Concentration and Spatial Distribution of REE in Geochemical Transect of Xingmeng Orogenic Belt-North China Craton
-
摘要: 为研究兴蒙造山带-华北克拉通地球化学走廊带区域地球化学组成及其横向空间变化,统计分析不同地理单元和五万图幅单元的REE含量并绘制其空间分布折线图.内蒙古半干旱草原土壤中稀土含量较低,与其草原沙土的粘土矿物较少有关;江苏北部冲积平原区的土壤中稀土含量较高,与降雨量存在良好空间对应关系.内蒙古红格尔到河北张家口,土壤与岩石∑REE的比值绝大多数小于1,REE发生贫化;山东章丘到江苏连云港,比值基本大于1,REE发生富集.华北克拉通内蒙地块土壤稀土特征与兴蒙造山带相似,可能受其草原沙土景观的影响.在不同构造单元之间,LREE与HREE亏损与富集的空间分布存在细微差异.结果表明:地理景观,特别是黏土矿物是影响土壤REE含量的重要因素,降雨量与REE存在良好空间对应关系,REE自身的地球化学性质的差异在土壤形成过程中对轻重稀土元素分异具有重要影响.Abstract: In order to study the regional geochemical composition and lateral spatial variation of the geochemical belt in the North China Craton, rock and regolith samples along a transect across the Xingmeng Orogenic Belt-North China Craton were collected and 14 rare earth element (REE) concentrations were determined. Data of statistical analyses for regolith samples were based on tectonic units, geographical landscape, soil types and rainfall units, and for rock samples were based on tectonic units, rock types, and geologic age units. An average value was calculated from each 1:50 000 map sheet. The spatial distribution of REE concentrations is plotted in figures. The results show that:(1) REEs are depleted in Inner Mongolia semi-arid grassland soils due to less clay minerals in the soils, whereas REEs are enriched in the alluvial plain soils of the northern Jiangsu corresponding to the maximum rainfall zone. (2) In the transect from Honger to Zhangjiakou, REE ratio of soil to rock mostly is less than 1, indicating that the REE is leached in soils or diluted by windblown sand; in the transect from Zhangqiu to Lianyungang, the ratio is greater than 1, indicating that the soil REE are enriched in soils. (3)The REE characteristics of the Inner Mongolia block, which belong to the North China Craton, are more similar to those of the Xingmeng Orogenic Belt, affected by the semi-arid sandy soil of Inner Mongolia; The spatial distribution of LREE and HREE with depletion or enrichment in different tectonic units indicates that geochemical properties of REE affecting on the fractionation of REE in the process of soil formation.
-
图 3 兴蒙造山带-华北克拉通地球化学走廊带土壤与岩石∑REE空间分布
A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B1.内蒙地块; B2.燕山造山带; B3华北盆地; B4.鲁西地块; C1.南苏鲁造山带; 地理景观:(1)半干旱草原;(2)低山丘陵;(3)冲积平原;土壤类型:ⅡB.灰钙土-棕钙土带;ⅡA.黑钙土-栗钙土-黑垆土带;ⅠC.棕壤-褐土带;降雨量:①50~200 mm;②200~400 mm;③400~800 mm;④800~1 600 mm
Fig. 3. The spatial distribution of ∑REE in regoliths and rocks on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
图 4 兴蒙造山带-华北克拉通地球化学走廊带土壤/岩石比值空间分布
A3.大兴安岭北段造山带;A2.大兴安岭南段造山带;A1.华北北缘造山带;B1.内蒙地块;B2.燕山造山带;B3.华北盆地;B4.鲁西地块;C1.南苏鲁造山带;地理景观:(1)半干旱草原;(2)低山丘陵;(3)冲积平原;土壤类型:ⅡB.灰钙土-棕钙土带;ⅡA.黑钙土-栗钙土-黑垆土带;ⅠC.棕壤-褐土带;降雨量:①50~200 mm;②200~400 mm;③400~800 mm;④800~1 600 mm
