• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    胶北地块斜长角闪岩的岩石学与年代学研究

    陈爽 李旭平 段文勇 孙光明 冯庆达

    陈爽, 李旭平, 段文勇, 孙光明, 冯庆达, 2018. 胶北地块斜长角闪岩的岩石学与年代学研究. 地球科学, 43(3): 716-732. doi: 10.3799/dqkx.2018.903
    引用本文: 陈爽, 李旭平, 段文勇, 孙光明, 冯庆达, 2018. 胶北地块斜长角闪岩的岩石学与年代学研究. 地球科学, 43(3): 716-732. doi: 10.3799/dqkx.2018.903
    Chen Shuang, Li Xuping, Duan Wenyong, Sun Guangming, Feng Qingda, 2018. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3): 716-732. doi: 10.3799/dqkx.2018.903
    Citation: Chen Shuang, Li Xuping, Duan Wenyong, Sun Guangming, Feng Qingda, 2018. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3): 716-732. doi: 10.3799/dqkx.2018.903

    胶北地块斜长角闪岩的岩石学与年代学研究

    doi: 10.3799/dqkx.2018.903
    基金项目: 

    山东科技大学校创新团队项目 2015TDJH101

    国家自然科学基金项目 41272072

    国际(地区)合作与交流项目 41761144061

    详细信息
      作者简介:

      陈爽(1992-), 博士研究生, 矿物岩石学专业

      通讯作者:

      李旭平

    • 中图分类号: P597

    Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane

    • 摘要: 胶北地块位于华北克拉通东部陆块,胶-辽-吉活动带的南端.胶北地区荆山杂岩中存在一组与高压基性麻粒岩密切共生的斜长角闪岩,是构成前寒武纪变质基底的重要组成部分.岩石学矿物学研究表明,斜长角闪岩记录了3个阶段的变质作用:峰期变质矿物组合(M1)为角闪石1+斜长石+榍石,根据NCKFMASHTO体系的成分视剖面图和角闪石压力计估算出温度条件T=660~715 ℃,压力条件P=0.65~0.71 GPa;其后经历了退变质作用(M2),矿物组合为角闪石2+绿帘石+斜长石+绿泥石+钠长石,估算温压条件为537~630 ℃/0.41~0.58 GPa;晚期发生前绿片岩相退变质作用(M3),其矿物组合为钠长石+葡萄石+绿泥石+方解石,其温压条件 < 400 ℃/0.35 GPa.斜长角闪石的CL图像显示其具有较弱的阴极发光效应和弱震荡环带,Th/U比值相对较小(0.06~0.43),锆石形态和内部结构指示锆石形成于深熔作用过程,21个锆石的LA-ICP-MS定年研究的结果表明,斜长角闪岩记录的最老206Pb/238U年龄为2 075±25 Ma,上交点年龄为1 845±23 Ma(MSWD=0.35),该组年龄记录了斜长角闪岩峰期变质作用时代的上限.斜长角闪岩在原岩形成以后,可能曾经历麻粒岩相变质作用,并记录了在胶-辽-吉带~1.85 Ga碰撞闭合过程中的深熔事件,此后经历了角闪岩相变质作用,及其二次退变质作用,终结于前绿片岩相的变质温压条件.

       

    • 自胶北前寒武纪变质基底中的高压基性麻粒岩与高压泥质麻粒岩相继被发现以来(刘文军等,1998周喜文等,2004),国内外学者对胶北高压麻粒岩及相关岩石的矿物学、岩石学、变质演化、构造解析、岩石地球化学、年代学及其成因机制等做了大量的研究,并取得许多重大进展(Zhao et al., 1998, 2001, 2005, 2012;Wan et al., 2006; Zhao and Zhai, 2013).如在对胶北高压麻粒岩及其相关岩石的锆石年代学和变质作用研究中,发现本区不同类型的基底岩石变质锆石不同程度地记录了两组具有重要地质意义的年代学信息,其中一组年龄为1.95~1.87 Ga,代表了高压麻粒岩相变质时代,该类变质锆石微区含有高压麻粒岩相典型矿物组合;而第二组变质年龄为1.86~1.80 Ga,该类变质锆石微区常含有中低压麻粒岩相典型矿物组合,代表了造山后高压麻粒岩退变质时代以及造山后伸展过程中变基性岩的侵位时代.从而构建了胶北地体中高压麻粒岩顺时针的P-T-t轨迹(刘平华等, 2010, 2012, 2013, 2014, 2015, 2017; Tam et al., 2011; 刘福来等,2012; Liu et al., 2014).

      尽管前人的研究取得了上述重大的进展与突破,但是仍有一些问题有待解决,例如目前胶-辽-吉带关于变质岩石学和年代学的研究主要集中于高压泥质和高压基性麻粒岩峰期变质作用以及其后的等温降压退变质作用,但关于二次抬升阶段的等压冷却作用的研究资料却比较少.近期,笔者在本区域内太古代岩石与元古代岩石交界处发现与高压基性麻粒岩密切共生的斜长角闪岩,目前对于这些斜长角闪岩缺乏较为深入的研究.因此,本文在综合前人已有的对于本区高压基性麻粒岩的研究基础上,以胶北地区南山口斜长角闪岩为研究对象,通过对斜长角闪岩的岩石学、矿物学、变质演化以及年代学的综合研究,探讨斜长角闪岩的变质作用P-T条件并构筑其P-T-t轨迹,以丰富对胶北地区相关岩石在后期等压降温阶段中变质作用及演化历史的认识.

      胶北地块前寒武纪变质基底包括晚太古代和古元古代岩石.晚太古代岩石主要为TTG片麻岩和少量含基性麻粒岩、斜长角闪岩透镜体的表壳岩(胶东岩群和唐家庄岩群).TTG片麻岩呈穹隆状大面积出露,包括英云闪长片麻岩、奥长花岗片麻岩、花岗闪长片麻岩以及少量花岗质片麻岩.已有的年代学结果表明,花岗质片麻岩的原岩时代主要为~2.5Ga和~2.1 Ga(刘建辉等,2011),TTG质片麻岩的原岩形成时代可分为~2.90 Ga、~2.70 Ga和~2.50 Ga 3期(Jahn et al., 2008; Zhou et al., 2008; 刘建辉等,2011; Liu et al., 2013).古元古代岩石包括粉子山群和荆山群,粉子山群主要出露在胶北地块的西北部,包含泥质片岩、细粒副片麻岩、大理岩、钙硅酸大理岩和少量斜长角闪岩;荆山群位于东南部,包含变质程度较高的泥质麻粒岩、泥质片麻岩、长英质副片麻岩、钙硅酸盐岩、大理岩、石英岩和少量高压泥质麻粒岩(周喜文等, 2004, 2007; 王舫等,2010; Tam et al., 2011).粉子山群与荆山群变质程度为角闪岩相到麻粒岩相,其峰值和峰后变质年龄分别为1.93~1.90 Ga和1.86~1.80 Ga(Zhou et al., 2008Tam et al., 2011; Zhao and Guo, 2012).这套古元古代变质岩系被中-新元古代蓬莱群不整合覆盖,蓬莱群岩石组合包括变质灰岩、板岩和石英岩等(Faure et al., 2004; Zhou et al., 2008).胶北地区还出现较多的变基性-超基性岩,主要分布在莱西-莱阳、栖霞一带的新太古代花岗质或TTG质片麻岩中(李旭平等, 2011, 2013孔凡梅等,2015),它们常以不规则透镜体、岩墙/岩脉群等形式产出(刘平华等,2015),岩性为斜长角闪岩和基性麻粒岩(图 1),其面理与周围TTG和花岗质片麻岩一致.本文研究的斜长角闪岩样品采自莱西北部马连庄镇南山口村,来自采坑中挖出的0.5~1.5 m大小的大岩块.

      图  1  (a) 胶东地区地质构造简图和研究区马连庄-河头店一带地质图及采样位置(b)
      Fig.  1.  (a) Geological schematic map of the Jiaodong district; (b) geological map and sample localities in malianzhuang-hetoudian of study area

      锆石制靶、抛光、CL图像、LA-ICP-MS测年均在西北大学大陆动力学国家重点实验室完成.CL图像是利用FEI Quanta400 FEG型场发射扫描电镜装载的Mono CL3+阴极发光系统装置完成的.激光剥蚀等离子体质谱仪(LA-ICP-MS)采用德国MicroLas公司生产的GeoLas 2005型193 nm的ArF准分子激光器及相应的光学系统,与ICP-MS联用构成.锆石测年斑束为32 μm,激光脉冲频率为6 Hz,标样采用91500和GJ-1,微量元素采用Nist610,对Ti、206Pb、207Pb、208Pb积分时间采用20 ms,Th、U采用10 ms,其余采用6 ms.数据处理采用GLITTER4.0程序进行.普通Pb校正方法见Anderson,协和图采用Isplot3绘制.

      矿物的电子探针分析数据是在德国Ruhr University Bochum电子探针实验室完成,仪器型号Cameca SX50;分析条件:加速电压15 kV,束流15 nA,束斑1 μm.用天然矿物硬玉(Si)、镁橄榄石(Mg)、铁铝榴石(Fe)、钠长石(Na,Al)、金红石(Ti)、锰铝榴石(Mn)、透长石(K)和Cr2O3(Cr)做标准样品.

      电子探针成分分析是在南京大学内生金属矿床成矿机制研究国家重点实验室的JXA-8100(JEOL)上进行的.分析条件:加速电压15 kV,束流20 nA.束斑直径:<1 μm.使用的标样:K、Na、Ca、Mg、Al、Ti为美国国家标准局天然矿物标样——角闪石标样,Fe、Mn用铁橄榄石标样,而测角闪石中的Si用角闪石标样,测斜长石中的Si用铁橄榄石标样.文中使用的矿物代号引自Whitney and Evans(2010).

      斜长角闪岩(09LY21、09LY23)主要由角闪石(70%)、斜长石(15%~20%)和少量的绿帘石、绿泥石、葡萄石、榍石、方解石组成,此外还有5%左右的细粒不透明铁-钛氧化物矿物.中-细粒变晶结构,块状-弱片麻状构造(图 2).大部分角闪石(Amp1)单偏光下呈深褐至浅褐色,颗粒较大(0.5~2.0 mm)常具有三连点结构(图 3a);在大颗粒角闪石周围还有少量细粒(≤0.5 mm)、浅蓝绿色角闪石,为晚期退变质的产物(Amp2).斜长石大多呈他形粒度为0.2~1.5 mm,常以不规则港湾状边联结在一起(图 2d),指示峰期可能发生了部分熔融;部分斜长石沿方解石脉分布,粒径为20~100 μm.绿泥石、绿帘石、榍石很少,多分布于角闪石周围,可能为后期退变质阶段的产物.此外还存在脉状方解石和葡萄石.

      图  2  胶北地块斜长角闪岩的显微结构照片
      a.样品09LY21的峰期(M1)角闪石颗粒较大(Amp1),可见三连点结构,与斜长石(Pl)共生(单偏光图像);b.样品09LY21背散射(BSE)图像;c.样品09LY23峰期后(M2)角闪石边缘发生退变质形成退变角闪石(Amp2),斜长石(Pl)开始退变质为钠长石(Ab)(单偏光图像);d.样品09LY23背散射(BSE)图像;e.样品09LY23中可见晚期(M3)出现葡萄石(Prh)脉体(单偏光图像);f.样品09LY23中斜长石(Pl)边缘浑圆,角闪石(Amp1)港湾状边缘(正交偏光图像);g.样品09LY23中可见晚期(M3)出现方解石(Cal)脉体,斜长石(Pl)完全退变质为钠长石(Ab)端元(正交偏光图像);h.样品09LY23中部分角闪石(Amp2)退变质为绿帘石(Ep),靠近方解石脉的斜长石均为钠长石(Ab)(背散射图像)
      Fig.  2.  Photomicrographs of amphibolite from Jiaobei terrane
      图  3  胶北地块斜长角闪岩中角闪石的Si-Mg/(Mg+Fe2+)成分分类图
      Fig.  3.  Si-Mg/(Mg+Fe2+) diagram of amphibole from amphibolites in the Jiaobei terrane
      3.2.1   角闪石

      岩相学观察表明角闪石可分为两类:峰期变质角闪石(Amp1)和退变质角闪石(Amp2),二者在成分上明显不同.峰期角闪石(Amp1)SiO2含量较低,为41.94%~45.74%,Al2O3含量较高(8.42 %~11.46 %),TiO2含量高(1.01 %~1.76 %);而退变质角闪石(Amp2)SiO2含量较高,为46.21%~48.67%,Al2O3含量较低(5.68%~7.83%),TiO2含量较低,为0.09%~0.75%.此外,两类角闪石FeOT、MgO、Na2O和K2O含量也存在明显差异.根据Leake et al.(1997)角闪石命名法(图 3),峰期角闪石(Amp1)为韭闪石-浅闪石,退变角闪石(Amp2)为镁角闪石-阳起石.在Al-Ti和Ti-(Na+K)变异图上(图 4),峰期角闪石(Amp1)落在麻粒岩-高角闪岩相区,而峰期后退变质角闪石(Amp2)落在低角闪岩相-绿片岩相区.

