Age, Petrogenesis and Tectonic Implications of High-Mg Diorite in Chayong Region, Yushu, Qinghai
-
摘要: 为了查明青海玉树查涌地区闪长岩岩石成因及形成的地球动力学背景,对其进行了岩相学、矿物电子探针分析、锆石LA-ICP-MS U-Pb年代学和岩石地球化学分析.闪长岩锆石LA-ICP-MS U-Pb年龄为230±2 Ma,属于晚三叠世.电子探针分析结果显示,闪长岩中的斜长石具有正环带结构,核部斜长石属于倍长石或钙长石,边部属于中长石或拉长石;黑云母矿物成分为镁质黑云母,结晶温度介于647~688 ℃,侵位深度约为14.2~15.5 km;角闪石属于钙质角闪石,显示壳幔混合成因的特点.岩石地球化学分析结果显示闪长岩具有富硅、富镁、高的Mg#值及较高含量的Cr和Ni,富集LILE和LREE,亏损HFSE,铕异常不明显,与高镁闪长岩中的赞岐岩相似.闪长岩中锆石的εHf(t)值为-10.4~-10.3和-6.4~-4.0,锆石Hf单阶段模式年龄(tDM1)为1 021~1 311 Ma.分析研究表明闪长岩形成于俯冲带之上的地幔楔环境,为地幔橄榄岩与俯冲的洋壳板片部分熔融的富硅质熔体平衡反应形成的.结合区域地质演化认为晚三叠世古特提斯洋仍处于俯冲消减状态,查涌高镁闪长岩为金沙江洋向西俯冲消减过程中的产物.Abstract: This paper presents petrography, electron microprobe results, zircon U-Pb dating and geochemistry of diorites at Chayong, Yushu, Qinghai Province, with the aim of constraining its petrogenesis and geodynamic significance. The dating results indicate that the diorite formed in the Late Triassic (230±2 Ma). Electronic Probe analysis results show that plagioclase has a band structure with bytownite and calciclase in the centre, andesine and labradorite on the edge. Biotite belongs to magnesia biotite, which crystallized at temperature of 647-688 ℃, at depth of 14.2-15.5 km.Hornblende belongs to calcic amphibole and has the characteristics of crust-mantle mixing origin of the magma.The diorites contain high SiO2, MgO, Mg# values, Cr and Ni, enriched in large ion lithophile elements (LILEs) and light rare earth elements(LREEs), depleted in the high field strength elements (HFSE), which is similar with high-Mg diorite. The εHf(t) values of zircons from the diorites vary from -10.4 to -10.3 and from -6.4 to -4.0, and their Hf one-stage model ages vary from 1 021 to 1 311 Ma. They are likely formed from mantle peridotites by reacting with Si-rich melts released from subducted oceanic slab. Combined with regional tectonic evolution, it is suggested that the diorites might have been resulted from the subduction of Jinshajiang Ocean in the Late Triassic.
-
Key words:
- high-Mg diorite /
- zircon U-Pb geochronology /
- geochiemistry /
- crystal chemistry /
- Qinghai /
- Yushu
-
图 1 中国三江成矿带构造简图
1.三叠纪火山岩;2.三叠纪侵入岩;3.锆石U-Pb年龄(Ma);AKMS-A'nyemaqun suture.阿尼玛卿缝合带;JSS-Jinsha suture.金沙江缝合带;LSS-Longmucuo-Shuanghu suture.龙木错-双湖缝合带;BNS-Bangong-Nujiang suture.班公湖-怒江缝合带;ITS-Indus Tsangpo suture.雅鲁藏布江缝合带;GLS-Ganzi-Litang suture.甘孜-理塘缝合带;据Yin and Harrison(2000); Spurlin et al.(2005)修改;年龄数据据赵少卿等(2015)
Fig. 1. Simplified geological map of the Chinese Sanjiang metallogenic belt showing major structures
图 2 查涌地区区域地质图
1.第四系;2.始新统-中新统;3.侏罗系;4.上三叠统巴塘群;5.上三叠统结扎群;6.中上三叠统巴颜喀拉山群;7.中三叠统结隆群;8.查涌蛇绿混杂岩;9.多彩蛇绿混杂岩;10.中下二叠统开心岭群;11.下石炭统杂多群;12.中元古界宁多群;13.古近纪花岗岩;14.晚侏罗世花岗岩;15.晚三叠世花岗岩;16.断层;17.多金属矿床;18.乡镇;19.研究区位置;据王键等(2017)修改
Fig. 2. Regional geological map of Chayong region
图 5 角闪石的成分变化与定名图
CaB.B位置Ca原子数; (Na+K)A.A位置Na与K原子数之和; T Si.T位置Si原子数; AlⅥ.C位置AlⅥ的原子数;Fe3+.C位置Fe3+的原子数;据Leake(1997)
Fig. 5. Diagrams showing classification of hornblendes
图 6 黑云母Mg-(AlⅥ+Fe3++Ti)-(Fe2++Mn)分类图
A.金云母; B.镁质黑云母; C.铁质黑云母; D.铁叶云母; E.铁白云母; F.白云母; 据Foster(1960)修改
Fig. 6. Mg-(AlⅥ+Fe3++Ti)-(Fe2++Mn) diagram of biotites
图 11 查涌闪长岩稀土元素球粒陨石标准化稀土元素(标准化数值据Boynton, 1984)和原始地幔标准化微量元素配分曲线(标准化数据据Sun and McDonough, 1989)
Fig. 11. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) for diorite in Chayong
图 12 黑云母结晶Ti vs.Mg/(Mg+Fe)图解
Fig. 12. Temperature isotherms (℃) calculated from the surface-fit equation on Ti vs. Mg/(Mg+Fe) diagram
图 13 角闪石Al-Si图解
姜常义和安三元(1984);Al、S为角闪石结构式中离子数
Fig. 13. Al-Si Diagram of crystal-chemical genesis of hornblende
图 14 查涌闪长岩sanukite、adakite、boninite和bajaite判别图解