Fig. 4. The spatial distribution of regolith/rocks ratio on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
图 5 兴蒙造山带-华北克拉通土壤与岩石不同构造单元配分模式对比
图例同图 4
Fig. 5. The REE distribution patterns of regoliths and rocks in different secondary tectonic units on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
表 1 兴蒙造山带-华北克拉通地球化学走廊带各二级构造单元主要岩性
Table 1. The main lithology in different secondary tectonic units on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
构造单元 主要岩性 A3 地层以泥盆系长石石英砂岩、硬砂岩和石炭系长石石英砂岩、流纹质砂砾岩、变泥岩等碎屑岩为主;岩浆岩主要为海西期碱长花岗岩、黑云二长花岗岩、安山岩以及燕山早期碱长花岗岩、流纹岩、安山岩. A2 地层以新近系长石石英砂岩等碎屑岩为主,其次发育志留系-下泥盆统温都尔庙群石英片岩、变质长石硬砂岩以及石炭系碎屑岩和白垩系长石石英砂岩、粘土岩;岩浆岩有海西期黑云花岗闪长岩和燕山期碱长花岗岩. A1 地层以温都尔庙群绢云石英片岩、绿泥片岩夹大理岩、磁铁石英岩,石炭系碎屑岩、碳酸盐岩,二叠系碎屑岩、粉砂质千枚岩以及新近纪碎屑岩等为主;岩浆岩以海西-印支期各类花岗岩及燕山期中酸性岩浆岩. B1 结晶基底由太古宇中基性麻粒岩、TTG片麻岩、变粒岩等组成,地层为早古生界白云鄂博群砂质板岩、千枚岩、长石石英砂岩及新近系粘土和砂砾等组成沉积盖层;岩浆岩为古元古代片麻状花岗岩、斜长角闪岩,海西晚期-燕山期各类中酸性岩浆岩,新近纪汉诺坝组玄武岩等. B2 结晶基底由太古宇基性-超基性麻粒岩、黑云斜长片麻岩、浅粒岩等组成,沉积盖层由中元古界青白口系、长城系、蓟县系碳酸盐岩和碎屑岩,寒武系碳酸盐岩、碎屑岩等组成,岩浆岩为古元古界片麻岩、二长花岗岩、斜长角闪岩、碱长浅粒岩,加里东期-燕山期各类中酸性岩浆岩. B3 第四系冲积物、洪积物、海积物. B4 结晶基底由太古宇基性-超基性麻粒岩、变粒岩、TTG片麻岩以及科马提岩等组成,沉积盖层由新元古界震旦系碎屑岩,古生界的碳酸盐岩、碎屑岩组成,岩浆岩主要为古元古界碱长花岗岩、二长花岗岩、花岗闪长岩,加里东期金伯利岩、印支期-燕山期中酸性岩浆岩等,规模较小. C1 地层为第四系冲积物、洪积物及白垩系碎屑岩,岩浆岩为太古宇斜长片麻岩、碱长浅粒岩,元古宇碱长片麻岩、片岩、浅粒岩、花岗闪长岩,印支期花岗闪长岩、闪长岩,燕山期碱长花岗岩、二长花岗岩等. 注:A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B1.内蒙地块; B2.燕山造山带; B3.华北盆地; B4.鲁西地块; C1.南苏鲁造山带. 表 2 兴蒙造山带-华北克拉通地球化学走廊带土壤稀土元素含量
Table 2. The content of REE in regoliths on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
单元 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 走廊带 31.90 63.20 7.45 27.65 5.13 1.09 4.37 0.70 4.07 0.79 2.28 0.37 2.36 0.38 构造单元 A3 21.00 40.57 5.07 18.78 3.54 0.78 3.15 0.50 2.97 0.60 1.82 0.30 2.03 0.35 A2 19.42 37.39 4.65 17.02 3.08 0.73 2.77 0.42 2.52 0.49 1.48 0.24 1.57 0.25 A1 19.77 38.50 4.73 16.81 3.10 0.76 2.92 0.44 2.67 0.53 1.51 0.25 1.63 0.27 B1 23.34 46.07 5.46 20.11 3.65 0.87 3.27 0.49 3.00 0.57 1.67 0.28 1.83 0.29 B2 35.95 71.10 8.40 30.79 5.59 1.23 4.84 0.76 4.33 0.84 2.41 0.39 2.44 0.39 B3 34.37 65.71 7.82 29.32 5.57 1.14 4.75 0.78 4.52 0.88 2.51 0.41 2.62 0.43 B4 34.77 70.39 8.00 29.72 5.44 1.19 4.54 0.72 4.19 0.80 2.21 0.37 2.35 0.38 C1 42.20 90.88 9.82 36.28 6.59 1.35 5.27 0.88 4.86 0.95 2.78 0.46 2.92 0.48 地理景观 (1) 20.70 40.49 5.00 18.48 3.36 0.81 2.99 0.47 2.76 0.54 1.59 0.27 1.70 0.28 (2) 34.43 66.88 7.82 29.35 5.58 1.15 4.75 0.78 4.51 0.88 2.53 0.41 2.65 0.44 (3) 36.03 71.72 8.37 30.77 5.63 1.22 4.75 0.75 4.34 0.84 2.40 0.38 2.46 0.39 土壤类型 a 20.44 39.39 4.95 18.13 3.30 0.75 2.94 0.46 2.71 0.53 1.58 0.27 1.71 0.29 b 25.12 50.72 6.00 22.34 4.09 0.91 3.65 0.55 3.36 0.64 1.84 0.31 1.93 0.30 c 35.12 69.47 8.16 29.89 5.67 1.19 4.80 0.77 4.46 0.86 2.48 0.40 2.56 0.42 降雨量 ① 20.60 40.37 4.99 18.46 3.30 0.78 2.98 0.46 2.71 0.53 1.60 0.27 1.73 0.30 ② 21.85 42.78 5.11 19.00 3.54 0.82 3.10 0.48 2.98 0.57 1.67 0.28 1.83 0.29 ③ 33.94 66.55 7.83 29.15 5.44 1.15 4.66 0.75 4.35 0.84 2.43 0.39 2.48 0.41 ④ 39.24 82.06 9.15 32.90 6.00 1.29 5.08 0.79 4.58 0.90 2.59 0.42 2.76 0.44 注:各元素单位为μg/g;A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B1.内蒙地块; B2.燕山造山带; B3.华北盆地; B4.鲁西地块; C1.苏鲁造山带;地理景观:(1)半干旱草原;(2)低山丘陵;(3)冲积平原;土壤类型:a.灰钙土-棕钙土带;b.黑钙土-栗钙土-黑垆土带;c.棕壤-褐土带;降雨量:①50~200 mm;②200~400 mm;③400~800 mm;④800~1 600 mm. 表 3 兴蒙造山带-华北克拉通花岗岩样品数量分类统计
