.Clay Mineralogy of a Red Clay-Loess Sequence from Lingtai, the Chinese Loess Plateau.Global and Planetary Change, 51(3-4):181-194. https://doi.org/10.1016/j.gloplacha.2006.03.002
      [45] Hamann, Y., Ehrmann, W., Schmiedl, G., et al., 2009.Modern and Late Quaternary Clay Mineral Distribution in the Area of the SE Mediterranean Sea.Quaternary Research, 71(3):453-464. https://doi.org/10.1016/j.yqres.2009.01.001
      [46] Harper, R.J., Gilkes, R.J., 2004.Aeolian Influences on the Soils and Landforms of the Southern Yilgarn Craton of Semi-Arid, Southwestern Australia.Geomorphology, 59(1-4):215-235. https://doi.org/10.1016/j.geomorph.2003.07.018
      [47] Harris, S.E., Mix, A.C., 1999.Pleistocene Precipitation Balance in the Amazon Basin Recorded in Deep Sea Sediments.Quaternary Research, 51(1):14-26. https://doi.org/10.1006/qres.1998.2008
      [48] Hong, H.L., Fang, Q., Wang, C.W., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Ashes near the Permian-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172 (in Chinese with English abstract). https://www.researchgate.net/profile/Qian_Fang6/publication/313913131_Constraints_of_Parent_Magma_on_Altered_Clay_Minerals_A_Case_Study_on_the_Ashes_near_the_Permin-Triassic_Boundary_in_Xinmin_Section_Guizhou_Province/links/58afab7345851503be9536e1/Constraints-of-Parent-Magma-on-Altered-Clay-Minerals-A-Case-Study-on-the-Ashes-near-the-Permin-Triassic-Boundary-in-Xinmin-Section-Guizhou-Province.pdf
      [49] Hong, H., Cheng, F., Yin, K., et al., 2015.Three-Component Mixed-Layer Illite/Smectite/Kaolinite (I/S/K) Minerals in Hydromorphic Soils, South China.American Mineralogist, 100(8-9):1883-1891. https://doi.org/10.2138/am-2015-5170
      [50] Hong, H., Churchman, G.J., Gu, Y., et al., 2012.Kaolinite-Smectite Mixed-Layer Clays in the Jiujiang Red Soils and Their Climate Significance.Geoderma, 173-174:75-83. https://doi.org/10.1016/j.geoderma.2011.12.006
      [51] Hong, H., Churchman, G.J., Yin, K., et al., 2014.Randomly Interstratified Illite-Vermiculite from Weathering of Illite in Red Earth Sediments in Xuancheng, Southeastern China.Geoderma, 214-215:42-49. https://doi.org/10.1016/j.geoderma.2013.10.004
      [52] Hong, H., Fang, Q., Cheng, L., et al., 2016.Microorganism-Induced Weathering of Clay Minerals in a Hydromorphic Soil.Geochimica et Cosmochimica Acta, 184:272-288. https://doi.org/10.1016/j.gca.2016.04.015
      [53] Hong, H., Fang, Q., Wang, C., et al., 2017.Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172(in Chinese with English abstract). https://www.researchgate.net/publication/313913131_Constraints_of_Parent_Magma_on_Altered_Clay_Minerals_A_Case_Study_on_the_Ashes_near_the_Permin-Triassic_Boundary_in_Xinmin_Section_Guizhou_Province
      [54] Hong, H., Gu, Y., Yin, K., et al., 2010.Red Soils with White Net-Like Veins and Their Climate Significance in South China.Geoderma, 160(2):197-207. https://doi.org/10.1016/j.geoderma.2010.09.019
      [55] Hošek, J., Hambach, U., Lisá, L., et al., 2015.An Integrated Rock-Magnetic and Geochemical Approach to Loess/Paleosol Sequences from Bohemia and Moravia (Czech Republic):Implications for the Upper Pleistocene Paleoenvironment in Central Europe.Palaeogeography, Palaeoclimatology, Palaeoecology, 418:344-358. https://doi.org/10.1016/j.palaeo.2014.11.024