      图  4  胶北地块斜长角闪岩中角闪石的Al-Ti (a)和Ti-(Na+K)(b)成分图解
      Fig.  4.  Amphibole chemistry from amphibolites in the Jiaobei terrane Al-Ti (a) diagram and Ti-(Na+K) (b) diagram
      表  1  胶北地块斜长角闪岩中角闪石化学成分(%)特征
      Table  Supplementary Table   Amphibole compositions (%) in the amphibolites from Jiaobei terrane
      样品编号 09LY21 09LY23 09LY23
      Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp2 Amp2 Amp2 Amp2 Amp2
      SiO2 42.25 42.38 41.95 41.94 42.04 45.74 45.12 43.96 44.65 43.00 46.21 47.67 48.36 46.7 48.67
      TiO2 1.61 1.60 1.72 1.59 1.76 1.01 1.01 1.23 1.11 1.21 0.15 0.75 0.22 0.53 0.09
      Al2O3 11.16 11.29 11.42 11.46 11.41 8.42 9.07 9.93 10.08 10.28 7.67 7.46 5.72 7.83 5.68
      FeO 16.77 16.44 17.25 16.86 17.31 15.68 16.57 15.64 16.49 16.63 18.22 14.57 17.63 14.94 15.89
      MnO 0.33 0.34 0.37 0.32 0.36 0.37 0.34 0.31 0.32 0.32 0.34 0.32 0.39 0.36 0.31
      MgO 9.78 9.70 9.20 9.73 9.28 11.88 10.47 10.55 10.66 10.29 9.27 12.49 9.89 12.03 11.78
      CaO 11.35 11.54 11.35 11.35 11.29 11.19 11.49 11.47 12.1 11.61 11.84 11.76 11.87 11.71 12.08
      Na2O 1.7 1.56 1.58 1.65 1.60 1.14 1.35 1.33 1.27 1.34 1.19 1.08 0.91 1.01 0.87
      K2O 1.25 1.26 1.26 1.23 1.25 0.70 0.72 0.99 0.90 1.04 0.29 0.52 0.21 0.53 0.19
      Sum 96.20 96.11 96.10 96.13 96.30 96.13 96.14 95.41 97.58 95.72 95.18 96.62 95.20 95.64 95.56
      Oxygens 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
      Si 6.47 6.48 6.45 6.43 6.45 6.90 6.84 6.71 6.69 6.60 7.11 7.09 7.38 7.04 7.34
      Al 1.53 1.52 1.55 1.57 1.55 1.10 1.16 1.29 1.31 1.40 0.89 0.91 0.62 0.96 0.66
      Al 0.49 0.52 0.52 0.50 0.51 0.39 0.47 0.50 0.47 0.46 0.50 0.39 0.41 0.43 0.35
      Ti 0.19 0.18 0.20 0.18 0.20 0.11 0.12 0.14 0.13 0.14 0.02 0.08 0.03 0.06 0.01
      Fe3+ 0.29 0.33 0.32 0.29 0.32 0.52 0.50 0.45 0.43 0.37 0.61 0.62 0.76 0.59 0.71
      Fe2+ 1.86 1.77 1.89 1.88 1.9 1.45 1.60 1.54 1.63 1.77 1.73 1.19 1.49 1.29 1.29
      Mn 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04
      Mg 2.23 2.21 2.11 2.23 2.12 2.67 2.37 2.40 2.38 2.35 2.13 2.77 2.25 2.70 2.65
      Ca 1.86 1.89 1.87 1.87 1.86 1.81 1.87 1.88 1.94 1.91 1.95 1.87 1.94 1.89 1.95
      Na 0.50 0.46 0.47 0.49 0.47 0.33 0.40 0.39 0.37 0.40 0.36 0.31 0.27 0.29 0.25
      K 0.24 0.25 0.25 0.24 0.25 0.13 0.14 0.19 0.17 0.20 0.06 0.10 0.04 0.10 0.04
      Mg/(Mg+Fe) 0.55 0.56 0.53 0.54 0.53 0.65 0.60 0.61 0.59 0.57 0.55 0.70 0.60 0.68 0.67
      下载: 导出CSV 
      | 显示表格
      3.2.2   斜长石与其他矿物

      斜长角闪岩中大颗粒斜长石为更长石An=15.44~20.35,而方解石脉周围的细粒斜长石为钠长石,An=5.94~8.92.绿帘石和绿泥石为典型的角闪石退变质后形成的矿物(表 2).葡萄石是典型的葡萄石-绿纤石相矿物,与方解石脉共同出现.

      2  胶北地块斜长角闪岩中代表性矿物化学成分(%)特征
      Supplementary Table   Representative mineral compositions (%) in the amphibolites from Jiaobei terrane
      样品 09LY23 09LY21
      矿物点数 钠长石 斜长石 绿帘石 绿帘石 绿泥石 葡萄石 斜长石 绿帘石 榍石
      5 3 2 2 2 2 3 2 1
      SiO2 65.18 64.09 37.36 38.40 25.70 42.92 64.74 37.22 30.87
      TiO2 0.03 0.07 0.23 0.19 0.06 0.04 0.02 0.27 36.83
      Al2O3 20.79 22.49 27.14 27.24 19.20 28.12 24.09 26.64 1.90
      Cr2O3 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.02
      Fe2O3 0.07 0.12 7.66 8.21 1.17 0.14 0.20 8.29 0.00
      FeO 0.00 0.00 0.99 0.07 23.50 0.00 0.00 1.50 0.52
      MnO 0.00 0.00 0.24 0.17 0.28 0.01 0.00 0.51 0.05
      MgO 0.01 0.01 0.00 0.03 15.47 0.01 0.03 0.06 0.02
      CaO 1.31 2.96 23.57 23.72 0.16 18.20 3.94 22.84 29.19
      Na2O 11.36 8.91 0.08 0.05 0.27 2.49 8.44 0.11 0.03
      K2O 0.09 0.07 0.01 0.00 0.07 0.08 0.12 0.03 0.01
      Totals 98.84 98.73 97.29 98.08 85.88 92.01 101.59 97.46 99.44
      Oxygens 8.00 8.00 12.50 12.50 14.00 11.00 8.00 12.50 5.00
      Si 2.90 2.85 2.95 3.00 2.76 2.99 2.80 2.95 1.01
      Al 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.07
      Ti 1.09 1.18 2.53 2.51 2.43 2.31 1.23 2.49 0.91
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.00 0.00 0.46 0.48 0.09 0.01 0.01 0.50 0.00
      Mg 0.00 0.00 0.07 0.01 2.11 0.00 0.00 0.10 0.00
      Fe2+ 0.00 0.00 0.02 0.01 0.03 0.00 0.00 0.03 0.01
      Mn 0.00 0.00 0.00 0.00 2.48 0.00 0.00 0.01 0.00
      Na 0.98 0.77 2.00 1.98 0.02 1.36 0.71 1.94 0.00
      Ca 0.06 0.14 0.01 0.01 0.06 0.34 0.18 0.02 1.03
      K 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
      Sum 5.04 4.95 8.05 8.00 10.00 7.02 4.94 8.05 3.04
      An 5.94 15.44 20.35
      Ab 93.55 84.12 78.94
      下载: 导出CSV 
      | 显示表格

      根据斜长角闪岩中的矿物组合与相互关系,可划分出3个变质阶段:峰期变质阶段(M1)、峰期后退变质阶段(M2)和晚期退变质阶段(M3).

      为了确定斜长角闪岩峰期阶段的P-T条件,我们选择在NCKFMASHTO(Na2O-CaO-K2O-FeOt-MgO-Al2O3-SiO2-H2O-TiO2-O)体系下进行相平衡模拟.计算软件采用THERMOCALC 3.45(Powell et al., 1998; 2016年更新),内部一致性热力学数据库采用2011年发表的最新版ds62.txt,流体组分设为纯H2O,其他固溶体模型见Green et al.(2016)Powell et al.(2014),全岩成分采用XRF分析结果并换算为模式体系中的摩尔百分比.CO2和P2O5分别按照碳酸钙CaO·CO2和磷灰石(CaO)5·(P2O5)1.5·(H2O)0.5扣除相应的组分.

      岩相学观察所确定的峰期矿物组合(M1)Amp1+Pl+Ttn+L(熔体)在图 5中稳定在>600 ℃的高温部分,在该稳定域中,斜长石中An含量的等值线与y轴近平行,并且随温度的升高而增加.利用所测定的斜长石An最大值为0.203 5,并结合角闪石全铝压力计(Schmidt,1992)估算其峰期温压条件,估算结果为T=660~675 ℃,P=0.68~0.71 GPa.

      图  5  胶北地块斜长角闪岩(09LY21)在NCKFMASHTO体系下的P-T视剖面
      图中矿物代号:Hb为角闪石;Bi为黑云母;Pl为斜长石;Ab为钠长石;Ep为绿帘石;Ttn为榍石;L为熔体;H为水,全岩成分分析是利用德国鲁尔大学矿物、地质、地球物理研究生化学实验室X-射线荧光光谱仪(Philips PW 1400)分析测定,在NCKFMASHTO体系标准化之后的摩尔百分比为:SiO2=51.85、Al2O3=8.51、CaO=11.28、MgO=11.77、FeO=11.37、K2O=0.59、Na2O=3.31、TiO2=0.72、O=0.51
      Fig.  5.  P-T pseudosections for the amphibolite sample (09LY21) from Jiaobei terrane in the systems of NCKFMASHTO

      利用角闪石-斜长石温度计(Blundy and Holland, 1990)结合角闪石全铝压力计(Schmidt,1992)得到峰期变质P-T条件为711~719 ℃/0.68~0.71 GPa,所计算的温度略高于相平衡模拟的结果(表 3).此外,还利用锆石-Ti温度计(Watson et al., 2006)确定了斜长角闪岩的形成温度.其所测定的锆石Ti含量为2.72%~6.79%,温度结果为648~715 ℃,与上述结果基本一致.

      表  3  胶北斜长角闪岩(09LY21、09LY23)温压估算结果
      Table  Supplementary Table   P-T estimates for amphibolite(09LY21、09LY23)in Jiaobei terrane
      样品号 样品 SiHb Xab KD LnKD AlHbT T(℃) P(GPa)
      Amp1 6.473 0.79 1.295 0.259 2.015 715.316 0.658
      Amp1 6.485 0.79 1.312 0.272 2.037 711.444 0.668
      09LY21 Amp1 6.449 0.79 1.263 0.234 2.068 716.084 0.683
      Amp1 6.433 0.79 1.242 0.216 2.072 718.967 0.685
      Amp1 6.448 0.79 1.262 0.232 2.063 716.692 0.681
      Amp1 6.896 0.85 2.36 0.859 1.496 650.188 0.411
      Amp1 6.845 0.85 2.216 0.796 1.621 651.864 0.471
      09LY23 Amp1 6.713 0.85 1.898 0.641 1.787 665.453 0.55
      Amp1 6.69 0.85 1.847 0.614 1.779 670.396 0.546
      Amp1 6.597 0.85 1.667 0.511 1.859 682.051 0.584
      Amp2 7.043 0.97 3.179 1.157 1.480 607.684 0.403
      Amp2 7.087 0.97 3.38 1.218 1.307 609.695 0.321
      09LY23 Amp2 7.38 0.97 5.456 1.697 1.029 563.795 0.189
      Amp2 7.037 0.97 3.152 1.148 1.391 614.334 0.361
      Amp2 7.339 0.97 5.052 1.620 1.010 574.368 0.180
      注:温度计算采用Blundy and Holland(1990),压力计算采用Schmidt(1992).
      下载: 导出CSV 
      | 显示表格

      峰期后退变质阶段(M2)矿物组合为Amp2+Ep+Pl+Chl+Ab.采用角闪石-斜长石温度计和角闪石的全铝压力计得到其P-T条件为0.41~0.58 GPa/537~630 ℃(表 3).