Table 3. The number of samples of granitoids on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
构造单元 样数 百分比 岩石类型 样数 百分比 地质时代 样数 百分比 A3 31 9.6% 碱长花岗岩 80 40.8% Mz 157 50.2% A2 5 2.1% 二长花岗岩 111 46.3% Pz2 47 15.0% A1 39 15.4% 斜长花岗岩 3 1.3% Pt3 19 6.1% B2 136 30.8% 花岗闪长岩 27 11.3% Pt1 61 19.5% B4 73 30.0% 花岗斑岩 1 0.4% Ar3 27 8.6% C1 29 12.1% 注:A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B2.燕山造山带; B4.鲁西地块; C1.南苏鲁造山带. 表 4 兴蒙造山带-华北克拉通地球化学走廊带花岗岩类稀土元素含量
Table 4. The content of REE in granitoids on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
元素 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 二长花岗岩 44.74 78.94 9.54 32.18 5.00 0.88 3.62 0.53 2.84 0.52 1.57 0.25 1.70 0.25 花岗斑岩 71.89 117.59 13.83 48.74 8.35 0.62 7.28 1.15 6.05 1.11 3.11 0.50 3.32 0.49 花岗闪长岩 40.62 81.14 9.50 34.29 5.66 1.45 4.48 0.64 3.43 0.62 1.83 0.28 1.83 0.27 碱长花岗岩 38.07 69.54 8.46 29.84 5.25 0.63 4.40 0.75 4.36 0.86 2.69 0.46 3.17 0.47 斜长花岗岩 56.39 94.14 10.08 33.10 4.32 0.97 2.47 0.29 1.35 0.22 0.68 0.10 0.66 0.10 A3 27.59 63.48 7.61 29.19 6.45 0.51 6.25 1.23 7.57 1.55 4.98 0.89 6.13 0.93 A2 13.72 33.74 3.95 15.42 4.11 0.29 4.96 1.08 7.16 1.53 4.95 0.88 6.09 0.91 A1 31.38 54.48 6.69 22.80 4.03 0.58 3.48 0.59 3.41 0.67 2.09 0.36 2.55 0.38 B2 51.63 91.94 11.76 40.97 6.28 1.06 4.65 0.65 3.50 0.64 1.89 0.30 1.98 0.28 B4 40.05 69.57 7.85 25.85 3.92 0.74 2.61 0.37 1.87 0.33 0.97 0.15 1.00 0.15 C1 50.58 93.48 10.72 37.39 6.15 1.23 4.80 0.74 3.99 0.74 2.26 0.37 2.43 0.37 Mz 40.38 77.63 9.05 31.27 5.09 0.88 3.98 0.61 3.40 0.64 1.96 0.33 2.23 0.33 Pz2 24.97 51.49 5.95 21.50 4.44 0.53 4.16 0.80 4.87 0.99 3.15 0.55 3.78 0.57 Pt3 50.82 92.16 10.60 36.74 6.19 1.12 4.90 0.79 4.30 0.81 2.46 0.41 2.72 0.41 Pt1 54.76 89.85 11.93 41.29 6.33 0.97 4.57 0.64 3.35 0.61 1.80 0.29 1.88 0.28 Ar3 40.06 67.62 7.44 24.17 3.47 0.77 2.21 0.30 1.47 0.25 0.75 0.12 0.74 0.11 注:各元素单位为μg/g;A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B2.燕山造山带; B4.鲁西地块; C1.南苏鲁造山带. 表 5 兴蒙造山带-华北克拉通地球化学走廊带土壤稀土元素参数
Table 5. The REE parameters of regoliths on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