Fig. 14. Discrimination diagrams for sanukite, adakite, boninite and bajaite
图 15 查涌闪长岩Th/Yb-Nb/Yb(a)、Ba/Th-Th/Nb(b)和Nb/Zr-Th/Zr图解
a.据Pearce(2008);b.据Hanyu et al.(2006);c.据Woodhead et al.(2004)
Fig. 15. Th/Yb-Nb/Yb、Ba/Th-Th/Nb and Nb/Zr-Th/Zr diagrams of diorite in Chayong
表 1 查涌闪长岩斜长石电子探针测试结果(%)
Table 1. Electron microprobe analysis (%) of the plagioclase from diorite in Chayong
测点号 SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 位置 核部 核部 核部 核部 边部 边部 边部 边部 边部 SiO2 47.17 46.49 47.26 47.64 53.92 55.45 53.96 52.86 53.72 TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 Al2O3 33.79 34.15 33.39 33.48 28.84 28.31 29.35 29.57 29.69 FeO 0.04 0.01 0.06 0.00 0.01 0.07 0.06 0.22 0.04 MnO 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.01 0.03 MgO 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.04 Cr2O3 0.02 0.00 0.08 0.03 0.05 0.00 0.02 0.00 0.03 CaO 16.54 17.04 15.92 16.41 10.71 10.27 11.23 11.92 11.48 Na2O 2.17 1.84 2.37 2.49 5.93 6.02 5.39 5.23 5.24 K2O 0.01 0.04 0.01 0.06 0.11 0.05 0.05 0.03 0.05 Total 99.74 99.57 99.10 100.11 99.58 100.17 100.13 99.84 100.32 An 89 91 88 88 66 65 70 72 71 Ab 11 9 12 12 33 35 30 28 29 表 2 查涌闪长岩中角闪石电子探针分析结果
Table 2. Electron microprobe analysis of hornblende from diorite in Chayong
测点号 SC10 SC11 SC12 SC13 SC14 SC15 SC16 SC17 SC18 SC19 SC20 SC21 SC22 SC23 SiO2 48.61 49.90 50.35 49.53 50.16 50.68 50.08 48.35 50.00 50.62 49.38 48.85 49.86 49.15 TiO2 1.52 0.78 1.13 1.06 0.88 0.39 0.45 0.84 1.54 0.49 1.08 1.32 0.36 0.39 Al2O3 6.86 6.22 6.14 6.57 5.75 5.11 7.21 7.55 5.79 4.98 6.90 6.40 6.93 6.54 TFeO 12.56 12.16 12.05 12.47 12.00 12.06 12.31 12.71 11.86 12.25 12.14 11.90 12.19 11.81 Cr2O3 0.15 0.20 0.27 0.13 0.15 0.10 0.08 0.05 0.10 0.09 0.21 0.27 0.11 0.07 百分含量(%) MnO 0.28 0.33 0.29 0.30 0.29 0.33 0.32 0.40 0.32 0.31 0.30 0.27 0.30 0.31 MgO 13.98 14.73 14.81 14.77 14.69 15.25 14.47 14.35 15.08 15.15 14.01 14.24 14.19 14.66 CaO 11.26 11.10 11.42 11.20 11.31 11.19 11.39 10.21 11.33 11.24 11.43 11.57 11.33 11.36 K2O 0.35 0.22 0.25 0.28 0.27 0.15 0.18 0.25 0.30 0.19 0.28 0.35 0.15 0.16 Na2O 0.66 0.60 0.55 0.75 0.59 0.56 0.68 0.58 0.65 0.48 0.65 0.61 0.66 0.69 Total 96.21 96.24 97.25 97.07 96.08 95.82 97.16 95.29 96.97 95.79 96.38 95.77 96.07 95.15 T Si 7.16 7.30 7.29 7.21 7.35 7.43 7.25 7.16 7.27 7.43 7.23 7.21 7.30 7.27 AlⅣ 0.84 0.70 0.71 0.79 0.65 0.57 0.75 0.84 0.73 0.57 0.77 0.79 0.70 0.73 C AlⅥ 0.35 0.37 0.34 0.34 0.34 0.31 0.48 0.48 0.26 0.30 0.42 0.32 0.49 0.41 Ti 0.15 0.08 0.11 0.10 0.09 0.04 0.04 0.08 0.15 0.05 0.11 0.13 0.04 0.04 Cr 0.02 0.02 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 Fe2+ 1.54 1.48 1.45 1.51 1.46 1.47 1.49 1.57 1.44 1.50 1.48 1.46 1.49 1.46 Mn 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.04 0.04 Mg 3.09 3.23 3.22 3.23 3.23 3.35 3.14 3.19 3.29 3.34 3.08 3.15 3.12 3.25 B Ca 1.78 1.74 1.77 1.75 1.78 1.76 1.77 1.62 1.77 1.77 1.79 1.83 1.78 1.80 Na 0.19 0.17 0.15 0.21 0.17 0.16 0.19 0.17 0.18 0.14 0.19 0.17 0.19 0.20 A K 0.07 0.04 0.05 0.05 0.05 0.03 0.03 0.05 0.05 0.03 0.05 0.07 0.03 0.03 Mg/(Mg+Fe2+) 0.67 0.69 0.69 0.68 0.69 0.69 0.68 0.67 0.70 0.69 0.68 0.68 0.68 0.69 Si/(Si+Ti+Al) 0.843 0.864 0.863 0.854 0.872 0.890 0.851 0.837 0.864 0.891 0.848 0.853 0.856 0.861 Ca/(Ca+Mg+Fe2+) 0.28 0.27 0.27 0.27 0.27 0.27 0.28 0.25 0.27 0.27 0.28 0.28 0.28 0.28 表 3 查涌闪长岩中黑云母电子探针分析结果
Table 3. Electron microprobe analysis of biobitie from diorite in Chayong