      晚期退变质阶段(M3)矿物组合为Ab+Prh+Chl+Cal.该矿物组合为典型的葡萄石绿纤石相矿物组合,葡萄石绿纤石相温压条件大致为P=0.25~0.35 GPa,T=360~400 ℃(程素华和游振东,2016).

      样品09LY21中锆石半自形到自形,颗粒较大,粒径50~250 μm,具有较大的长宽比,晶棱较清晰.CL图像(图 6)可见相对弱发光效应,内部结构清晰,部分自形锆石无明显的核边结构,整体呈现弱的振荡环带特征,这些锆石可能生长自深熔作用过程中的熔体(Liati and Gebauer, 1999; Zeh et al., 2010).部分锆石颗粒边缘发育有一层CL发光较强的薄的增生边,有的具有面状分带或云雾状分带特征,这些锆石可能经历了后期变质作用的改造(Wu and Zheng, 2004).

      图  6  样品09LY21锆石阴极发光图像和206Pb/238Pb年龄
      Fig.  6.  6Representative cathodoluminescence (CL) images of zircons from sample 09LY21 with 206Pb/238Pb ages

      对斜长角闪岩09LY21样品的锆石进行了LA-ICP-MS定年分析(表 4),对21个测试点进行定年,在207Pb/235U-206Pb/238U关系图解中(图 7),这些锆石测试点皆落在谐和线上.206Pb/238U年龄变化于1 748±38 Ma~2 075±25 Ma,表明原岩年龄的下限应该在古元古代;20个测点的206Pb/238U上交点年龄为1 845±23 Ma(MSWD=0.35).除了最老锆石的Th/U比值为0.74,其他锆石的Th/U变化于0.06~0.43.

      表  4  胶北地块斜长角闪岩锆石(09LY21)LA-ICP-MS U-Pb分析结果
      Table  Supplementary Table   LA-ICP-MS zircon U-Pb dating data from amphibolite (09LY21) in Jiaobei terrane
      测点号 Th (10-6) U (10-6) Th/U 206Pb/238U ±(%) 207Pb/235U ±(%) 207Pb/206Pb ±(%) 206Pb/238U σ 207Pb/235U σ 207Pb/206Pb σ
      1 2 492 3 464 0.72 0.379 7 1.4 6.706 2 1.5 0.128 0 3.0 2 075 25 2 073 13 2 071 52
      2 153 854 0.18 0.304 0 1.5 4.833 3 2.1 0.115 3 3.3 1 711 23 1 791 18 1 884 59
      3 1 934 4 477 0.43 0.346 6 1.4 5.597 3 1.4 0.117 1 3.0 1 918 23 1 916 12 1 912 53
      4 70 463 0.15 0.331 0 1.4 5.277 0 1.6 0.115 6 3.1 1 843 23 1 865 14 1 889 54
      5 257 990 0.26 0.311 3 2.5 4.592 3 4.6 0.106 9 5.2 1 747 38 1 748 39 1 748 93
      8 119 692 0.17 0.332 2 1.4 5.183 2 1.4 0.113 1 3.0 1 849 22 1 850 12 1 850 53
      9 645 2 483 0.26 0.277 4 1.3 4.371 5 1.3 0.114 3 2.9 1 578 19 1 707 11 1 869 52
      10 87 521 0.17 0.333 8 1.4 5.221 1 1.4 0.113 4 3.0 1 857 22 1 856 12 1 855 53
      13 160 1 019 0.16 0.332 2 1.3 5.179 5 1.3 0.113 1 2.9 1 849 21 1 849 11 1 849 52
      14 72 531 0.13 0.322 6 1.3 5.006 0 1.4 0.112 5 3.0 1 802 21 1 820 12 1 841 53
      15 72 630 0.11 0.327 2 1.4 5.031 1 1.5 0.111 5 3.0 1 825 22 1 825 13 1 824 53
      16 73 583 0.13 0.326 6 1.3 5.020 6 1.4 0.111 5 3.0 1 822 21 1 823 12 1 824 53
      17 76 495 0.15 0.324 3 1.4 4.990 9 1.4 0.111 6 3.0 1 811 21 1 818 12 1 826 53
      18 80 578 0.14 0.337 8 1.6 5.379 2 2.2 0.115 5 3.4 1 876 26 1 882 19 1 887 60
      22 309 1 098 0.28 0.327 4 1.3 5.031 8 1.3 0.111 5 2.9 1 826 21 1 825 11 1 823 52
      25 94 698 0.13 0.330 5 1.3 5.141 1 1.3 0.112 8 2.9 1 841 21 1 843 11 1 845 52
      26 284 1 163 0.24 0.331 2 1.3 5.138 2 1.3 0.112 5 2.9 1 844 21 1 842 11 1 840 52
      27 502 8 560 0.06 0.329 3 1.3 5.094 5 1.3 0.112 2 2.9 1 835 21 1 835 11 1 836 51
      28 1 162 6 966 0.17 0.328 5 1.3 5.083 2 1.3 0.112 2 2.9 1 831 21 1 833 11 1 836 51
      29 139 808 0.17 0.326 2 1.3 5.006 0 1.3 0.111 3 2.9 1 820 21 1 820 11 1 821 52
      30 96 671 0.14 0.321 3 1.3 4.860 9 1.4 0.109 7 2.9 1 796 21 1 796 12 1 795 52
      下载: 导出CSV 
      | 显示表格
      图  7  样品09LY21中LA-ICP-MS锆石U-Pb年龄谐和图
      Fig.  7.  Concordia diagram of LA-ICP-MS zircons U-Pb ages from sample 09LY21

      样品09LY21中锆石的LREE相对亏损,HREE相对富集,稀土元素总量较高,∑REE平均值为811×10-6.Lu/Hf平均比值为0.007 7,Y元素含量为476.8×10-6~3 104.8×10-6,Th、U含量变化范围较大,分别介于69.87×10-6~2 491.66×10-6和462.52×10-6~8 559.97×10-6之间,Th/U比值相对较高,变化范围在0.059~0.719之间,平均值0.21.Nb、Ta含量分别为1.74×10-6~29.68×10-6和0.95×10-6~15.24×10-6,Nb/Ta比值为1.34~3.08,比值较高.

      样品09LY21锆石的球粒陨石标准化的配分模式(图 8)显示,锆石稀土元素配分模式显示两种类型,第一类锆石Ce高正异常(Ce/Ce*=2.28~125.13),Eu负异常(Eu/Eu*=0.13~0.80),REE总量较低(图 8表 5),206Pb/238U表面年龄变化于1 796±21 Ma~1 876±26 Ma之间;第二类锆石Eu正异常(Eu/Eu*=1.15~16.00),Ce异常比前者较小(Ce/Ce*=1.60~4.00)(图 8,表6),206Pb/238U表面年龄变化于1 747±38 Ma~2 075±25 Ma之间.由图 9可见,两种锆石的配分模式与年龄相关性不大;第一类锆石Th/U比值为0.06~0.28,第二类锆石略高(Th/U=0.17~0.43),差异不很明显(表 4图 9d).大多数锆石REE表现为第一种类型的配分方式,Ce正异常,显示锆石结晶时相对氧化的条件,但由于岩浆中斜长石的分异结晶带走大量的Eu,而这一过程斜长石比锆石优先结晶或同时进行,所以锆石继承了熔体的Eu亏损因此出现负异常(Hoskin and Schaltegger, 2003).第二种锆石REE配分模式出现的较少,具有Eu正异常的锆石一般具有较低的Ce正异常,除去锆石中钠长石包裹体的污染的原因,这种锆石可能形成于一个比Eu负异常的锆石更为还原的环境(Yui et al., 2010), 也可能是由于锆石受到晚期Ca质流体交代作用的原因(李旭平等, 2011, 2013).

      图  8  样品09LY21锆石分析微区球粒陨石标准化稀土元素配分曲线
      Fig.  8.  Chondrite-normalized REE patterns of different zircons from the sample 09LY21
      表  5  胶北地块斜长角闪岩锆石(09LY21)LA-ICP-MS稀土元素和微量元素测试结果(10-6)
      Table  Supplementary Table   LA-ICP-MS zircon REE and mean trace-element data from amphibolite (09LY21) in Jiaobei terrane
      测点号 Y Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta ∑REE Lu/Hf Eu/Eu* Ce/Ce* (La/Yb)N (La/Sm)N (Gd/Yb)N
      1 896.26 6.89 5.930 37.33 4.360 30.30 11.36 42.820 26.73 4.99 50.27 20.36 108.95 28.76 347.04 75.96 10 240.90 4.680 795 0.007 4 7.23 1.72 0.012 26 0.337 0 0.063 7
      2 803.52 4.04 2.100 22.20 1.421 10.44 5.08 12.180 16.64 4.98 59.37 24.03 114.76 26.00 268.41 53.84 9 139.18 1.544 621 0.005 9 3.68 3.05 0.005 61 0.266 9 0.051 3
      3 1 039.40 6.69 8.460 39.92 4.340 25.03 9.59 75.62 20.61 5.00 56.85 24.55 140.50 39.23 494.88 103.04 11 184.80 3.330 1 048 0.009 2 16.00 1.60 0.012 26 0.569 5 0.034 5
      4 476.81 1.94 0.056 8.82 0.065 0.36 1.07 1.070 6.08 2.92 36.69 15.46 76.73 17.37 188.11 36.54 9 612.42 1.088 391 0.003 8 1.01 31.31 0.000 21 0.033 8 0.026 7
      5 486.96 2.53 1.553 14.53 0.900 5.92 2.58 13.24 8.76 2.82 34.75 14.55 73.01 17.80 196.21 38.31 9 994.19 1.589 425 0.003 8 7.67 2.96 0.005 68 0.388 6 0.036 9
      8 1 205.55 2.87 0.040 12.69 0.053 0.80 2.23 0.618 15.36 6.97 91.29 38.66 192.59 43.32 452.66 90.09 8 542.40 1.125 947 0.010 5 0.24 57.07 0.000 06 0.011 6 0.028 1
      9 2 183.22 11.68 7.720 76.47 6.380 38.20 16.63 14.48 47.52 14.82 173.80 67.13 302.14 65.15 648.09 123.50 9 513.55 5.390 1 602 0.013 0 1.47 2.51 0.008 54 0.299 7 0.060 7
      10 683.12 3.48 2.090 17.56 0.976 5.03 2.17 2.130 10.18 3.89 52.50 21.66 106.15 24.44 253.41 49.40 8 815.19 1.630 552 0.005 6 1.15 3.01 0.005 92 0.621 8 0.033 2
      13 1 255.94 3.58 0.130 14.94 0.199 2.41 2.93 1.140 17.53 7.38 95.88 39.32 192.06 43.54 451.31 89.52 8 854.67 1.364 958 0.010 1 0.38 18.47 0.000 21 0.028 6 0.032 1
      14 663.97 2.20 0 9.05 0.034 0.44 1.46 0.444 10.01 4.06 52.00 21.20 102.27 23.77 250.83 50.39 8 959.63 0.951 526 0.005 6 0.26 82.64 0 0 0.033 0
      15 631.57 1.95 0.031 8.90 0.033 0.68 1.48 0.570 11.35 4.09 50.69 20.13 97.41 22.25 239.10 46.83 9 011.79 1.260 504 0.005 2 0.30 60.83 0.000 09 0.013 5 0.039 3
      16 571.47 1.74 0 9.27 0.023 0.56 1.70 0.424 9.89 4.06 46.29 18.50 87.24 19.56 208.52 41.24 8 707.77 0.988 447 0.004 7 0.25 125.13 0 0 0.039 2
      17 716.62 1.99 0 9.31 0.025 0.42 1.83 0.456 12.49 4.57 56.26 23.15 111.07 25.80 267.63 54.41 8 347.96 1.126 567 0.006 5 0.22 115.61 0 0 0.038 6
      18 729.30 2.10 0.341 9.88 0.044 0.65 1.90 0.469 12.13 4.50 57.07 23.23 112.34 25.77 273.43 54.50 9 074.33 1.006 576 0.006 0 0.23 16.98 0.000 89 0.115 9 0.036 7
      22 778.78 3.33 1.053 14.29 0.033 0.39 1.72 0.253 11.33 4.52 59.06 23.96 116.42 27.04 281.43 56.10 10 141.30 2.480 598 0.005 5 0.13 9.75 0.002 68 0.395 2 0.033 3
      25 905.36 3.23 0.656 11.49 0.258 1.54 1.79 0.539 12.00 5.21 68.45 29.07 143.97 33.40 343.88 69.16 10 769.70 2.040 721 0.006 4 0.27 6.85 0.001 37 0.236 6 0.028 9
      26 1 554.97 6.35 0.329 24.19 0.307 2.95 4.19 1.150 24.08 9.51 122.14 50.44 238.31 52.63 526.29 102.32 8 983.52 2.060 1 159 0.011 4 0.27 17.11 0.000 45 0.050 7 0.037 9
      27 720.19 3.47 0.925 6.88 0.564 4.33 3.81 2.300 15.21 5.02 56.08 20.56 92.63 20.42 205.60 37.53 7 314.13 1.870 472 0.005 1 0.80 2.28 0.003 23 0.156 7 0.061 2
      28 3 104.76 29.68 3.620 54.77 2.800 20.72 14.67 20.660 58.31 20.05 244.33 94.93 449.34 102.61 1075.63 196.70 11 053.50 15.240 2 359 0.017 8 1.88 4.00 0.002 41 0.159 3 0.044 8
      29 1 265.33 4.50 0.037 14.55 0.051 0.77 2.36 0.736 16.72 7.20 95.13 40.16 196.53 44.70 464.46 91.96 8 938.02 1.577 975 0.010 3 0.26 68.62 0.000 06 0.010 1 0.029 8
      30 1 007.91 2.98 0.131 10.91 0.068 0.87 2.11 0.610 13.79 5.81 77.21 32.29 158.11 36.06 376.80 72.03 8 838.76 1.369 787 0.008 1 0.26 28.11 0.000 25 0.040 1 0.030 3
      下载: 导出CSV 
      | 显示表格
      图  9  样品09LY21锆石微量元素特征图解
      a.Eu/Eu*与年龄关系图解;b.∑REE与年龄关系图解; c.Ce/Ce*与年龄关系图解; d.锆石的Th, U含量和Th/U比值图解
      Fig.  9.  Trace elements and REE discrimination plots for zircon from the sample 09LY21