      [56] Hu, P., Liu, Q., Heslop, D., et al., 2015.Soil Moisture Balance and Magnetic Enhancement in Loess-Paleosol Sequences from the Tibetan Plateau and Chinese Loess Plateau.Earth and Planetary Science Letters, 409:120-132. doi: 10.1016/j.epsl.2014.10.035
      [57] Hu, P., Liu, Q., Torrent, J., et al., 2013.Characterizing and Quantifying Iron Oxides in Chinese Loess/Paleosols:Implications for Pedogenesis.Eath and Planetary Science Letters, 369:271-283. https://www.sciencedirect.com/science/article/pii/S0012821X13001544
      [58] Hu, X., Wei, J., Xu, L., et al., 2009.Magnetic Susceptibility of the Quaternary Red Clay in Subtropical China and Its Paleoenvironmental Implications.Palaeogeography, Palaeoclimatology, Palaeoecology, 279(3-4):216-232. doi: 10.1016/j.palaeo.2009.05.016
      [59] Huggett, R.J., 1998.Soil Chronosequences, Soil Development, and Soil Evolution:A Critical Review.Catena, 32(3-4):155-172. doi: 10.1016/S0341-8162(98)00053-8
      [60] Inda, A.V., Torrent, J., Barrón, V., et al., 2013.Iron Oxides Dynamics in a Subtropical Brazilian Paleudult under Long-Term No-Tillage Management.Scientia Agricola, 70(1):48-54. https://doi.org/10.1590/s0103-90162013000100008
      [61] Jahn, B.M., Gallet, S., Han, J.M., 2001.Geochemistry of the Xining, Xifeng and Jixian Sections, Loess Plateau of China:Eolian Dust Provenance and Paleosol Evolution during the Last 140 ka.Chemical Geology, 178(1-4):71-94. https://doi.org/10.1016/s0009-2541(00)00430-7
      [62] Ji, J.F., 2004.High Resolution Hematite/Goethite Records from Chinese Loess Sequences for the Last Glacial-Interglacial Cycle:Rapid Climatic Response of the East Asian Monsoon to the Tropical Pacific.Geophysical Research Letters, 31(3):1-4. https://doi.org/10.1029/2003gl018975
      [63] Ji, J.F., Balsam, W., Chen, J., 2001.Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry.Quaternary Research, 56(1):23-30. https://doi.org/10.1006/qres.2001.2238
      [64] Ji, J.F., Chen, J., Wang, H.T., 2012.Crystallinity of Illite from the Luochuan Loess-Paleosol Sequence, Shanxi Provice-Indicators Origin and Paleoclimate of Loess.Geological Review, 43(2):181-185(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1040618204000345
      [65] Jiang, H., Guo, G., Cai, X., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43. https://doi.org/10.1016/j.palaeo.2016.01.017
      [66] Jordanova, D., Jordanova, N., Petrov, P., et al., 2010.Soil Development of Three Chernozem-Like Profiles from North Bulgaria Revealed by Magnetic Studies.Catena, 83(2-3):158-169. https://doi.org/10.1016/j.catena.2010.08.008
      [67] Kukla, G., Heller, F., Ming, L.X., et al., 1988.Pleistocene Climates in China Dated by Magnetic Susceptibility.Geology, 16(9):811.https://doi.org/10.1130/0091-7613(1988)016<0811:pcicdb>2.3.co;2 doi: 10.1130/0091-7613(1988)016<0811:pcicdb>2.3.co;2
      [68] Lascu, I., Feinberg, J.M., 2011.Speleothem Magnetism.Quaternary Science Reviews, 30(23-24):3306-3320. https://doi.org/10.1016/j.quascirev.2011.08.004
      [69] Leask, E. K., Ehlmann, B. L., 2016. Identifying and Quantifying Mineral Abundance through VSWIR Microimaging Spectroscopy: A Comparison to XRD and SEM. The Workshop on Hyperspectral Image & Signal Processing: Evolution in Remote Sensing.