测点号 SC24 SC25 SC26 SC27 SC28 SC29 SC30 SC31 SiO2 36.76 35.06 36.91 36.27 36.52 37.22 36.94 36.46 TiO2 2.18 2.10 2.11 1.93 2.14 2.39 2.48 2.55 Al2O3 16.35 16.19 16.39 16.56 16.23 16.60 16.23 16.21 FeOT 14.45 14.81 14.70 14.93 14.75 14.49 14.76 14.90 MnO 0.14 0.14 0.12 0.13 0.13 0.11 0.05 0.08 MgO 13.46 12.97 13.21 13.31 13.17 13.33 13.23 13.06 Cr2O3 0.26 0.30 0.21 0.22 0.23 0.18 0.17 0.17 CaO 0.01 0.10 0.00 0.02 0.05 0.05 0.04 0.01 Na2O 0.17 0.29 0.13 0.13 0.13 0.22 0.22 0.15 K2O 9.50 8.90 9.75 9.26 9.56 9.62 9.49 10.02 Total 93.28 90.86 93.51 92.77 92.90 94.20 93.60 93.62 Si 6.60 6.51 6.62 6.57 6.60 6.61 6.61 6.56 Ti 0.26 0.26 0.25 0.23 0.26 0.28 0.30 0.31 AlⅣ 1.40 1.49 1.38 1.43 1.40 1.39 1.39 1.44 AlⅥ 2.05 2.04 2.08 2.10 2.05 2.09 2.02 1.99 Fe 2.16 2.29 2.20 2.25 2.22 2.15 2.20 2.23 Fe2+ 1.29 1.49 1.33 1.34 1.35 1.21 1.22 1.50 Fe3+ 0.97 0.93 0.98 1.03 0.99 1.03 1.08 0.86 Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 Mg 3.62 3.61 3.55 3.62 3.57 3.55 3.55 3.52 Cr 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 Ca 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.00 Na 0.06 0.11 0.04 0.05 0.05 0.07 0.07 0.05 K 2.18 2.11 2.23 2.14 2.21 2.18 2.17 2.30 Fe2+/(Fe2++Mg) 0.26 0.29 0.27 0.27 0.27 0.25 0.26 0.30 Mg/(Mg+Fe2++Mn) 0.73 0.70 0.73 0.73 0.72 0.74 0.74 0.70 AlⅥ+Fe3++Ti 3.29 3.23 3.31 3.36 3.29 3.40 3.40 3.16 Fe2++Mn 1.31 1.51 1.34 1.36 1.37 1.23 1.23 1.51 XMg 0.62 0.60 0.61 0.60 0.60 0.61 0.61 0.60 Ti温度(℃) 669 663 660 647 663 681 686 688 P(MPa) 390 411 391 415 389 398 383 376 H(m) 1 472 1 552 1 479 1 569 1 469 1 505 1 448 1 422 注:FeOT为电子探针测试FeO质量百分数,XMg=Mg/(Mg+Fe). 表 4 查涌闪长岩锆石LA-ICP-MSU-Pb同位素定年结果
Table 4. Results of LA-ICP-MS zircon U-Pb dating of diorite in Chayong
测点号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄 1σ CY-01 271 463 0.59 0.050 7 0.002 6 0.253 9 0.012 7 0.036 3 0.000 5 230 3 CY-02 397 765 0.52 0.052 7 0.002 1 0.262 2 0.010 1 0.036 4 0.000 8 230 5 CY-03 338 715 0.47 0.053 1 0.001 9 0.265 8 0.009 7 0.036 3 0.000 4 230 3 CY-04 553 733 0.75 0.052 4 0.003 1 0.260 6 0.015 4 0.036 2 0.000 6 229 4 CY-05 271 441 0.61 0.052 8 0.002 6 0.263 3 0.012 8 0.036 3 0.000 6 230 3 CY-06 264 444 0.59 0.050 8 0.002 3 0.251 4 0.010 8 0.036 2 0.000 6 229 4 CY-07 311 682 0.46 0.055 7 0.004 1 0.282 5 0.022 8 0.036 4 0.000 9 231 6 CY-08 640 696 0.92 0.057 8 0.008 4 0.283 0 0.043 6 0.035 5 0.001 3 225 8 CY-09 319 789 0.40 0.053 3 0.003 6 0.265 0 0.018 1 0.036 1 0.000 7 229 4 CY-10 507 641 0.79 0.048 1 0.002 2 0.239 7 0.010 7 0.036 3 0.000 5 230 3 CY-11 1 929 2 862 0.67 0.056 8 0.004 5 0.266 0 0.016 9 0.035 5 0.000 7 225 4 CY-12 289 385 0.75 0.054 4 0.002 6 0.271 4 0.012 8 0.036 3 0.000 6 230 4 CY-13 396 800 0.50 0.050 9 0.002 4 0.252 4 0.010 3 0.036 2 0.000 6 229 4 CY-14 291 623 0.47 0.052 6 0.003 1 0.259 1 0.014 5 0.035 5 0.000 7 225 4 CY-15 1 218 2 053 0.59 0.050 0 0.001 2 0.251 1 0.006 1 0.036 3 0.000 4 230 2 CY-16 481 895 0.54 0.049 8 0.001 8 0.250 8 0.009 4 0.036 4 0.000 4 231 3 CY-17 379 681 0.56 0.052 2 0.003 2 0.260 0 0.015 8 0.036 2 0.000 7 229 4 CY-18 319 618 0.52 0.051 3 0.002 9 0.255 1 0.014 1 0.036 4 0.000 6 231 4 CY-19 338 484 0.70 0.055 2 0.003 5 0.277 7 0.018 3 0.036 3 0.000 6 230 4 CY-20 362 871 0.42 0.055 7 0.001 9 0.277 9 0.009 6 0.036 4 0.000 6 230 4 CY-21 389 452 0.86 0.053 9 0.002 8 0.270 0 0.013 9 0.036 4 0.000 5 231 3 表 5 查涌闪长岩锆石Hf同位素分析结果
Table 5. Zircon Lu-Hf isotopic compositions of diorite in Chayong