      图 10所示,前人通过对本区基性和泥质麻粒岩的岩相学、矿物学、变质演化以及年代学的系统研究,运用相平衡模拟的方法并结合传统温压计的使用,构建了胶北高压基性、泥质麻粒岩顺时针P-T-t轨迹,其主要具有大陆碰撞造山带中压相系变质作用的演化特征.研究表明高压麻粒岩的峰期变质条件为T=750~900 ℃,P=1.2~1.5 GPa; 峰期之后岩石经历等温降压后的中压麻粒岩相变质作用,其P-T条件为750~900 ℃/0.4~0.8 GPa, 反映了高压麻粒岩经历的一次构造抬升过程; 随后在5~7 ka的中下地壳发生等压冷却(周喜文等,2004王舫等,2010Tam et al., 2012a, 2012b, 2012c; Liu et al., 2013; 刘平华等,2017).本文所研究的斜长角闪岩峰期变质P-T条件为660~715 ℃/0.65~0.71 GPa,可能反映了高压麻粒岩等压冷却之后的又一次变质作用.刘平华等(2017)认为胶-辽-吉带三家子石榴斜长角闪岩,遭受了峰后中-低压角闪岩相退变质作用,并在该阶段形成角闪石+斜长石+石英+铁钛氧化物的矿物组合,其P-T条件为T=670~700 ℃、P=0.52~0.61 GPa,其峰后退变阶段矿物组合与P-T条件皆与本文研究的斜长角闪岩峰期变质阶段基本一致.并且,野外露头观察发现,研究区斜长角闪岩产状与其伴生的麻粒岩产状基本一致.因此本区斜长角闪岩峰期变质记录的可能是高压麻粒岩经过等温降压阶段后的再次矿物平衡组合, 反应出高压麻粒岩经历了第二次构造抬升和减压降温变质作用.此外,研究区斜长角闪岩中冷却退变阶段(M2)矿物组合为:Amp2+Ep+Pl+Chl+Ab,其P-T条件为537~630 ℃/0.41~0.58 GPa;其后的钙质加入发生了钙硅酸盐化(M3),形成Ab+Prh+Chl+Cal的矿物组合,终止于前绿片岩相的变质条件.

      图  10  胶北斜长角闪岩与胶-辽-吉带古元古代变质演化P-T-t轨迹图
      变质相边界桑隆康和马昌前(2012); Z.沸石相;P-P.葡萄石—绿纤石相;LA.硬柱石-钠长石-绿泥石相;BS.蓝片岩相;GS.绿片岩相;EA.绿帘角闪岩相;A.角闪岩相;G.麻粒岩相; 1.胶北高压泥质麻粒岩(周喜文等,2004);2.胶北高压泥质麻粒岩(王舫等,2010);3.胶北高压泥质麻粒岩(Tam et al., 2012a);4.胶北中压泥质麻粒岩(Tam et al., 2012b);5.胶北高压基性麻粒岩(Tam et al., 2012c);6.胶北高压基性麻粒岩(Liu et al., 2013);7.三家子石榴斜长角闪岩(刘平华等,2017);8.胶北斜长角闪岩(本文)
      Fig.  10.  P-T-t projection showing the P-T-t paths determined in this study for amphibolite (a and red bold lines), and previous metamorphic P-T-t paths depicted by other researchers from the Jiao-Liao-Ji belt

      值得注意的是,在钙硅酸盐化形成过程中,钙的来源与形成机理仍值得进一步探究.通常情况下,在蛇纹岩化过程中,橄榄岩中的单斜辉石分解产生的钙不能被蛇纹结构所吸收,流体中的钙在蛇纹岩化过程中积累,并与围岩发生钙质交代反应,形成异剥钙榴岩(Li et al., 2004, 2007).由于露头条件限制,周围未发现超基性岩围岩,但是刘文军等(1998)在本区采样点附近且处于同一条构造带中发现蛇纹岩化超基性岩,并发现同样发生钙硅酸岩化的岩石,与通常所见的异剥钙榴岩极为相似.此外,周围荆山群大理岩等碳酸盐岩的存在,也可能作为本文斜长角闪岩中额外的钙的来源.

      很多学者报道了胶北地块中高压麻粒岩的峰期变质年龄.如Tam et al.(2011)运用SHRIMP U-Pb锆石定年技术确定了胶北地块中南山口高压基性麻粒岩和太平庄荆山群泥质麻粒岩的峰期变质年龄为1.95 Ga和1.88 Ga.刘平华等(2013)认为,胶北地区高压麻粒岩,在1 950~1 870 Ma被构造增厚至50~55 km的加厚下地壳或岛弧根部带,并经历峰期高压麻粒岩相变质作用.总之,近年来的年代学研究结果显示,胶北地块基性麻粒岩的峰期变质年代在~1.95~1.87 Ga(Tang et al., 2007; Zhou et al., 2008; Tam et al., 2011; Zhao and Guo, 2012; Liu et al., 2013).而变质年龄1.86~1.84 Ga则代表了高压麻粒岩等温减压、引发深熔作用的时代(Liu et al., 2010, 2014, 2013, 2015; 刘福来等,2015蔡佳等, 2017).本文斜长角闪岩样品09LY21中的锆石颗粒较大,晶形较完整,CL图像发光较弱,部分具有弱振荡环带、反应边和面状分带现象,较低的Th/U比值,锆石形态学和内部结构上显示出深熔锆石的特征(Liati and Gebauer, 1999; Wu and Zheng, 2004; Zeh et al., 2010).因此,1 845±23 Ma的年龄应代表研究样品角闪岩相峰期变质作用的年代,可能与胶北地块麻粒岩相变质作用后等温减压过程中引发的深熔熔体冷却结晶有关,其峰期变质条件或许代表了在高压麻粒岩经历的第二次构造抬升阶段、减压降温过程的再平衡的矿物组合,其后斜长角闪岩又经历了近等压冷却过程和前绿片岩相交代变质作用.斜长角闪岩经历的这一深熔作用事件在华北克拉通西部带的孔兹岩带也有存在,反应了孔兹岩带最终碰撞闭合前,从下地壳到中地壳的二次抬升退变质作用,其年龄也在1.85~1.82 Ga之间(翟明国,2009; Chen et al., 2013).

      尽管研究区斜长角闪岩记录了最老的2 075±25 Ma年龄,代表了原岩年龄的下限,或许代表的也是一次变质年龄.由于没有得到足够的年代学证据,斜长角闪岩原岩的时代问题仍未得到解决.Tang et al.(2007)在研究胶北地块基性麻粒岩和角闪岩的年代学中,得到有角闪岩的原岩2 379±54 Ma的年龄.鉴于研究区斜长角闪岩代表了高压基性麻粒岩退变之后的再平衡组合,其原岩可能与其伴生的高压基性麻粒岩相同.前人研究表明,胶北地体高压基性麻粒岩中的岩浆锆石分别记录了2 703~2 500 Ma和2 379~2 102 Ma的年龄(Tang et al., 2007; Tam et al., 2011; 刘平华等,2013; Liu et al., 2015),并认为它们应该代表胶北地块变基性岩的原岩形成时代.华北克拉通岩浆活动具有多期次的特点,其中胶北地块基性岩浆活动至少包括2 550~2 500 Ma、2 300~2 000 Ma和1 950~1 800 Ma 3期基性岩浆活动(Tang et al., 2007; Tam et al., 2011; 董春艳等,20112012刘建辉等, 2011, 2014, 2015刘平华等,2013; Meng et al., 2014; Liu et al., 2015; Zhao et al., 2015曹正琦等,2016杨凤超等,2016).1:5万地质图表明研究区的高压基性麻粒岩是古元古代变质基性岩,是分布在新太古代TTG片麻岩与花岗质片麻岩中的透镜体.前人年代学数据表明,胶-辽-吉带古元古代拉伸裂陷盆地形成时期为2.3~2.0 Ga.盆地接受沉积的年龄为2.05~1.93 Ga,碰撞造山事件发生于1.93~1.85 Ga(Luo et al., 2004, 2008; Li et al., 2005; Wan et al., 2006; Li and Zhao, 2007; Zhou et al., 2008; 翟明国, 2009, 2010董春艳等,2011Liu et al., 2013; 刘平华等,2013).此外,刘平华等(2013)在本研究区附近的西留村附近取得~2.1 Ga,且以不规则透镜体的形式赋存于新太古代花岗片麻岩与云英质片麻岩之中的变基性岩,并在1.9 Ga发生麻粒岩相变质,随后退变成为斜长角闪岩.其野外展布与后来发生的变质作用皆与本区的麻粒岩及斜长角闪岩相似.因此,研究区高压基性麻粒岩及本文斜长角闪岩的原岩可能形成于新太古代到古元古代期间,胶辽裂谷形成之前.