参数 ∑REE ∑LREE ∑HREE ∑LREE/∑HREE δEu δCe (La/Yb)N (La/Sm)N (Gd/Yb)N 走廊带 153.08 136.59 15.37 8.62 0.72 0.98 8.86 3.93 1.48 构造单元 A3 101.81 89.46 11.78 7.66 0.68 0.95 7.13 3.75 1.29 A2 91.11 82.04 9.79 8.67 0.81 0.95 8.62 4.03 1.45 A1 94.98 84.17 10.19 7.96 0.77 0.96 7.88 3.93 1.37 B1 110.31 99.41 11.38 8.62 0.76 0.98 8.82 3.87 1.51 B2 170.60 154.81 16.61 9.67 0.73 1.00 10.05 3.94 1.58 B3 160.46 143.64 16.84 8.47 0.69 0.97 8.80 3.89 1.46 B4 165.22 149.75 15.43 9.28 0.71 1.01 9.66 4.02 1.52 C1 209.98 190.16 18.76 9.83 0.67 1.08 9.26 4.09 1.50 地理景观 (1) 99.85 89.37 10.61 8.25 0.77 0.96 8.18 3.88 1.41 (2) 161.68 144.21 16.88 8.49 0.68 0.97 8.78 3.89 1.46 (3) 169.32 152.95 16.35 9.48 0.72 1.00 9.88 3.98 1.55 土壤类型 a 97.44 86.93 10.55 8.06 0.77 0.95 7.86 3.89 1.35 b 124.15 109.27 12.51 8.54 0.76 0.98 8.66 3.88 1.48 c 166.21 149.45 16.73 8.83 0.69 0.98 9.06 3.95 1.49 降雨量 ① 99.12 88.32 11.73 8.01 0.76 0.95 7.94 3.87 1.36 ② 102.70 91.17 11.00 8.12 0.75 0.97 7.99 3.93 1.38 ③ 160.46 143.75 16.37 8.55 0.70 0.98 9.02 3.91 1.50 ④ 190.57 171.47 17.35 9.72 0.70 1.04 9.66 4.08 1.54 注:∑REE、∑LREE、∑HREE单位为μg/g;A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B1.内蒙地块; B2.燕山造山带; B3.华北盆地; B4.鲁西地块; C1.南苏鲁造山带;地理景观:(1)半干旱草原;(2)冲积平原;(3)低山丘陵;土壤类型:a.灰钙土-棕钙土带;b.黑钙土-栗钙土-黑垆土带;c.棕壤-褐土带;降雨量:①50~200 mm;②200~400 mm;③400~800 mm;④800~1 600 mm. 表 6 兴蒙造山带-华北克拉通地球化学走廊带岩石稀土元素参数
Table 6. The REE parameters of rocks on the geochemical transect of the Xingmeng Orogenic Belt-North China Craton
单元 ∑REE ∑LREE ∑HREE ∑LREE/∑HREE δEu δCe (La/Yb)N (La/Sm)N (Gd/Yb)N 走廊带 140.74 126.93 12.53 9.49 0.77 0.97 10.19 2.98 1.68 构造单元 A3 142.74 123.62 22.35 5.93 0.46 1.01 4.86 2.49 1.26 A2 100.58 87.12 14.95 5.21 0.68 0.99 4.38 2.29 1.16 A1 128.39 112.67 13.64 7.86 0.72 0.96 7.63 2.80 1.44 B1 215.76 201.84 15.02 14.32 0.78 1.01 16.85 3.69 1.78 B2 158.15 144.23 13.39 10.35 0.78 0.99 11.01 3.10 1.78 B4 102.51 93.47 8.53 10.01 0.83 0.95 11.21 2.91 1.84 C1 180.02 164.93 18.09 10.15 0.65 0.98 9.41 3.20 1.48 地理景观 (1) 124.38 107.69 15.10 6.92 0.73 0.97 7.12 2.59 1.41 (2) 144.75 132.23 11.43 10.53 0.80 0.97 11.52 3.08 1.80 (3) 158.43 141.01 18.43 7.71 0.44 1.03 5.66 2.94 1.25 土壤类型 a 123.43 106.36 18.44 5.99 0.63 1.00 4.93 2.43 1.26 b 151.41 136.20 14.41 9.75 0.78 0.98 10.21 2.99 1.68 c 134.99 122.02 10.27 10.09 0.80 0.97 10.99 3.05 1.79 降雨量 ① 123.43 106.36 18.44 5.99 0.63 1.00 4.93 2.43 1.26 ② 129.32 116.65 14.13 7.70 0.72 0.97 7.61 2.85 1.42 ③ 142.16 129.24 11.72 10.52 0.84 0.98 11.42 3.05 1.82 ④ 156.75 140.89 12.30 9.31 0.71 0.96 10.15 3.03 1.71 注:表中的数值为各元素含量的中位数;∑REE、∑LREE、∑HREE单位为μg/g;A3.大兴安岭北段造山带; A2.大兴安岭南段造山带; A1.华北北缘造山带; B1.内蒙地块; B2.燕山造山带; B4.鲁西地块; C1.南苏鲁造山带;地理景观:(1)半干旱草原;(2)冲积平原;(3)低山丘陵;土壤类型:a.灰钙土-棕钙土带;b.黑钙土-栗钙土-黑垆土带;c.棕壤-褐土带;降雨量:①50~200 mm;②200~400 mm;③400~800 mm;④800~1 600 mm. -