      [70] Lee, Y.I., Lim, H.S., Yoon, H.I., 2004.Geochemistry of Soils of King George Island, South Shetland Islands, West Antarctica:Implications for Pedogenesis in Cold Polar Regions.Geochimica et Cosmochimica Acta, 68(21):4319-4333. https://doi.org/10.1016/j.gca.2004.01.020
      [71] Li, C.A., Gu, Y.S., 1997.A Priliminary Study on Phytolith Assemblages and Its Paleoenvironmental Indication of the Vermicular Red Earth.Earth Science, 22(2):195-198 (in Chinese with English abstract).
      [72] Li, J.H., Pan, Y.X., 2015.Application of Transmission Electron Microscopy in Earth Science.Earth Science, 45(9):1359-1382(in Chinese). http://www.formatex.org/microscopy3/pdf/pp122-131.pdf
      [73] Liu, Q.S., Deng, C.L., Torrent, J., et al., 2007.Review of Recent Developments in Mineral Magnetism of the Chinese Loess.Quaternary Science Reviews, 26(3-4):368-385. https://doi.org/10.1016/j.quascirev.2006.08.004
      [74] Liu, T., Ding Z.L., Rutter, N., 1999.Comparison of Milankovitch Periods between Continental Loess and Deep Sea Records over the Last 2.5 Ma.Quaternary Science Reviews, 18(10-11):1205-1212. https://doi.org/10.1016/s0277-3791(98)00110-3
      [75] Liu, T., Ding, Z., 1993.Stepwise Coupling of Monsoon Circulations to Global Ice Volume Variations during the Late Cenozoic.Global and Planetary Change, 7(1-3):119-130. https://doi.org/10.1016/0921-8181(93)90044-o
      [76] Liu, Z., Ma, J., Wei, G., et al., 2017.Magnetism of a Red Soil Core Derived from Basalt, Northern Hainan Island, China:Volcanic Ash versus Pedogenesis.Journal of Geophisical Research-Solid Earth, 122(3):1677-1696. https://www.researchgate.net/publication/314300053_Magnetism_of_a_red_soil_core_derived_from_basalt_northern_Hainan_Island_China_volcanic_ash_vs_pedogenesis_red_soil_volcanic_ash_vs_pedogenesis
      [77] Liu, Z.F., Colin, C., Huang, W., et al., 2007.Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula:Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins.Geochemistry, Geophysics, Geosystems, 8(5):1-18. https://doi.org/10.1029/2006gc001490
      [78] Liu, Z.F., Colin, C., Li, X.J., et al., 2010.Clay Mineral Distribution in Surface Sediments of the Northeastern South China Sea and Surrounding Fluvial Drainage Basins:Source and Transport.Marine Geology, 277(1-4):48-60. https://doi.org/10.1016/j.margeo.2010.08.010
      [79] Liu, Z.F., Tuo, S.T., Colin, C., et al., 2008.Detrital Fine-Grained Sediment Contribution from Taiwan to the Northern South China Sea and Its Relation to Regional Ocean Circulation.Marine Geology, 255(3-4):149-155. https://doi.org/10.1016/j.margeo.2008.08.003
      [80] Liu, Z.F., Zhao, Y.L., Colin, C., et al., 2009.Chemical Weathering in Luzon, Philippines from Clay Mineralogy and Major-Element Geochemistry of River Sediments.Applied Geochemistry, 24(11):2195-2205. https://doi.org/10.1016/j.apgeochem.2009.09.025
      [81] Long, X.Y., Ji, J.F., Balsam, W., 2011.Rainfall-Dependent Transformations of Iron Oxides in a Tropical Saprolite Transect of Hainan Island, South China:Spectral and Magnetic Measurements.Journal of Geophysical Research-Earth Surface, 116:1-15.