      综上,本文斜长角闪岩在古元古代原岩形成以后,可能经历了麻粒岩相变质作用,在高压麻粒岩二次构造抬升中达到平衡的角闪岩相矿物组合,记录了在胶-辽-吉带~1.85 Ga碰撞闭合过程中的深熔事件,在此阶段之后经历了角闪岩相变质作用,又在后来的退变质过程中经历近等压降温变质作用和钙质交代变质作用.

      致谢: 衷心感谢北京大学魏春景教授和评审专家王舫博士、初航博士提出的宝贵修改意见.
    • 图  1  (a) 胶东地区地质构造简图和研究区马连庄-河头店一带地质图及采样位置(b)

      a据周喜文等(2004)Tam et al.(2011)修改;b据李旭平等(2013)

      Fig.  1.  (a) Geological schematic map of the Jiaodong district; (b) geological map and sample localities in malianzhuang-hetoudian of study area

      图  2  胶北地块斜长角闪岩的显微结构照片

      a.样品09LY21的峰期(M1)角闪石颗粒较大(Amp1),可见三连点结构,与斜长石(Pl)共生(单偏光图像);b.样品09LY21背散射(BSE)图像;c.样品09LY23峰期后(M2)角闪石边缘发生退变质形成退变角闪石(Amp2),斜长石(Pl)开始退变质为钠长石(Ab)(单偏光图像);d.样品09LY23背散射(BSE)图像;e.样品09LY23中可见晚期(M3)出现葡萄石(Prh)脉体(单偏光图像);f.样品09LY23中斜长石(Pl)边缘浑圆,角闪石(Amp1)港湾状边缘(正交偏光图像);g.样品09LY23中可见晚期(M3)出现方解石(Cal)脉体,斜长石(Pl)完全退变质为钠长石(Ab)端元(正交偏光图像);h.样品09LY23中部分角闪石(Amp2)退变质为绿帘石(Ep),靠近方解石脉的斜长石均为钠长石(Ab)(背散射图像)

      Fig.  2.  Photomicrographs of amphibolite from Jiaobei terrane

      图  3  胶北地块斜长角闪岩中角闪石的Si-Mg/(Mg+Fe2+)成分分类图

      Leake et al.(1997)

      Fig.  3.  Si-Mg/(Mg+Fe2+) diagram of amphibole from amphibolites in the Jiaobei terrane

      图  4  胶北地块斜长角闪岩中角闪石的Al-Ti (a)和Ti-(Na+K)(b)成分图解

      靳是琴(1991)

      Fig.  4.  Amphibole chemistry from amphibolites in the Jiaobei terrane Al-Ti (a) diagram and Ti-(Na+K) (b) diagram

      图  5  胶北地块斜长角闪岩(09LY21)在NCKFMASHTO体系下的P-T视剖面

      图中矿物代号:Hb为角闪石;Bi为黑云母;Pl为斜长石;Ab为钠长石;Ep为绿帘石;Ttn为榍石;L为熔体;H为水,全岩成分分析是利用德国鲁尔大学矿物、地质、地球物理研究生化学实验室X-射线荧光光谱仪(Philips PW 1400)分析测定,在NCKFMASHTO体系标准化之后的摩尔百分比为:SiO2=51.85、Al2O3=8.51、CaO=11.28、MgO=11.77、FeO=11.37、K2O=0.59、Na2O=3.31、TiO2=0.72、O=0.51

      Fig.  5.  P-T pseudosections for the amphibolite sample (09LY21) from Jiaobei terrane in the systems of NCKFMASHTO

      图  6  样品09LY21锆石阴极发光图像和206Pb/238Pb年龄

      Fig.  6.  6Representative cathodoluminescence (CL) images of zircons from sample 09LY21 with 206Pb/238Pb ages

      图  7  样品09LY21中LA-ICP-MS锆石U-Pb年龄谐和图

      Fig.  7.  Concordia diagram of LA-ICP-MS zircons U-Pb ages from sample 09LY21

      图  8  样品09LY21锆石分析微区球粒陨石标准化稀土元素配分曲线

      Fig.  8.  Chondrite-normalized REE patterns of different zircons from the sample 09LY21

      图  9  样品09LY21锆石微量元素特征图解

      a.Eu/Eu*与年龄关系图解;b.∑REE与年龄关系图解; c.Ce/Ce*与年龄关系图解; d.锆石的Th, U含量和Th/U比值图解

      Fig.  9.  Trace elements and REE discrimination plots for zircon from the sample 09LY21

      图  10  胶北斜长角闪岩与胶-辽-吉带古元古代变质演化P-T-t轨迹图

      变质相边界桑隆康和马昌前(2012); Z.沸石相;P-P.葡萄石—绿纤石相;LA.硬柱石-钠长石-绿泥石相;BS.蓝片岩相;GS.绿片岩相;EA.绿帘角闪岩相;A.角闪岩相;G.麻粒岩相; 1.胶北高压泥质麻粒岩(周喜文等,2004);2.胶北高压泥质麻粒岩(王舫等,2010);3.胶北高压泥质麻粒岩(Tam et al., 2012a);4.胶北中压泥质麻粒岩(Tam et al., 2012b);5.胶北高压基性麻粒岩(Tam et al., 2012c);6.胶北高压基性麻粒岩(Liu et al., 2013);7.三家子石榴斜长角闪岩(刘平华等,2017);8.胶北斜长角闪岩(本文)

      Fig.  10.  P-T-t projection showing the P-T-t paths determined in this study for amphibolite (a and red bold lines), and previous metamorphic P-T-t paths depicted by other researchers from the Jiao-Liao-Ji belt

      表  1  胶北地块斜长角闪岩中角闪石化学成分(%)特征

      Table  1.   Amphibole compositions (%) in the amphibolites from Jiaobei terrane

      样品编号 09LY21 09LY23 09LY23
      Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp1 Amp2 Amp2 Amp2 Amp2 Amp2
      SiO2 42.25 42.38 41.95 41.94 42.04 45.74 45.12 43.96 44.65 43.00 46.21 47.67 48.36 46.7 48.67
      TiO2 1.61 1.60 1.72 1.59 1.76 1.01 1.01 1.23 1.11 1.21 0.15 0.75 0.22 0.53 0.09
      Al2O3 11.16 11.29 11.42 11.46 11.41 8.42 9.07 9.93 10.08 10.28 7.67 7.46 5.72 7.83 5.68
      FeO 16.77 16.44 17.25 16.86 17.31 15.68 16.57 15.64 16.49 16.63 18.22 14.57 17.63 14.94 15.89
      MnO 0.33 0.34 0.37 0.32 0.36 0.37 0.34 0.31 0.32 0.32 0.34 0.32 0.39 0.36 0.31
      MgO 9.78 9.70 9.20 9.73 9.28 11.88 10.47 10.55 10.66 10.29 9.27 12.49 9.89 12.03 11.78
      CaO 11.35 11.54 11.35 11.35 11.29 11.19 11.49 11.47 12.1 11.61 11.84 11.76 11.87 11.71 12.08
      Na2O 1.7 1.56 1.58 1.65 1.60 1.14 1.35 1.33 1.27 1.34 1.19 1.08 0.91 1.01 0.87
      K2O 1.25 1.26 1.26 1.23 1.25 0.70 0.72 0.99 0.90 1.04 0.29 0.52 0.21 0.53 0.19
      Sum 96.20 96.11 96.10 96.13 96.30 96.13 96.14 95.41 97.58 95.72 95.18 96.62 95.20 95.64 95.56
      Oxygens 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
      Si 6.47 6.48 6.45 6.43 6.45 6.90 6.84 6.71 6.69 6.60 7.11 7.09 7.38 7.04 7.34
      Al 1.53 1.52 1.55 1.57 1.55 1.10 1.16 1.29 1.31 1.40 0.89 0.91 0.62 0.96 0.66
      Al 0.49 0.52 0.52 0.50 0.51 0.39 0.47 0.50 0.47 0.46 0.50 0.39 0.41 0.43 0.35
      Ti 0.19 0.18 0.20 0.18 0.20 0.11 0.12 0.14 0.13 0.14 0.02 0.08 0.03 0.06 0.01
      Fe3+ 0.29 0.33 0.32 0.29 0.32 0.52 0.50 0.45 0.43 0.37 0.61 0.62 0.76 0.59 0.71
      Fe2+ 1.86 1.77 1.89 1.88 1.9 1.45 1.60 1.54 1.63 1.77 1.73 1.19 1.49 1.29 1.29
      Mn 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04
      Mg 2.23 2.21 2.11 2.23 2.12 2.67 2.37 2.40 2.38 2.35 2.13 2.77 2.25 2.70 2.65
      Ca 1.86 1.89 1.87 1.87 1.86 1.81 1.87 1.88 1.94 1.91 1.95 1.87 1.94 1.89 1.95
      Na 0.50 0.46 0.47 0.49 0.47 0.33 0.40 0.39 0.37 0.40 0.36 0.31 0.27 0.29 0.25
      K 0.24 0.25 0.25 0.24 0.25 0.13 0.14 0.19 0.17 0.20 0.06 0.10 0.04 0.10 0.04
      Mg/(Mg+Fe) 0.55 0.56 0.53 0.54 0.53 0.65 0.60 0.61 0.59 0.57 0.55 0.70 0.60 0.68 0.67
      下载: 导出CSV

      2  胶北地块斜长角闪岩中代表性矿物化学成分(%)特征

      2.   Representative mineral compositions (%) in the amphibolites from Jiaobei terrane

      样品 09LY23 09LY21
      矿物点数 钠长石 斜长石 绿帘石 绿帘石 绿泥石 葡萄石 斜长石 绿帘石 榍石
      5 3 2 2 2 2 3 2 1
      SiO2 65.18 64.09 37.36 38.40 25.70 42.92 64.74 37.22 30.87
      TiO2 0.03 0.07 0.23 0.19 0.06 0.04 0.02 0.27 36.83
      Al2O3 20.79 22.49 27.14 27.24 19.20 28.12 24.09 26.64 1.90
      Cr2O3 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.02
      Fe2O3 0.07 0.12 7.66 8.21 1.17 0.14 0.20 8.29 0.00
      FeO 0.00 0.00 0.99 0.07 23.50 0.00 0.00 1.50 0.52
      MnO 0.00 0.00 0.24 0.17 0.28 0.01 0.00 0.51 0.05
      MgO 0.01 0.01 0.00 0.03 15.47 0.01 0.03 0.06 0.02
      CaO 1.31 2.96 23.57 23.72 0.16 18.20 3.94 22.84 29.19
      Na2O 11.36 8.91 0.08 0.05 0.27 2.49 8.44 0.11 0.03
      K2O 0.09 0.07 0.01 0.00 0.07 0.08 0.12 0.03 0.01
      Totals 98.84 98.73 97.29 98.08 85.88 92.01 101.59 97.46 99.44
      Oxygens 8.00 8.00 12.50 12.50 14.00 11.00 8.00 12.50 5.00
      Si 2.90 2.85 2.95 3.00 2.76 2.99 2.80 2.95 1.01
      Al 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.07
      Ti 1.09 1.18 2.53 2.51 2.43 2.31 1.23 2.49 0.91
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      Fe3+ 0.00 0.00 0.46 0.48 0.09 0.01 0.01 0.50 0.00
      Mg 0.00 0.00 0.07 0.01 2.11 0.00 0.00 0.10 0.00
      Fe2+ 0.00 0.00 0.02 0.01 0.03 0.00 0.00 0.03 0.01
      Mn 0.00 0.00 0.00 0.00 2.48 0.00 0.00 0.01 0.00
      Na 0.98 0.77 2.00 1.98 0.02 1.36 0.71 1.94 0.00
      Ca 0.06 0.14 0.01 0.01 0.06 0.34 0.18 0.02 1.03
      K 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
      Sum 5.04 4.95 8.05 8.00 10.00 7.02 4.94 8.05 3.04
      An 5.94 15.44 20.35
      Ab 93.55 84.12 78.94
      下载: 导出CSV