点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(0) εHf(t) TDM1(Ma) fLu/Hf CY-1 229 0.007 231 0.000 371 0.282 518 0.000 016 0.282 517 -9.0 -4.0 1 021 -0.99 CY-2 229 0.009 170 0.000 458 0.282 506 0.000 015 0.282 504 -9.4 -4.4 1 040 -0.99 CY-3 229 0.012 179 0.000 544 0.282 518 0.000 015 0.282 516 -9.0 -4.0 1 026 -0.98 CY-4 229 0.025 173 0.001 028 0.282 485 0.000 017 0.282 480 -10.2 -5.3 1 086 -0.97 CY-5 229 0.030 632 0.001 238 0.282 482 0.000 017 0.282 477 -10.3 -5.4 1 096 -0.96 CY-6 229 0.009 168 0.000 430 0.282 498 0.000 015 0.282 496 -9.7 -4.7 1 051 -0.99 CY-7 229 0.005 738 0.000 299 0.282 507 0.000 019 0.282 506 -9.4 -4.4 1 035 -0.99 CY-8 229 0.005 037 0.000 259 0.282 474 0.000 019 0.282 473 -10.5 -5.5 1 078 -0.99 CY-9 229 0.020 573 0.000 857 0.282 451 0.000 022 0.282 448 -11.3 -6.4 1 127 -0.97 CY-10 229 0.037 301 0.001 680 0.282 347 0.000 019 0.282 339 -15.0 -10.3 1 302 -0.95 CY-11 229 0.006 323 0.000 324 0.282 499 0.000 015 0.282 498 -9.7 -4.7 1 046 -0.99 CY-12 229 0.013 544 0.000 595 0.282 457 0.000 017 0.282 455 -11.1 -6.2 1 112 -0.98 CY-13 229 0.005 417 0.000 286 0.282 458 0.000 017 0.282 457 -11.1 -6.1 1 102 -0.99 CY-14 229 0.006 753 0.000 355 0.282 455 0.000 019 0.282 453 -11.2 -6.2 1 108 -0.99 CY-15 229 0.037 040 0.001 744 0.282 342 0.000 022 0.282 335 -15.2 -10.4 1 311 -0.95 注:εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×10 000;εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10 000;THf1=1/λ×{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM)/(176Lu/177Hf)S-(176Lu/177Hf)DM]}; THf2=THf1-(THf1-t)[(fCC-fS)/(fCC-fDM)]; fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;其中,(176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值,(176Lu/177Hf)CHUR=0.032 2,(176Hf/177Hf)CHUR, 0=0.282 772;(176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25;fCC、fS、fDM分别为大陆地壳、样品和亏损地幔的fLu/Hf,t为样品形成时间,λ=1.867×10-11a-1. 表 6 查涌闪长岩岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)分析结果
Table 6. Major elements, trace elements and rare elements analyses of diorite in Chayong
样品 SCY1 SCY2 SCY3 SCY4 样品 SCY1 SCY2 SCY3 SCY4 SiO2 56.92 56.64 57.09 56.31 Y 16.57 14.5 14.45 14.73 Al2O3 15.38 13.98 14.60 15.23 Zr 63.5 38.79 54.59 58.77 Fe2O3 1.87 1.21 0.60 0.88 Nb 6.36 5.78 4.99 5.54 FeO 5.19 5.61 5.68 5.57 Cd 1.41 1.19 1.39 1.45 CaO 7.77 7.38 8.48 8.43 Ba 191.0 2796.0 130.2 158.8 MgO 6.52 8.89 7.82 7.35 La 11.61 10.49 9.67 10.03 K2O 1.16 0.97 0.90 1.29 Ce 24.76 23.68 20.97 21.57 Na2O 2.02 1.74 1.83 1.85 Pr 3.06 3.10 2.64 2.73 TiO2 0.61 0.54 0.40 0.48 Nd 11.63 11.75 9.91 10.07 P2O5 0.07 0.09 0.06 0.06 Sm 2.65 2.69 2.30 2.28 MnO 0.20 0.18 0.17 0.18 Eu 0.89 1.10 0.78 0.81 LOI 2.02 2.52 2.07 1.96 Tb 0.47 0.44 0.41 0.41 Total 99.74 99.75 99.70 99.58 Dy 2.84 2.48 2.42 2.50 FeOt 6.88 6.70 6.22 6.36 Ho 0.57 0.49 0.49 0.51 M# 63 70 69 67 Er 1.68 1.41 1.46 1.45 Na/K 1.74 1.79 2.04 1.44 Tm 0.24 0.19 0.20 0.21 ANK 3.35 3.58 3.65 3.43 Yb 1.69 1.41 1.51 1.49 P 310.39 391.98 262.87 280.06 Lu 0.28 0.22 0.24 0.23 Sc 30.82 31.41 31.32 31.38 Hf 1.86 1.30 1.67 1.70 V 171.6 174.1 153.7 164.7 Ta 0.66 0.64 0.71 0.70 Cr 218.9 415.9 296.1 284.8 Pb 8.65 90.56 6.29 7.98 Mn 1 402 1 206 1 187 1 230 Th 3.32 1.53 1.63 1.27 Co 24.58 33.72 27.43 26.63 U 0.81 0.06 0.10 0.10 Ni 57.86 127.6 82.87 69.06 Sr/Y 9.90 10.73 8.99 9.64 Cu 34.37 157.20 32.88 38.25 LREE 54.59 52.81 46.27 47.50 Zn 83.09 132.8 76.29 75.25 HREE 7.76 6.63 6.72 6.80 Ga 14.89 12.37 13.19 14.02 REE 62.35 59.44 52.99 54.30 As 6.30 4.48 4.50 5.08 LREE/HREE 7.03 7.97 6.89 6.98 Se 7.65 5.39 6.75 9.40 (La/Yb)N 4.64 5.02 4.33 4.54 Rb 39.92 41.09 34.83 55.06 Eu/Eu* 0.99 1.24 1.00 1.04 Sr 164.1 155.6 129.9 142 -