      [82] Long, X.Y., Ji, J.F., Barrón, V., et al., 2016.Climatic Thresholds for Pedogenic Iron Oxides under Aerobic Conditions:Processes and Their Significance in Paleoclimate Reconstruction.Quaternary Science Reviews, 150:264-277. https://doi.org/10.1016/j.quascirev.2016.08.031
      [83] Lu, S., Wang, S., Chen, Y., 2015.Palaeopedogenesis of Red Palaeosols in Yunnan Plateau, Southwestern China:Pedogenical, Geochemical and Mineralogical Evidences and Palaeoenvironmental Implication.Palaeogeography, Palaeoclimatology, Palaeoecology, 420:35-48. https://doi.org/10.1016/j.palaeo.2014.12.004
      [84] Maher, B.A., 1998.Magnetic Properties of Modern Soils and Quaternary Loessic Paleosols:Paleoclimatic Implications.Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1-2):25-54. https://doi.org/10.1016/s0031-0182(97)00103-x
      [85] Martinson, D.G., Pisias, N.G., Hays, J.D., et al., 1987.Age Dating and the Orbital Theory of the Ice Ages:Development of a High-Resolution 0 to 300 000-Year Chronostratigraphy.Quaternary Research, 27(1):1-29. https://doi.org/10.1016/0033-5894(87)90046-9
      [86] Murphy, R.J., Monteiro, S.T., 2013.Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430-970 nm).ISPRS Journal of Photogrammetry and Remote Sensing, 75:29-39. https://doi.org/10.1016/j.isprsjprs.2012.09.014
      [87] Murphy, R.J., Schneider, S., Monteiro, S.T., 2014.Consistency of Measurements of Wavelength Position from Hyperspectral Imagery:Use of the Ferric Iron Crystal Field Absorption at~900 nm as an Indicator of Mineralogy.IEEE Transactions on Geoscience and Remote Sensing, 52(5):2843-2857. https://doi.org/10.1109/tgrs.2013.2266672
      [88] Nesbitt, H.W., Young, G.M., 1989.Formation and Diagenesis of Weathering Profiles.The Journal of Geology, 97(2):129-147. https://doi.org/10.1086/629290
      [89] Nocita, M., Stevens, A., van Wesemael, B.V., et al., 2014.Soil Spectroscopy:An Opportunity to be Seized.Global Change Biology, 21(1):10-11. https://doi.org/10.1111/gcb.12632
      [90] Nordt, L.C., Driese, S.D., 2010.New Weathering Index Improves Paleorainfall Estimates from Vertisols.Geology, 38(5):407-410. https://doi.org/10.1130/g30689.1
      [91] Osete, M.L., Martín-Chivelet, J., Rossi, C., et al., 2012.The Blake Geomagnetic Excursion Recorded in a Radiometrically Dated Speleothem.Earth and Planetary Science Letters, 353-354:173-181. https://doi.org/10.1016/j.epsl.2012.07.041
      [92] Railsback, L.B., Gibbard, P.L., Head, M.J., et al., 2015.An Optimized Scheme of Lettered Marine Isotope Substages for the Last 1.0 Million Years, and the Climatostratigraphic Nature of Isotope Stages and Substages.Quaternary Science Reviews, 111:94-106. https://doi.org/10.1016/j.quascirev.2015.01.012
      [93] Robert, C., 2004.Late Quaternary Variability of Precipitation in Southern California and Climatic Implications:Clay Mineral Evidence from the Santa Barbara Basin, ODP Site 893.Quaternary Science Reviews, 23(9-10):1029-1040. https://doi.org/10.1016/j.quascirev.2003.11.005
      [94] Rupp, K., Jungemann, C., Hong, S.M., et al., 2016.A Review of Recent Advances in the Spherical Harmonics Expansion Method for Semiconductor Device Simulation.Journal of Computational Electronics, 15(3):939-958. https://doi.org/10.1007/s10825-016-0828-z
      [95] Schwertmann, U., 1993, Relations between Iron Oxides, Soil Color, and Soil Formation. In: Bigham, J. M., Ciolkosz, E. J., Luxmoore, R. J., eds., Soil Color SSSA Special Publication, 31: 51-70.