      表  3  胶北斜长角闪岩(09LY21、09LY23)温压估算结果

      Table  3.   P-T estimates for amphibolite(09LY21、09LY23)in Jiaobei terrane

      样品号 样品 SiHb Xab KD LnKD AlHbT T(℃) P(GPa)
      Amp1 6.473 0.79 1.295 0.259 2.015 715.316 0.658
      Amp1 6.485 0.79 1.312 0.272 2.037 711.444 0.668
      09LY21 Amp1 6.449 0.79 1.263 0.234 2.068 716.084 0.683
      Amp1 6.433 0.79 1.242 0.216 2.072 718.967 0.685
      Amp1 6.448 0.79 1.262 0.232 2.063 716.692 0.681
      Amp1 6.896 0.85 2.36 0.859 1.496 650.188 0.411
      Amp1 6.845 0.85 2.216 0.796 1.621 651.864 0.471
      09LY23 Amp1 6.713 0.85 1.898 0.641 1.787 665.453 0.55
      Amp1 6.69 0.85 1.847 0.614 1.779 670.396 0.546
      Amp1 6.597 0.85 1.667 0.511 1.859 682.051 0.584
      Amp2 7.043 0.97 3.179 1.157 1.480 607.684 0.403
      Amp2 7.087 0.97 3.38 1.218 1.307 609.695 0.321
      09LY23 Amp2 7.38 0.97 5.456 1.697 1.029 563.795 0.189
      Amp2 7.037 0.97 3.152 1.148 1.391 614.334 0.361
      Amp2 7.339 0.97 5.052 1.620 1.010 574.368 0.180
      注:温度计算采用Blundy and Holland(1990),压力计算采用Schmidt(1992).
      下载: 导出CSV

      表  4  胶北地块斜长角闪岩锆石(09LY21)LA-ICP-MS U-Pb分析结果

      Table  4.   LA-ICP-MS zircon U-Pb dating data from amphibolite (09LY21) in Jiaobei terrane

      测点号 Th (10-6) U (10-6) Th/U 206Pb/238U ±(%) 207Pb/235U ±(%) 207Pb/206Pb ±(%) 206Pb/238U σ 207Pb/235U σ 207Pb/206Pb σ
      1 2 492 3 464 0.72 0.379 7 1.4 6.706 2 1.5 0.128 0 3.0 2 075 25 2 073 13 2 071 52
      2 153 854 0.18 0.304 0 1.5 4.833 3 2.1 0.115 3 3.3 1 711 23 1 791 18 1 884 59
      3 1 934 4 477 0.43 0.346 6 1.4 5.597 3 1.4 0.117 1 3.0 1 918 23 1 916 12 1 912 53
      4 70 463 0.15 0.331 0 1.4 5.277 0 1.6 0.115 6 3.1 1 843 23 1 865 14 1 889 54
      5 257 990 0.26 0.311 3 2.5 4.592 3 4.6 0.106 9 5.2 1 747 38 1 748 39 1 748 93
      8 119 692 0.17 0.332 2 1.4 5.183 2 1.4 0.113 1 3.0 1 849 22 1 850 12 1 850 53
      9 645 2 483 0.26 0.277 4 1.3 4.371 5 1.3 0.114 3 2.9 1 578 19 1 707 11 1 869 52
      10 87 521 0.17 0.333 8 1.4 5.221 1 1.4 0.113 4 3.0 1 857 22 1 856 12 1 855 53
      13 160 1 019 0.16 0.332 2 1.3 5.179 5 1.3 0.113 1 2.9 1 849 21 1 849 11 1 849 52
      14 72 531 0.13 0.322 6 1.3 5.006 0 1.4 0.112 5 3.0 1 802 21 1 820 12 1 841 53
      15 72 630 0.11 0.327 2 1.4 5.031 1 1.5 0.111 5 3.0 1 825 22 1 825 13 1 824 53
      16 73 583 0.13 0.326 6 1.3 5.020 6 1.4 0.111 5 3.0 1 822 21 1 823 12 1 824 53
      17 76 495 0.15 0.324 3 1.4 4.990 9 1.4 0.111 6 3.0 1 811 21 1 818 12 1 826 53
      18 80 578 0.14 0.337 8 1.6 5.379 2 2.2 0.115 5 3.4 1 876 26 1 882 19 1 887 60
      22 309 1 098 0.28 0.327 4 1.3 5.031 8 1.3 0.111 5 2.9 1 826 21 1 825 11 1 823 52
      25 94 698 0.13 0.330 5 1.3 5.141 1 1.3 0.112 8 2.9 1 841 21 1 843 11 1 845 52
      26 284 1 163 0.24 0.331 2 1.3 5.138 2 1.3 0.112 5 2.9 1 844 21 1 842 11 1 840 52
      27 502 8 560 0.06 0.329 3 1.3 5.094 5 1.3 0.112 2 2.9 1 835 21 1 835 11 1 836 51
      28 1 162 6 966 0.17 0.328 5 1.3 5.083 2 1.3 0.112 2 2.9 1 831 21 1 833 11 1 836 51
      29 139 808 0.17 0.326 2 1.3 5.006 0 1.3 0.111 3 2.9 1 820 21 1 820 11 1 821 52
      30 96 671 0.14 0.321 3 1.3 4.860 9 1.4 0.109 7 2.9 1 796 21 1 796 12 1 795 52
      下载: 导出CSV

      表  5  胶北地块斜长角闪岩锆石(09LY21)LA-ICP-MS稀土元素和微量元素测试结果(10-6)

      Table  5.   LA-ICP-MS zircon REE and mean trace-element data from amphibolite (09LY21) in Jiaobei terrane