[1] All Members of the IMA-CNMMN Amphibole Professional Committee, 2001.Amphibole Nomenclature-International Association of Mineralogy New Mineral and Mineral Named Committee Hornblende Professional Committee's Report.Acta Petrologica et Mineralogica, 20(1):84-100 (in Chinese). [2] Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Elements Geochemistry. Elsevier, Amsterdam, 63-144. [3] Chen, J.L., Xu, J.F., Ren, J.B., et al., 2014.Geochronology and Geochemical Characteristics of Late Triassic Porphyritic Rocks from the Zhongdian Arc, Eastern Tibet, and Their Tectonic and Metallogenic Implications.Gondwana Research, 26(2):492-504. https://doi.org/10.1016/j.gr.2013.07.022 [4] Defant, M.J., Drummond, M.S., 1990.Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [5] Dewey, J.F., Shackleton, R.M., Chengfa, C., et al., 1988.The Tectonic Evolution of the Tibetan Plateau.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):379-413. https://doi.org/10.1098/rsta.1988.0135 [6] Duan, Q.F., Wang, J.X., Bai, Y.S., et al., 2009.Zircon SHRIMP U-Pb Dating and Lithogeochemistry of Gabbro from the Ophiolite in Southern Qinghai Province.Geology in China, 36(2):291-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200902004.htm [7] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://doi.org/10.1016/j.gca.2006.06.1383 [8] Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. Geol. Surv. Prof., Washington, 11-49. [9] Fu, X.G., Wang, J., Tan, F.W., et al., 2010.The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China):Age and Tectonic Implications.Gondwana Research, 17(1):135-144. https://doi.org/10.1016/j.gr.2009.04.010 [10] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006.Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry.Geochemistry, Geophysics, Geosystems, 7(8):1-29. https://doi.org/10.1029/2005gc001220 [11] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2/3):316-328. https://doi.org/10.2138/am.2005.1498 [12] Hou, K.J., Li, Y.H., Zou, T.R., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.oalib.com/paper/1472292 [13] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance.Journal of Mineralogy and Petrology, 4(3):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198403000.htm [14] Jin, G. S., 2006. Geochronology and Geochemistry Characters on Some Magmatic Rocks in the West of Xijir Ula-Jinshajiang Suture Zone. Chinese Academy of Geological Sciences, Beijing, 1-85 (in Chinese with English abstract). [15] Kamei, A., Owada, M., Nagao, T., et al., 2004.High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc:Evidence from Clinopyroxene and Whole Rock Compositions.Lithos, 75(3/4):359-371. https://doi.org/10.1016/j.lithos.2004.03.006 [16] Kay, R.W., 1978.Aleutian Magnesian Andesites:Melts from Subducted Pacific Ocean Crust.Journal of Volcanology and Geothermal Research, 4(1/2):117-132. https://doi.org/10.1016/0377-0273(78)90032-x [17] Kumar, S., Pathak, M., 2010.Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya:Evidence of Bimodal Granitogeny and Tectonic Affinity.Journal of the Geological Society of India, 75(5):715-730. https://doi.org/10.1007/s12594-010-0058-0 [18] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.Mineralogical Magazine, 61(405):295-321. https://doi.org/10.1180/minmag.1997.061.405.13 [19] Li, S.P., Wang, Y.Z., Shen, C.S., et al., 2007.Geochemical Characteristics of Late Permian-Early Triassic Continental Volcanic Rocks in the Zaduo Area, Northern Qiangtang, Qinghai-Tibet Plateau.Geological Bulletin of China, 26(6):675-681 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/459085/1/1000009299056.pdf [20] Li, Y., Wang, C.S., Yi, H.S., 2003.The Late Triassic Collision and Sedimentary Responses at Western Segment of Jinshajiang Suture, Tibet.Acta Sedimentologic Sinica, 191-197(in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/458483/1/1000008982060.pdf [21] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082 [22] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [23] Lu, J.G., Wang, J.C., Chu, C.H., et al., 