      [96] Sheldon, N.D., Tabor, N.J., 2009.Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols.Earth-Science Reviews, 95(1-2):1-52. https://doi.org/10.1016/j.earscirev.2009.03.004
      [97] Shen, J., Algeo, T.J., Zhou, L., et al., 2011.Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects.Geobiology, 10(1):82-103. https://doi.org/10.1111/j.1472-4669.2011.00306.x
      [98] Simonson, R.W., 1959.Outline of a Generalized Theory of Soil Genesis 1.Soil Science Society of America Journal, 23(2):152. https://doi.org/10.2136/sssaj1959.03615995002300020021x
      [99] Soriano-Disla, J.M., Janik, L.J., Rossel, R.A.V., et al., 2013.The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties.Applied Spectroscopy Reviews, 49(2):139-186. https://doi.org/10.1080/05704928.2013.811081
      [100] Stockmann, U., Minasny, B., McBratney, A., 2011.Advances in Agronomy Quantifying Processes of Pedogenesis.Advances in Agronomy, 150:1-74. https://doi.org/10.1016/b978-0-12-386473-4.00001-4
      [101] Stuut, J.B.W., Temmesfeld, F., de Deckker, P., 2014.A 550 ka Record of Aeolian Activity near North West Cape, Australia:Inferences from Grain-Size Distributions and Bulk Chemistry of SE Indian Ocean Deep-Sea Sediments.Quaternary Science Reviews, 83:83-94. https://doi.org/10.1016/j.quascirev.2013.11.003
      [102] Sun, Y., Kutzbach, J., An, Z., et al., 2015a.Astronomical and Glacial Forcing of East Asian Summer Monsoon Variability.Quaternary Science Reviews, 115:132-142. https://doi.org/10.1016/j.quascirev.2015.03.009
      [103] Sun, Y., Ma, L., Bloemendal, J., et al., 2015b.Miocene Climate Change on the Chinese Loess Plateau:Possible Links to the Growth of the Northern Tibetan Plateau and Global Cooling.Geochemistry, Geophysics, Geosystems, 16(7):2097-2108. https://doi.org/10.1002/2015gc005750
      [104] Sun, Z., Owens, P.R., Han, C., et al., 2016a.A Quantitative Reconstruction of a Loess-Paleosol Sequence Focused on Paleosol Genesis:An Example from a Section at Chaoyang, China.Geoderma, 266:25-39. https://doi.org/10.1016/j.geoderma.2015.12.012
      [105] Sun, Y., Liang, L., Bloemendal, J., et al., 2016b.High-Resolution Scanning XRF Investigation of Chinese Loess and Its Implications for Millennial-Scale Monsoon Variability.Journal of Quaternary Science, 31(3):191-202. https://doi.org/10.1002/jqs.2856
      [106] Thamban, M., Rao, V.P., Schneider, R.R., 2002.Reconstruction of Late Quaternary Monsoon Oscillations Based on Clay Mineral Proxies Using Sediment Cores from the Western Margin of India.Marine Geology, 186(3-4):527-539. https://doi.org/10.1016/s0025-3227(02)00268-2
      [107] Torrent, J., Liu, Q.S., Bloemendal, J., et al., 2007.Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess-Paleosol Sequence, Chinese Loess Plateau.Soil Science Society of America Journal, 71(5):1570. https://doi.org/10.2136/sssaj2006.0328
      [108] Torrent, J., Schwertmann, U., Fechter, H., et al., 1983.Quantitative Relationships between Soil Color and Hematite Content.Soil Science, 136(6):354-358. https://doi.org/10.1097/00010694-198312000-00004
      [109] Turpault, M.P., Righi, D., Utérano, C., 2008.Clay Minerals:Precise Markers of the Spatial and Temporal Variability of the Biogeochemical Soil Environment.Geoderma, 147(3-4):108-115. https://doi.org/10.1016/j.geoderma.2008.07.012
      [110] Újvári, G., Varga, A., Raucsik, B., et al., 2014.The Paks Loess-Paleosol Sequence:A Record of Chemical Weathering and Provenance for the Last 800 ka in the Mid-Carpathian Basin.Quaternary International, 319:22-37. https://doi.org/10.1016/j.quaint.2012.04.004
      [111] Varga, A., Újvári, G., Raucsik, B., 2011.Tectonic versus Climatic Control on the Evolution of a Loess-Paleosol Sequence at Beremend, Hungary:An Integrated Approach Based on Paleoecological, Clay Mineralogical, and Geochemical Data.Quaternary International, 240(1-2):71-86. https://doi.org/10.1016/j.quaint.2010.10.032
      [112] Wang, C., Hong, H., Abels, H.A., et al., 2015.Early Middle Miocene Tectonic Uplift of the Northwestern Part of the Qinghai-Tibetan Plateau Evidenced by Geochemical and Mineralogical Records in the Western Tarim Basin.International Journal of Earth Sciences, 105(3):1021-1037. https://doi.org/10.1007/s00531-015-1212-0
      [113] Wang, Q., Yang.S.Y., 2013.Clay Mineralogy Indicates the Holocene Monsoon Climate in the Changjiang (Yangtze River) Catchment, China.Applied Clay Science, 74:28-36. https://doi.org/10.1016/j.clay.2012.08.011
      [114] White, A.F., Brantley, S.L., 2003.The Effect of Time on the Weathering of Silicate Minerals:Why do Weathering Rates Differ in the Laboratory and Field? Chemical Geology, 202(3-4):479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001
      [115] Wilson, M.J., 2004.Weathering of the Primary Rock-Forming Minerals:Processes, Products and Rates.Clay Minerals, 39(3):233-266. https://doi.org/10.1180/0009855043930133
      [116] Xi, C.F., 1991.On the Red Weathering Crusts of Southern China.Quaternary Sciences, (1):1-8(in Chinese with English abstract).