      测点号 Y Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta ∑REE Lu/Hf Eu/Eu* Ce/Ce* (La/Yb)N (La/Sm)N (Gd/Yb)N
      1 896.26 6.89 5.930 37.33 4.360 30.30 11.36 42.820 26.73 4.99 50.27 20.36 108.95 28.76 347.04 75.96 10 240.90 4.680 795 0.007 4 7.23 1.72 0.012 26 0.337 0 0.063 7
      2 803.52 4.04 2.100 22.20 1.421 10.44 5.08 12.180 16.64 4.98 59.37 24.03 114.76 26.00 268.41 53.84 9 139.18 1.544 621 0.005 9 3.68 3.05 0.005 61 0.266 9 0.051 3
      3 1 039.40 6.69 8.460 39.92 4.340 25.03 9.59 75.62 20.61 5.00 56.85 24.55 140.50 39.23 494.88 103.04 11 184.80 3.330 1 048 0.009 2 16.00 1.60 0.012 26 0.569 5 0.034 5
      4 476.81 1.94 0.056 8.82 0.065 0.36 1.07 1.070 6.08 2.92 36.69 15.46 76.73 17.37 188.11 36.54 9 612.42 1.088 391 0.003 8 1.01 31.31 0.000 21 0.033 8 0.026 7
      5 486.96 2.53 1.553 14.53 0.900 5.92 2.58 13.24 8.76 2.82 34.75 14.55 73.01 17.80 196.21 38.31 9 994.19 1.589 425 0.003 8 7.67 2.96 0.005 68 0.388 6 0.036 9
      8 1 205.55 2.87 0.040 12.69 0.053 0.80 2.23 0.618 15.36 6.97 91.29 38.66 192.59 43.32 452.66 90.09 8 542.40 1.125 947 0.010 5 0.24 57.07 0.000 06 0.011 6 0.028 1
      9 2 183.22 11.68 7.720 76.47 6.380 38.20 16.63 14.48 47.52 14.82 173.80 67.13 302.14 65.15 648.09 123.50 9 513.55 5.390 1 602 0.013 0 1.47 2.51 0.008 54 0.299 7 0.060 7
      10 683.12 3.48 2.090 17.56 0.976 5.03 2.17 2.130 10.18 3.89 52.50 21.66 106.15 24.44 253.41 49.40 8 815.19 1.630 552 0.005 6 1.15 3.01 0.005 92 0.621 8 0.033 2
      13 1 255.94 3.58 0.130 14.94 0.199 2.41 2.93 1.140 17.53 7.38 95.88 39.32 192.06 43.54 451.31 89.52 8 854.67 1.364 958 0.010 1 0.38 18.47 0.000 21 0.028 6 0.032 1
      14 663.97 2.20 0 9.05 0.034 0.44 1.46 0.444 10.01 4.06 52.00 21.20 102.27 23.77 250.83 50.39 8 959.63 0.951 526 0.005 6 0.26 82.64 0 0 0.033 0
      15 631.57 1.95 0.031 8.90 0.033 0.68 1.48 0.570 11.35 4.09 50.69 20.13 97.41 22.25 239.10 46.83 9 011.79 1.260 504 0.005 2 0.30 60.83 0.000 09 0.013 5 0.039 3
      16 571.47 1.74 0 9.27 0.023 0.56 1.70 0.424 9.89 4.06 46.29 18.50 87.24 19.56 208.52 41.24 8 707.77 0.988 447 0.004 7 0.25 125.13 0 0 0.039 2
      17 716.62 1.99 0 9.31 0.025 0.42 1.83 0.456 12.49 4.57 56.26 23.15 111.07 25.80 267.63 54.41 8 347.96 1.126 567 0.006 5 0.22 115.61 0 0 0.038 6
      18 729.30 2.10 0.341 9.88 0.044 0.65 1.90 0.469 12.13 4.50 57.07 23.23 112.34 25.77 273.43 54.50 9 074.33 1.006 576 0.006 0 0.23 16.98 0.000 89 0.115 9 0.036 7
      22 778.78 3.33 1.053 14.29 0.033 0.39 1.72 0.253 11.33 4.52 59.06 23.96 116.42 27.04 281.43 56.10 10 141.30 2.480 598 0.005 5 0.13 9.75 0.002 68 0.395 2 0.033 3
      25 905.36 3.23 0.656 11.49 0.258 1.54 1.79 0.539 12.00 5.21 68.45 29.07 143.97 33.40 343.88 69.16 10 769.70 2.040 721 0.006 4 0.27 6.85 0.001 37 0.236 6 0.028 9
      26 1 554.97 6.35 0.329 24.19 0.307 2.95 4.19 1.150 24.08 9.51 122.14 50.44 238.31 52.63 526.29 102.32 8 983.52 2.060 1 159 0.011 4 0.27 17.11 0.000 45 0.050 7 0.037 9
      27 720.19 3.47 0.925 6.88 0.564 4.33 3.81 2.300 15.21 5.02 56.08 20.56 92.63 20.42 205.60 37.53 7 314.13 1.870 472 0.005 1 0.80 2.28 0.003 23 0.156 7 0.061 2
      28 3 104.76 29.68 3.620 54.77 2.800 20.72 14.67 20.660 58.31 20.05 244.33 94.93 449.34 102.61 1075.63 196.70 11 053.50 15.240 2 359 0.017 8 1.88 4.00 0.002 41 0.159 3 0.044 8
      29 1 265.33 4.50 0.037 14.55 0.051 0.77 2.36 0.736 16.72 7.20 95.13 40.16 196.53 44.70 464.46 91.96 8 938.02 1.577 975 0.010 3 0.26 68.62 0.000 06 0.010 1 0.029 8
      30 1 007.91 2.98 0.131 10.91 0.068 0.87 2.11 0.610 13.79 5.81 77.21 32.29 158.11 36.06 376.80 72.03 8 838.76 1.369 787 0.008 1 0.26 28.11 0.000 25 0.040 1 0.030 3
      下载: 导出CSV
    • [1] Blundy, J.D., Holland, T.J.B., 1990.Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer.Contributions to Mineralogy and Petrology, 104(2):208-224. https://doi.org/10.1007/bf00306444
      [2] Cai, J., Liu, P.H., Ji, L., et al., 2017.Zircon Geochronology of the Paleoproterozoic High-Grade Supercrustal Rocks from the Huai'an Terrane, Northwestern Hebei.Acta Petrologica Sinica, 33(9):2811-2826 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20170911
      [3] Cao, Z.Q., Zhai, W.J., Jiang, X.F., et al., 2016.About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance.Earth Science, 41(4):570-585 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604002.htm
      [4] Chen, N., Liao, F., Wang, L., et al., 2013.Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif:Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent.Precambrian Research, 228:102-116. https://doi.org/10.1016/j.precamres.2013.01.03
      [5] Cheng, S.H., You, Z.D., 2016.Metamorphic Petrology.Geological Publishing House, Beijing, 53 (in Chinese).
      [6] Dong, C.Y., Ma, M.Z., Liu, S.J., et al., 2012.Middle Paleoproterozoic Crustal Extensional Regime in the North China Craton:New Evidence from SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry of Meta-gabbro in the Anshan-Gongchangling Area.Acta Petrologica Sinica, 28(9):2785-2792 (in Chinese with English abstract). http://www.oalib.com/paper/1474278
      [7] Dong, C.Y., Wang, S.J., Liu, D.Y., et al., 2011.Late Palaeoproterozoic Crustal Evolution of the North China Craton and Formation Time of the Jingshan Group:Constraints from SHRIMP U-Pb Zircon Dating of Meta-Intermediate-Basic Intrusive Rocks in Eastern Shandong Province.Acta Petrologica Sinica, 27(6):1699-1706 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110611
      [8] Faure, M., Lin, W., Monié, P., et al., 2004.Palaeoproterozoic Arc Magmatism and Collision in Liaodong Peninsula (North-East China).Terra Nova, 16(2):75-80. https://doi.org/10.1111/j.1365-3121.2004.00533.x
      [9] Green, E.C.R., White, R.W., Diener, J.F.A., et al., 2016.Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks.Journal of Metamorphic Geology, 34(9):845-869. https://doi.org/10.13039/100004807
      [10] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [11] Jahn, B.M., Liu, D., Wan, Y., et al., 2008.Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry.American Journal of Science, 308(3):232-269. https://doi.org/10.2475/03.2008.03
      [12] Jin, S.Q., 1991.Composition Characteristics of Calc-Amphiboles in Different Regional Metamorphic Facies.Chinese Science Bulletin, 36(11):851-854 (in Chinese).
      [13] Kong, F.M., Liu, Y., Li, X.P., et al., 2015.Mineralogical and Petrogeochemical Characteristics of Ultramafic Rocks from the Metamorphic Basement of the Jiaobei Terrane.Acta Petrologica Sinica, 31(6):1549-1563 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201506005.htm
      [14] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623
      [15] Li, S.Z., Zhao, G.C., 2007.SHRIMP U-Pb Zircon Geochronology of the Liaoji Granitoids:Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton.Precambrian Research, 158(1/2):1-16. https://doi.org/10.1016/j.precamres.2007.04.001
      [16] Li, S.Z., Zhao, G.C., Sun, M., et al., 2005.Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton.Journal of Asian Earth Sciences, 24(5):659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
      [17] Li, X.P., Guo, J.H., Zhao, G.C., et al., 2011.Formation of the Paleoproterozoic Calc-Silicate and High-Pressure Mafic Granulite in the Jiaobei Terrane, Eastern Shandong, China.Acta Petrologica Sinica, 27(4):961-968 (in Chinese with English abstract). http://www.oalib.com/paper/1474220
      [18] Li, X.P., Liu, Y., Guo, J.H., et al., 2013.Petrogeochemical Characteristics of the Paleoproterozoic High-Pressure Mafic Granulite and Calc-Silicate from the Nanshankou of the Jiaobei Terrane.Acta Petrologica Sinica, 29(7):2340-2352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201307007.htm
      [19] Li, X.P., Rahn, M., Bucher, K., 2004.Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites.International Geology Review, 46(1):28-51. https://doi.org/10.2747/0020-6814.46.1.28
      [20] Li, X.P., Zhang, L., Wei, C., et al., 2007.Petrology of Rodingite Derived from Eclogite in Western Tianshan, China.Journal of Metamorphic Geology, 25(3):363-382. https://doi.org/10.1111/j.1525-1314.2007.00700.x
      [21] Liati, A., Gebauer, D., 1999.Constraining the Prograde and Retrograde P-T-t Path of Eocene HP Rocks by SHRIMP Dating of Different Zircon Domains:Inferred Rates of Heating, Burial, Cooling and Exhumation for Central Rhodope, Northern Greece.Contributions to Mineralogy and Petrology, 135(4):340-354. https://doi.org/10.1007/s004100050516
      [22] Liu, F.L., Liu, P.H., Ding, Z.J., et al., 2012.Genetic Mechanism of Granitic Leucosome within High-Pressure Granulite from the Early Precambrian Metamorphic Basement of Shandong Peninsula, SE North China Craton.Acta Petrologica Sinica, 28(9):2686-2696 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201209003.htm
      [23] Liu, F.L., Liu, P.H., Wang, F., et al., 2014.U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton:Constraints on the Timing and Nature of Partial Melting.Precambrian Research, 245:80-99. https://doi.org/10.1016/j.precamres.2014.01.001
      [24] Liu, F.L., Liu, P.H., Wang, F., et al., 2015.Progresses and Overviews of Voluminous Meta-Sedimentary Series within the Paleoproterozoic Jiao-Liao-Ji Orogenic/Mobile Belt, North China Craton.Acta Petrologica Sinica, 31(10):2816-2846 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201510002.htm
      [25] Liu, F.L., Robinson, P.T., Gerdes, A., et al., 2010.Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China:Constraints on the Timing and Nature of Partial Melting.Lithos, 117(1/2/3/4):247-268. https://doi.org/10.1016/j.lithos.2010.03.002
      [26] Liu, J.H., Liu, F.L., Ding, Z.J., et al., 2014.U-Pb Dating and Hf Isotope Study of Early Archean Zircons from the Jiaobei Terrane, North China Craton:Evidence for Growth and Recycling of Ancient Continental Crust.Acta Petrologica Sinica, 30(10):2941-2950 (in Chinese with English abstract).
      [27] Liu, J.H., Liu, F.L., Ding, Z.J, et al., 2015.Early Precambrian Major Magmatic Events, and Growth and Evolution of Continental Crust in the Jiaobei Terrane, North China Craton.Acta Petrologica Sinica, 31(10):2942-2958 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201510006.htm
      [28] Liu, J.H., Liu, F.L., Liu, P.H., et al., 2011.Polyphase Magmatic and Metamorphic Events from Early Precambrian Metamorphic Basement in Jiaobei Area:Evidences from the Zircon U-Pb Dating of TTG and Granitic Gneisses.Acta Petrologica Sinica, 27(4):943-960 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201104008.htm
      [29] Liu, P.H., Cai, J., Zou, L., 2017.Metamorphic P-T-t Path and Its Geological Implication of the Sanjiazi Garnet Amphibolites from the Northern Liaodong Penisula, Jiao-Liao-Ji Belt:Constraints on Phase Equilibria and Zircon U-Pb Dating.Acta Petrologica Sinica, 33(9):2649-2674 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201709001.htm
      [30] Liu, P.H., Liu, F.L., Liu, C.H., et al., 2013.Petrogenesis, P-T-t Path, and Tectonic Significance of High-Pressure Mafic Granulites from the Jiaobei Terrane, North China Craton.Precambrian Research, 233:237-258. https://doi.org/10.13039/501100001809
      [31] Liu, P.H., Liu, F.L., Wang, F., et al., 2010.Genetic Mineralogy and Metamorphic Evolution of Mafic High-Pressure (HP) Granulites from the Shandong Peninsula, China.Acta Petrologica Sinica, 26(7):2039-2056 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100707
      [32] Liu, P.H., Liu, F.L., Wang, F., et al., 2012.Geochemical Characteristics and Genesis of the High-Pressure Mafic Granulite in the Jiaobei High-Grade Metamorphic Basement, Eastern Shandong, China.Acta Petrologica Sinica, 28(9):2705-2720 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120904
      [33] Liu, P.H., Liu, F.L., Wang, F., et al., 2013.Petrological and Geochronological Preliminary Study of the Xiliu~2.1 Ga Meta-Gabbro from the Jiaobei Terrane, the Southern Segment of the Jiao-Liao-Ji Belt in the North China Craton.Acta Petrologica Sinica, 29(7):2371-2390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201307009.htm
      [34] Liu, P.H., Liu, F.L., Wang, F., et al., 2014.Preliminary Study of Petrology and U-Pb Zircon Dating of the Nanshankou Garnet-Bearing Pyroxenolites from the Jiaobei Terrane, the Southeastern Segment of the Jiao-Liao-Ji Belt in the North China Craton.Acta Petrologica Sinica, 30(10):2951-2972 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201410012.htm
      [35] Liu, P.H., Liu, F.L., Wang, F., et al., 2015.P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt(JLJB), in the North China Craton:Implication for Formation and Evolution of the JLJB.Acta Petrologica Sinica, 31(10):2889-2941 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201510005.htm
      [36] Liu, S.J., Jahn, B.M., Wan, Y.S., et al., 2015.Neoarchean to Paleoproterozoic High-Pressure Mafic Granulite from the Jiaodong Terrain, North China Craton:Petrology, Zircon Age Determination and Geological Implications.Gondwana Research, 28(2):493-508. https://doi.org/10.13039/501100001809
      [37] Liu, W.J., Zhai, M.G., Li, Y.G., 1998.Metamorphism of the High-Pressure Basic Granulites in Laixi, Eastern Shandong, China.Acta Petrologica Sinica, 14(4):449-459 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98199804005
      [38] Luo, Y., Sun, M., Zhao, G.C., et al., 2004.LA-ICP-MS U-Pb Zircon Ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the Evolution of the Jiao-Liao-Ji Belt.Precambrian Research, 134(3/4):349-371. https://doi.org/10.1016/j.precamres.2004.07.002
      [39] Luo, Y., Sun, M., Zhao, G.C., et al., 2008.A Comparison of U-Pb and Hf Isotopic Compositions of Detrital Zircons from the North and South Liaohe Groups:Constraints on the Evolution of the Jiao-Liao-Ji Belt, North China Craton.Precambrian Research, 163(3/4):279-306. https://doi.org/10.1016/j.precamres.2008.01.002
      [40] Meng, E., Liu, F.L., Liu, P.H., et al., 2014.Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and In Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry.Precambrian Research, 247:92-109. https://doi.org/10.1016/j.precamres.2014.03.017
      [41] Powell, R., Holland, T., Worley, B., 1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC.Journal of Metamorphic Geology, 16(4):577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
      [42] Powell, R., White, R.W., Green, E.C.R., et al., 2014.On Parameterizing Thermodynamic Descriptions of Minerals for Petrological Calculations.Journal of Metamorphic Geology, 32(3):245-260. https://doi.org/10.1111/jmg.12070
      [43] Sang, L.K., Ma, C.Q., 2012.Petrology (2nd Edition).Geological Publishing House, Beijing, 478 (in Chinese).
      [44] Schmidt, M.W., 1992.Amphibole Composition in Tonalite as a Function of Pressure:An Experimental Calibration of the Al-in-Hornblende Barometer.Contributions to Mineralogy and Petrology, 110(2/3):304-310. https://doi.org/10.1007/bf00310745
      [45] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [46] Tam, P.Y., Zhao, G.C., Liu, F.L., et al., 2011.Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton.Gondwana Research, 19(1):150-162. https://doi.org/10.1016/j.gr.2010.05.007
      [47] Tam, P.Y., Zhao, G.C., Sun, M., et al., 2012a.Metamorphic P-T Path and Tectonic Implications of Medium-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton.Precambrian Research, 220-221:177-191. https://doi.org/10.1016/j.precamres.2012.08.008
      [48] Tam, P.Y., Zhao, G.C., Sun, M., et al., 2012b.Petrology and Metamorphic P-T Path of High-Pressure Mafic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton.Lithos, 155:94-109. https://doi.org/10.1016/j.lithos.2012.08.018
      [49] Tam, P.Y., Zhao, G.C., Zhou, X.W., et al., 2012c.Metamorphic P-T Path and Implications of High-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton.Gondwana Research, 22(1):104-117. https://doi.org/10.1016/j.gr.2011.09.006
      [50] Tang, J., Zheng, Y.F., Wu, Y.B., et al., 2007.Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane:Constraints on Its Tectonic Affinity in the Sulu Orogen.Precambrian Research, 152(1/2):48-82. https://doi.org/10.1016/j.precamres.2006.09.001
      [51] Wan, Y.S., Song, B., Liu, D.Y., et al., 2006.SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event.Precambrian Research, 149(3/4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006
      [52] Wang, F., Liu, F.L., Liu, P.H., et al., 2010.Metamorphic Evolution of Early Precambrian Khondalite Series in North Shandong Province.Acta Petrologica Sinica, 26(7):2057-2072 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007009.htm
      [53] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5
      [54] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      [55] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122
      [56] Yang, F.C., Sun, J.G., Song, Y.H., et al., 2016.SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China.Earth Science, 41(12):2008-2018 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201612005.htm
      [57] Yui, T.F., Maki, K., Usuki, T., et al., 2010.Genesis of Guatemala Jadeitite and Related Fluid Characteristics:Insight from Zircon.Chemical Geology, 270(1/2/3/4):45-55. https://doi.org/10.1016/j.chemgeo.2009.11.004
      [58] Zeh, A., Gerdes, A., Barton, J.Jr, et al., 2010.U-Th-Pb and Lu-Hf Systematics of Zircon from TTG's, Leucosomes, Meta-Anorthosites and Quartzites of the Limpopo Belt (South Africa):Constraints for the Formation, Recycling and Metamorphism of Palaeoarchaean Crust.Precambrian Research, 179(1/2/3/4):50-68. https://doi.org/10.1016/j.precamres.2010.02.012
      [59] Zhai, M.G., 2009.Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton:Their Genetic Relation and Geotectonic Implications.Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). http://www.oalib.com/paper/1472671
      [60] Zhai, M.G., 2010.Tectonic Evolution and Metallogenesis of North China Craton.Mineral Deposits, 29(1):24-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201001005.htm
      [61] Zhao, G.C., Cawood, P.A., Li, S.Z., et al., 2012.Amalgamation of the North China Craton:Key Issues and Discussion.Precambrian Research, 222-223:55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      [62] Zhao, G.C., Guo, J.H., 2012.Precambrian Geology of China:Preface.Precambrian Research, 222-223:1-12. https://doi.org/10.1016/j.precamres.2012.09.018
      [63] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005.Late Achaean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited.Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002
      [64] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998.Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting.International Geology Review, 40(8):706-721. https://doi.org/10.1080/00206819809465233
      [65] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001.Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constrains and Tectonic Evolution.Precambrian Research, 107:45-73. doi: 10.1016/S0301-9268(00)00154-6
      [66] Zhao, G.C., Zhai, M.G., 2013.Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications.Gondwana Research, 23(4):1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      [67] Zhao, L., Li, T.S., Peng, P., et al., 2015.Anatomy of Zircon Growth in High Pressure Granulites:SIMS U-Pb Geochronology and Lu-Hf Isotopes from the Jiaobei Terrane, Eastern North China Craton.Gondwana Research, 28(4):1373-1390. https://doi.org/10.13039/501100001809
      [68] Zhou, X., Zhao, G., Wei, C., et al., 2008.EPMA U-Th-Pb Monazite and SHRIMP U-Pb Zircon Geochronology of High-Pressure Pelitic Granulites in the Jiaobei Massif of the North China Craton.American Journal of Science, 308(3):328-350. https://doi.org/10.2475/03.2008.06
      [69] Zhou, X.W., Wei, C.J., Geng, Y.S., 2007.Phase Equilibria P-T Path of the High-and Low-Pressure Pelitic Granulites from the Jiaobei Massif.Earth Science Frontiers, 14(1):135-143 (in Chinese with English abstract). http://www.academia.edu/563643/Prograde_Symplectites_in_High-Temperature_Low-Pressure_Metamorphism_Bushveld_Complex_South_Africa_
      [70] Zhou, X.W., Wei, C.J., Geng, Y.S., et al., 2004.Discovery and Implications of the High-Pressure Pelitic Granulite from the Jiaobei Massif.Chinese Science Bulletin, 49(18):1424-1430 (in Chinese). doi: 10.1007/BF03184286.pdf
      [71] 蔡佳, 刘平华, 冀磊, 等, 2017.冀西北怀安地体高级变质表壳岩的锆石年代学研究.岩石学报, 33(9):2811-2826. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20170911&journal_id=ysxb&year_id=2017
      [72] 曹正琦, 翟文建, 蒋幸福, 等, 2016.华北克拉通南缘约2.5Ga构造变质事件及意义.地球科学, 41(4):570-585. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx201604002&dbname=CJFD&dbcode=CJFQ
      [73] 程素华, 游振东, 2016.变质岩岩石学.北京:地质出版社, 53.
      [74] 董春艳, 马铭株, 刘守偈, 等, 2012.华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学.岩石学报, 28(9):2785-2792. http://mall.cnki.net/magazine/Article/YSXB201209010.htm
      [75] 董春艳, 王世进, 刘敦一, 等, 2011.华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中-基性侵入岩锆石SHRIMP U-Pb定年.岩石学报, 27(6):1699-1706. http://mall.cnki.net/magazine/Article/YSXB201106011.htm
      [76] 靳是琴, 1991.不同区域变质相中钙质角闪石的成分特征.科学通报, 36(11):851-854. http://www.cqvip.com/qk/94252x/199111/552666.html
      [77] 孔凡梅, 刘云, 李旭平, 等, 2015.胶北地块变质基底超镁铁岩的矿物岩石地球化学特征.岩石学报, 31(6):1549-1563. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20150605&journal_id=ysxb
      [78] 李旭平, 郭敬辉, 赵国春, 等, 2011.胶北地块早元古代钙硅酸盐岩与高压基性麻粒岩成因及地质意义.岩石学报, 27(4):961-968. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98201104005
      [79] 李旭平, 刘云, 郭敬辉, 等, 2013.胶北南山口古元古代高压基性麻粒岩和钙硅酸盐岩的岩石地球化学特征探讨.岩石学报, 29(7):2340-2352. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130706&journal_id=ysxb&year_id=2013
      [80] 刘福来, 刘平华, 丁正江, 等, 2012.山东半岛高压麻粒岩中花岗质浅色脉体的成因.岩石学报, 28(9):2686-2696. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120902
      [81] 刘福来, 刘平华, 王舫, 等, 2015.胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展.岩石学报, 31(10):2816-2846. http://mall.cnki.net/magazine/Article/YSXB201510002.htm
      [82] 刘建辉, 刘福来, 丁正江, 等, 2014.胶北太古宙早期锆石U-Pb定年及Hf同位素研究:华北克拉通古老陆壳增生及再循环的证据.岩石学报, 30(10):2941-2950. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20141011&journal_id=ysxb&year_id=2014
      [83] 刘建辉, 刘福来, 丁正江, 等, 2015.胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化.岩石学报, 31(10):2942-2958. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20151006&journal_id=ysxb&year_id=2015
      [84] 刘建辉, 刘福来, 刘平华, 等, 2011.胶北早前寒武纪变质基底多期岩浆-变质热事件:来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据.岩石学报, 27(4):943-960. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201104004
      [85] 刘平华, 蔡佳, 邹雷, 2017.辽东半岛北部三家子石榴斜长角闪岩变质演化P-T-t轨迹及其地质意义:来自相平衡模拟与锆石U-Pb定年的约束.岩石学报, 33(9):2649-2674. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201709001&dbname=CJFD&dbcode=CJFQ
      [86] 刘平华, 刘福来, 王舫, 等, 2010.山东半岛基性高压麻粒岩的成因矿物学及变质演化.岩石学报, 26(7):2039-2056. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007007
      [87] 刘平华, 刘福来, 王舫, 等, 2012.胶北高级变质基底中高压基性麻粒岩的地球化学特征及其成因.岩石学报, 28(9):2705-2720. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120904
      [88] 刘平华, 刘福来, 王舫, 等, 2013.胶北西留古元古代~2.1Ga变辉长岩岩石学与年代学初步研究.岩石学报, 29(7):2371-2390. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130708&journal_id=ysxb&year_id=2013
      [89] 刘平华, 刘福来, 王舫, 等, 2014.胶北南山口含榴辉石岩岩石学与锆石U-Pb定年的初步研究.岩石学报, 30(10):2951-2972. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20141012
      [90] 刘平华, 刘福来, 王舫, 等, 2015.胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约.岩石学报, 31(10):2889-2941. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201510005&dbname=CJFD&dbcode=CJFQ
      [91] 刘文军, 翟明国, 李永刚, 1998.胶东莱西地区高压基性麻粒岩的变质作用.岩石学报, 14(4):449-459. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98199804005
      [92] 桑隆康, 马昌前, 2012.岩石学(第二版).北京:地质出版社, 478.
      [93] 王舫, 刘福来, 刘平华, 等, 2010.胶北地区早前寒武纪孔兹岩系的变质演化.岩石学报, 26(7):2057-2072. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98201007008
      [94] 杨凤超, 孙景贵, 宋运红, 等, 2016.辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义.地球科学, 41(12):2008-2018. http://www.earth-science.net/WebPage/Article.aspx?id=3397
      [95] 翟明国, 2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8):1753-1771. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200908005.htm
      [96] 翟明国, 2010.华北克拉通的形成演化与成矿作用.矿床地质, 29(1):24-36. http://www.doc88.com/p-084374723035.html
      [97] 周喜文, 魏春景, 耿元生, 2007.胶北地块高压与低压泥质麻粒岩的相平衡关系与P-T演化轨迹.地学前缘, 14(1):135-143. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200701013&dbname=CJFD&dbcode=CJFQ
      [98] 周喜文, 魏春景, 耿元生, 等, 2004.胶北栖霞地区泥质高压麻粒岩的发现及其地质意义.科学通报, 49(14):1424-1430. doi: 10.3321/j.issn:0023-074X.2004.14.015
    • 期刊类型引用(8)