2006.Zircon SHRIMP U-Pb Dating of the Wolonggangmonzo-Granite Porphyry in the Western Segment of the Hoh Xil Belt, Qinghai-Tibet Plateau and Its Geological Significance.Geological Bulletin of China, 25(6):721-724 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200606011.htm [24] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, 4:70. https://searchworks.stanford.edu/view/6739593 [25] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [26] Pan, G.T., Wang, L.Q., Li, X.Z., et al., 2001.The Tectonic Framework and Spatial Allocation of the Archipelagic Arc-Basin Systems on the Qinghai-Xizang Plateau.Sedimentary Geology and Tethyan Geology, 21(3):1-26(in Chinese with English abstract). doi: 10.1007/s12583-013-0312-7 [27] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1/2/3/4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [28] Peng, T.P., Zhao, G.C., Fan, W.M., et al., 2015.Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau:Geochronology, Petrogenesis and Implications for the Tectonic Evolution of the Paleo-Tethys.Gondwana Research, 27(4):1494-1508. https://doi.org/10.13039/501100001809 [29] Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008.Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean.Geology, 36(5):351. https://doi.org/10.1130/g24435a.1 [30] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [31] Roger, F., Jolivet, M., Malavieille, J., 2010.The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present:A Synthesis.Journal of Asian Earth Sciences, 39(4):254-269. https://doi.org/10.1016/j.jseaes.2010.03.008 [32] Rogers, G., Saunders, A.D., Terrell, D.J., et al., 1985.Geochemistry of Holocene Volcanic Rocks Associated with Ridge Subduction in Baja California, Mexico.Nature, 315(6018):389-392. https://doi.org/10.1038/315389a0 [33] Saunders, A.D., Rogers, G., Marriner, G.F., et al., 1987.Geochemistry of Cenezoic Volcanic Rocks, Baja California, Mexico:Implications for the Petrogenesis of Post-Subduction Magmas.Journal of Volcanology and Geothermal Research, 32(1/2/3):223-245. https://doi.org/10.1016/0377-0273(87)90046-1 [34] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998.Setouchi High-Mg Andesites Revisited:Geochemical Evidence for Melting of Subducting Sediments.Earth and Planetary Science Letters, 160(3/4):479-492. https://doi.org/10.1016/s0012-821x(98)00105-8 [35] Smithies, R. H., Chiampion, D. C., 1999. Archaean High-Mg Diorite (Sanukitoid) Suite, Pilbara Craton, Western Australia. In: Barbarin, B., ed., The Origin of Granites and Related Rocks: Fourth Hutton Symposium Abstracts. Clermont-Ferrand, France, 190. [36] Smithies, R.H., Chiampion, D.C., 2003.Adakite, TTG and Archaean Crustal Evolution.European Geophysical Society, Geophysical Research Abstracts, 5:1630. https://www.sciencedirect.com/science/article/pii/S002449370400266X [37] Spurlin, M.S., Yin, A., Horton, B.K., et al., 2005.Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity, East-Central Tibet.Geological Society of America Bulletin, 117(9):1293. https://doi.org/10.1130/b25572.1 [38] Stern, C.R., Kilian, R., 1996.Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Contributions to Mineralogy and Petrology, 123(3):263-281. https://doi.org/10.1007/s004100050155 [39] Stone, D., 2000.