      [117] Xie, Q., Chen, T., Zhou, H., et al., 2013a.Mechanism of Palygorskite Formation in the Red Clay Formation on the Chinese Loess Plateau, Northwest China.Geoderma, 192:39-49. https://doi.org/10.1016/j.geoderma.2012.07.021
      [118] Xie, S., Evershed, R.P., Huang, X., et al., 2013b.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.Geology, 41(8):827-830. https://doi.org/10.1130/g34318.1
      [119] Yang, J.D., Chen, J., An, Z.S., et al., 2000.Variations in 87Sr/86Sr Ratios of Calcites in Chinese Loess:A Proxy for Chemical Weathering Associated with the East Asian Summer Monsoon.Palaeogeography, Palaeoclimatology, Palaeoecology, 157(1-2):151-159. https://doi.org/10.1016/s0031-0182(99)00159-5
      [120] Yang, S., Jung, H., Li, C., 2004.Two Unique Weathering Regimes in the Changjiang and Huanghe Drainage Basins:Geochemical Evidence from River Sediments.Sedimentary Geology, 164(1-2):19-34. https://doi.org/10.1016/j.sedgeo.2003.08.001
      [121] Yang, X., Peng, X., Qiang, X., et al., 2016.Chemical Weathering Intensity and Terrigenous Flux in South China during the Last 90 000 Years-Evidence from Magnetic Signals in Marine Sediments.Frontiers in Earth Science, 4:1-9. https://doi.org/10.3389/feart.2016.00047
      [122] Yin, K., Hong, H., Churchman, G.J., et al., 2013.Hydroxy-Interlayered Vermiculite Genesis in Jiujiang Late-Pleistocene Red Earth Sediments and Significance to Climate.Applied Clay Science, 74:20-27. https://doi.org/10.1016/j.clay.2012.09.017
      [123] Yu, Z., Wan, S., Colin, C., et al., 2016.Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma:New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea.Earth and Planetary Science Letters, 446:45-55. https://doi.org/10.1016/j.epsl.2016.04.022
      [124] Zeng, F.M., 2016.Provenance of the Late Quaternary Loess Deposit in the Qinghai Lake Region.Earth Science, 41(1):131-138(in Chinese with English abstract).
      [125] Zeng, F.M., Xiang, S.Y., Liu, X.J., et al., 2014.Progress in Tracing Provenance of Eolian Deposits in Chinese Loess Plateau.Earth Science, 39(2):125-140(in Chinese with English abstract).