      1. 李阔,宫相宽,孙敏佳,王一鸣,吴慧芸,尼加提·阿布都逊. 秦岭岩群东段早古生代构造演化——来自界牌斜长角闪岩和长英质脉体的制约. 矿物学报. 2023(05): 674-692 . 百度学术
      2. Yixing Ma,Junhua Hu,Yanjun Chang,Zujian Liu. Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration——Taking Jiaodong Polymetallic Mine as a Model. Journal of Earth Science. 2021(01): 25-41 . 必应学术
      3. 刘晓阳,谭俊,王怀洪,王勇军,甘觐荣,王治华,张铭. 胶东范家庄地区晚侏罗世低镁埃达克质花岗岩成因及构造背景. 地球科学. 2020(02): 451-466 . 本站查看
      4. 赵岩,寇林林,张朋,毕中伟,李东涛,陈聪. 辽东半岛隆昌地区~2113 Ma变辉长岩地球化学与Hf同位素研究:对胶辽吉造山带构造演化的制约. 地球科学. 2019(10): 3333-3345 . 本站查看
      5. 赵梦,庞小军,金小燕,冯冲,王茂桢. 渤海南部垦利6-6构造东二下段、馆陶组砂岩碎屑锆石定年及物源示踪. 中国海上油气. 2019(06): 52-59 . 百度学术
      6. Guidong Wei,Fanmei Kong,Hao Liu,Xiaoman Wang,Yancheng Zhang,Xiaohan Liu. Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton. Journal of Earth Science. 2019(06): 1197-1214 . 必应学术
      7. 高山林,张仲培,刘士林,杨鑫,张福顺. 塔里木克拉通北部沙雅隆起古元古代A型花岗岩的发现及其构造意义. 岩石学报. 2018(07): 2017-2029 . 百度学术
      8. Shuang Chen,Xu-Ping Li,Fanmei Kong,Qingda Feng. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science. 2018(05): 1219-1235 . 必应学术

      其他类型引用(1)

    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  4282
    • HTML全文浏览量:  1632
    • PDF下载量:  25
    • 被引次数: 9
    出版历程
    • 收稿日期:  2017-12-25
    • 刊出日期:  2018-03-15

    目录

    /

    返回文章
    返回