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada.The Canadian Mineralogist, 38(2):455-470. https://doi.org/10.2113/gscanmin.38.2.455 [40] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [41] Sun, X.M., Nie, Z.T., Liang, D.Y., 1994.On the Time and Tectonic Significance of Ophiolitic Mélange in Jinsha River Belt, Northwest Yunnan.Geoscience, 8(3):241-246 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ403.000.htm [42] Tang, Z.H., Lu, J.P., Li, Y.K., et al., 2007.Discovery of Middle Triassic Radiolarian Fossils in Cherts in the Vicinity of the Tubei Lake, Northern Nyima, Tibet, China.Geological Bulletin of China, 26(1):73-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200701008.htm [43] Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1):47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x [44] Vervoort, J.D., Patchett, P., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3 [45] Wang, B.Q., Zhou, M.F., Chen, W.T., et al., 2013.Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet.Lithos, 175-176:285-301. https://doi.org/10.13039/501100001809 [46] Wang, J., Sun, F.Y., Yu, L., 2017.Fluidinclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Depositin Yushu, Qinghai Province, China.Earth Science, 42(6):941-956 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.074 [47] Wones, D.R., Eugster, H.P., 1965.Stability of Biotite:Experiment, Theory, and Application.Mineralogical Society of America, American Mineralogist, 50:1228-1272. http://rruff.info/doclib/am/vol50/AM50_1228.pdf [48] Woodhead, J., Hergt, J., Shelley, M., et al., 2004.Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation.Chemical Geology, 209(1/2):121-135. https://doi.org/10.1016/j.chemgeo.2004.04.026 [49] Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007.The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China.Island Arc, 16(1):156-172. https://doi.org/10.1111/j.1440-1738.2007.00564.x [50] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau.Acta Petrologica Sinica, 29(6):1847-1860(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306002.htm [51] Yang, J., Wu, F., Shao, J., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3/4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [52] Yang, T.N., Ding, Y., Zhang, H.R., et al., 2014.Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau:Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China.Geological Society of America Bulletin, 126(11/12):1654-1682. https://doi.org/10.1130/b30921.1 [53] Yang, T.N., Hou, Z.Q., Wang, Y., et al., 2012.Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet:Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture.Tectonics, 31(4):TC4004. https://doi.org/10.1029/2011tc003044 [54] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [55] Yogodzinski, G.M., Volynets, O.N., Koloskov, A.V., et al., 1994.Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians.Journal of Petrology, 35(1):163-204. https://doi.org/10.1093/petrology/35.1.163 [56] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [57] Zhai, Q.G., Jahn, B.M., Su, L., et al., 2013.Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet:Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications.Journal of Asian Earth Sciences, 63:162-178. https://doi.org/10.1016/j.jseaes.2012.08.025 [58] Zhang, K.J., Tang, X.C., Wang, Y., et al., 2011.Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China:Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt.Lithos, 121(1/2/3/4):167-175. https://doi.org/10.1016/j.lithos.2010.10.015 [59] Zhang, N., Li, J.B., Yang, Y.S., et al., 2012.Petrogeochemical Characteristics and Tectonic Setting of the Wandaohu Ophiolite Mélange, Jinshajiang Suture, Tibet.Acta Petrologica Sinica, 28(4):1291-1304(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201204026.htm [60] Zhang, Q., Qian, Q., Di, M.G., et al., 2005.Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite.Acta Petrologica et Mineralogical, 24(2)117-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm [61] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorite in Zhiduo Area, Qinghai Province.Earth Science, 40(1), 61-76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201501005.htm [62] Zhao, S.Q., Tan, J., Wei, J.H., et al., 2014.Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet:Partial Melting of Juvenile Crust and Implications for Paleo-Tethys Ocean Subduction.International Journal of Earth Sciences, 104(2):369-387. https://doi.org/10.1007/s00531-014-1080-z [63] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.13039/501100001809 [64] Zhu, Y.T., Guo, T.Z., Peng, W., et al., 2004a.New Result and Major Progress in Regional Geological Survey of the Hol-Xil Lake Sheet.Geological Bulletin of China, 23(5-6):543-548(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z1024.htm [65] Zhu, Y.T., Yi, H.S., Wang, Q.et al., 2004b.The Discovery and Significance of the Middle Permian Adakites along the Huangdong River North of the Xijir Ulan Lake, Qinghai.Sedimentary Geology and Tethyan Geology, 24(2):30-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2004.02.005 [66] IMA-CNMMN角闪石专业委员会全体成员, 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告.岩石矿物学杂志, 20(1):84-100. http://www.docin.com/p-1117839573.html [67] 段其发, 王建雄, 白云山, 等, 2009.青海南部蛇绿岩中辉长岩锆石SHRIMP U-Pb定年和岩石地球化学特征.中国地质, 36(2):291-299. http://d.wanfangdata.com.cn/Periodical_zgdizhi200902003.aspx [68] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [69] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, 4(3):1-9. https://www.wenkuxiazai.com/doc/3b69ffa858f5f61fb73666f7.html [70] 金贵善, 2006. 西金乌兰-金沙江缝合带西段部分岩浆岩地质年代学及地球化学特征. 北京: 中国地质科学院, 1-85. [71] 刘彬, 马昌前, 黄坚, 等.2017.北羌塘北缘玉树三叠纪火山岩的成因机制及其构造意义.岩石矿物学杂志, 35(1):1-15. http://www.cnki.com.cn/Article/CJFDTotal-YSKW201601001.htm [72] 李善平, 王毅智, 沈存祥, 等, 2007.青藏高原北羌塘盆地杂多地区晚二叠世-早三叠世陆相火山岩的地球化学特征及其意义.地质通报, 26(6):675-681. http://d.wanfangdata.com.cn/Periodical_zgqydz200706007.aspx [73] 李勇, 王成善, 伊海生, 2003.西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应.沉积学报, 21(2):191-197. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb200302000&dbname=CJFD&dbcode=CJFQ [74] 吕金刚, 王炬川, 禇春华, 等, 2006.青藏高原可可西里带西段卧龙岗二长花岗斑岩锆石SHRIMP U-Pb定年及其地质意义.地质通报, 25(6):721-724. http://www.oalib.com/paper/4275104 [75] 潘桂堂, 王立全, 李兴振, 等, 2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质, 21(3):1-26. http://www.cqvip.com/QK/98500A/200103/5538173.html [76] 孙晓猛, 聂泽同, 梁定益, 1994.滇西北金沙江带蛇绿混杂岩的形成时代及大地构造意义.现代地质, 8(3):241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ403.000.htm [77] 唐专红, 陆济璞, 李玉坤, 等, 2007.西藏尼玛北部图北湖一带硅质岩中发现中三叠世放射虫化石.地质通报, 26(1):73-76. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zqyd200701008&dbname=CJFD&dbcode=CJFQ [78] 王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6):941-956. http://www.earth-science.net/WebPage/Article.aspx?id=3589 [79] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130601&journal_id=ysxb&year_id=2013 [80] 张能, 李剑波, 杨云松, 等, 2012.金沙江缝合带弯岛湖蛇绿混杂岩带的岩石地球化学特征及其构造背景.岩石学报, 28(4):1291-1304. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120425 [81] 张旗, 钱青, 翟明国, 等, 2005.Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义.岩石矿物学杂志, 24(2):117-125. http://www.cnki.com.cn/Article/CJFDTotal-YSKW200502004.htm [82] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1):61-76. http://www.earth-science.net/WebPage/Article.aspx?id=3025 [83] 朱迎堂, 郭通珍, 彭伟, 等, 2004a.可可西里湖幅地质调查新成果及主要进展.地质通报, 23(5-6):543-548. http://www.oalib.com/paper/4898912 [84] 朱迎堂, 伊海生, 王强, 等, 2004b.青海西金乌兰还东河中二叠世埃达克岩的发现及其意义.沉积与特提斯地质, 24(2):30-34. doi: 10.3969/j.issn.1009-3850.2004.02.005