      [126] Zeng, M., Song, Y., An, Z., et al., 2014.Clay Mineral Records of the Erlangjian Drill Core Sediments from the Lake Qinghai Basin, China.Science China Earth Sciences, 57(8):1846-1859. https://doi.org/10.1007/s11430-013-4817-9
      [127] Zhang, W., Yu, L., Lu, M., et al., 2009.East Asian Summer Monsoon Intensity Inferred from Iron Oxide Mineralogy in the Xiashu Loess in Southern China.Quaternary Science Reviews, 28(3-4):345-353. https://doi.org/10.1016/j.quascirev.2008.10.002
      [128] Zhao, G., Mu, X., Wen, Z., et al., 2013.Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China.Land Degradation & Development, 15:499-510. https://doi.org/10.1002/ldr.2246
      [129] Zhao, L., 2005.Variations of Illite/Chlorite Ratio in Chinese Loess Sections during the Last Glacial and Interglacial Cycle:Implications for Monsoon Reconstruction.Geophysical Research Letters, 32(20):1-4. https://doi.org/10.1029/2005gl024145
      [130] Zhao, L., Hong, H., Fang, Q., et al., 2017.Monsoonal Climate Evolution in Southern China since 1.2 Ma:New Constraints from Fe-Oxide Records in Red Earth Sediments from the Shengli Section, Chengdu Basin.Palaeogeography, Palaeoclimatology, Palaeoecology, 473:1-15. https://doi.org/10.1016/j.palaeo.2017.02.027
      [131] Zhao, L.L., Hong, H.L., Yin, K., et al., 2015.Characteristics and Palaeoclimate Significance of Clay Minerals in the Red Earth Sediment in Chengdu Basin.Geological Science and Technology Information, 34(3):80-86 (in Chinese with English abstract). https://www.researchgate.net/publication/302582124_characteristics_and_paleoclimate_significance_of_clay_minerals_in_the_red_earth_sediment_in_chengdu_basin
      [132] Zheng, G., Jiao, C., Zhou, S., et al., 2016.Analysis of Soil Chronosequence Studies Using Reflectance Spectroscopy.International Journal of Remote Sensing, 37(8):1881-1901. https://doi.org/10.1080/01431161.2016.1163751
      [133] Zhu, Z., Feinberg, J.M., Xie, S., et al., 2017.Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China.Proceedings of the National Academy of Sciences, 114(5):852-857. https://doi.org/10.1073/pnas.1610930114
      [134] Zhu, Z., Zhang, S., Tang, C., et al., 2012.Magnetic Fabric of Stalagmites and Its Formation Mechanism.Geochemistry, Geophysics, Geosystems, 13(6):1-12. https://doi.org/10.1029/2011gc003869
      [135] 程峰, 洪汉烈, 顾延生, 等, 2014.广西百色盆地更新世沉积物中粘土矿物特征及其古气候指示意义.第四纪研究, 34(3):560-569. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj201403010
      [136] 洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. http://www.earth-science.net/WebPage/Article.aspx?id=3423
      [137] 季峻峰, 陈骏, 王洪涛, 2012.陕西洛川黄土-古土壤剖面中伊利石结晶度——黄土物质来源和古气候环境的指示.地质论评, 43(2):181-185. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj201403009
      [138] 李长安, 顾延生, 1997.网纹红土中的植硅石组合及其环境意义的初步研究.地球科学, 22(2):195-198. http://www.earth-science.net/WebPage/Article.aspx?id=485
      [139] 李金华, 潘永信, 2015, 透射电子显微镜在地球科学研究中的应用.地球科学, 45(9):1359-1382. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201509010.htm
      [140] 席承藩, 1991, 论华南红色风化壳.第四纪研究, (1):1-8. http://www.irgrid.ac.cn/handle/1471x/107131?mode=full
      [141] 曾方明, 2016.青海湖地区晚第四纪黄土的物质来源.地球科学, 41(1):131-138. http://www.earth-science.net/WebPage/Article.aspx?id=3226
      [142] 曾方明, 向树元, 刘向军, 等, 2014.黄土高原风尘堆积物源研究进展.地球科学, 39(2):125-140. http://www.earth-science.net/WebPage/Article.aspx?id=2813
      [143] 赵璐璐, 洪汉烈, 殷科, 等, 2015.成都盆地红土沉积物中黏土矿物的特征及其古气候指示意义.地质科技情报, 34(3):80-86. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201503010.htm
    • 加载中
    图(4)
    计量
    • 文章访问数:  3920
    • HTML全文浏览量:  1559
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-01
    • 刊出日期:  2018-03-15

    目录

      /

      返回文章
      返回