[1] Cao, J.J., Zhang, X.Y., Wang, D., et al., 2001.Ree Geochemistry of Late Cenozoic Eolian Sediments and the Paleoclimate Significance.Marine Geology & Quaternary Geology, 21(1):97-101(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hydz200101020.htm [2] Chen, Y., Wang, X.R., Peng, A., 1999.The Research Progress of Fractionation among the Rare Earth Elements.Advances in Environmental Science, 7(1):10-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ901.001.htm [3] Chi, Q.H., 2002.Abundance of Gold in Crust, Rocks and Sediments.Geochimica, 31(4):347-353(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200204005.htm [4] Chi, Q.H., 2004.Abundance of Mercury in Crust, Rocks and Loose Sediments.Geochimica, 33(6):641-648(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx200406012.htm [5] Chi, Q.H., Yan, M.C., 2006.Platinum-Group Element Abundances in Crust, Rocks and Sediments.Geochimica, 35(5):461-471 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200605001.htm [6] Chi, Q.H., Yan, M.C., 2007.Handbook of Geochemical Element Abundances Data.Geological Publishing House, Beijing(in Chinese). [7] Drew, L.J., Grunsky, E.C., Sutphin, D.M., et al., 2010.Multivariate Analysis of the Geochemistry and Mineralogy of Soils along Two Continental-Scale Transects in North America.Science of the Total Environment, 409(1):218-27. https://doi.org/10.1016/j.scitotenv.2010.08.004 [8] Fan, Q.C., Liu, R.X., Li, H.M., 1998.The Hannuoba Granulite Xenoliths Zircon Geochronology and Geochemistry of Rare Earth Elements.Chinese Science Bulletin, 43(2):133-137(in Chinese with English abstract). doi: 10.1007/BF02883926 [9] Feng, C.X., Liu, S., Hu, R.Z., et al., 2010.Geochemistry of Lower Cambrian Se-Rich Black Rock Series in Zunyi, Guizhou Province, Southwest China:The Petrogenesis and Enrichment Mechanism of Selenium.Earth Science, 35(6):947-958(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201006007.htm [10] Fu, W., Huang, X.R., Yang, M.L., et al., 2014.REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks:Comparative Study of Two Laterite Profiles under Different Climate Condition.Earth Science, 39(6):1745-1757(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201406007.htm [11] Gao, S., 1999.Discussions on Some Problems in Research into Chemical Compositions of Continental Crust.Earth Science, 24(3):228-233(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX903.002.htm [12] Guo, H.M., Zhang, B., Li, Y., et al., 2010.Concentrations and Patterns of Rare Earth Elements in High Arsenic Groundwaters from the Hetao Plain, Inner Mongolia.Earth Science Frontiers, 17(6):59-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201006007.htm [13] Henderson, P., 1989. Geochemistry of Rare Earth Elements. Translated by Tian, F. and Shi, L., Geological Publishing House, Beijing, 195-213(in Chinese). [14] Hou, H.X., Zhang, D.H., Zhang, R.Z., 2016.The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling.Earth Science, 41(10):1665-1682 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610004.htm [15] Lan, X.H., Li, R.H., Mi, B.B., et al., 2016.Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas.Earth Science, 41(3):463-474(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603012.htm [16] Li, D.L., 2000.REE Geochemical Features of Carbonate Rocks and Its Paleokarst Significane in the Ordovician in Northern Anhui.Earth Science Frontiers, 7(2):353(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200002004.htm [17] Li, L.X., Li, H.M., Wang, D.H., et al., 2009.Trace Element and REE Geochemistry and Its Metallogenic Significance for Cu-Zn Deposits in the Tongbai Area, Henan.Earth Science Frontiers, 16(6):325-336(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60116-5 [18] Ling, Q.C., Liu, C.Q., 2001.Geochemistry of Trace Elements during Ore-Forming Processes in Yinshan Deposit.Earth Science, 26(5):473-480(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy200103006&dbname=CJFD&dbcode=CJFQ [19] Liu, J.G., Chen, Z., Yan, W., et al., 2010.Geochemical Characteristics of Rare Earth Elements in the Fine-Grained Fraction of Surface Sediment from South China Sea.Earth Science, 35(4):563-571(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201004010.htm [20] Ma, Y.J., Huo, R.K., Xu, Z.F., et al., 2004.REE Behavior and Influence Factors during Chemical Weathering.Advance in Earth Sciences, 19(1):87-94(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200401012.htm [21] Ren, J.B., He, G.W., Yao, H.Q., et al., 2016.Geochemistry and Significance of REE and PGE of the Cobalt-Rich Crusts from West Pacific Ocean Seamounts.Earth Science, 41(10):1745-1757 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610010.htm [22] Smith, D.B., Reimann, C., 2008.Low-Density Geochemical Mapping and the Robustness of Geochemical Patterns.Geochemistry Exploration Environment Analysis, 8(3-4):219-227. https://doi.org/10.1144/1467-7873/08-171 [23] Wang, L.J., Wang, Y.Q., Zhang, S., et al., 1997.Speciation of Rare Earth Elements in Different Types of Soils in China.Journal of the Chinese Rare Earth Society, 15(1):65-71 (in Chinese with English abstract). [24] Wang, X.Q., 2012.Global Geochemical Baselines:Understanding the Past and Predicting the Future.Earth Science Frontiers, 19(3):854-864(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201203002.htm [25] Wang, X.Q., 2014.China Geochemical Baselines:Sampling Methodology.Journal of Geochemical Exploration, 148:25-39. https://doi.org/10.1016/j.gexplo.2014.05.018 [26] Wang, X.Q., Liu, X.M., Han, Z.X., et al., 2015.Concentration and Distribution of Mercury in Drainage Catchment Sediment and Alluvial Soil of China.Journal of Geochemical Exploration, 154:32-48. https://doi.org/10.1016/j.gexplo.2015.01.008 [27] Wang, X.Q., Xie, X.J., Zhang, B.R., et al., 2010.China Geochemical Probe:Making "Geochemical Earth".Acta Geologica Sinica, 84(6):854-864(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201006011.htm [28] Wei, L., Guo, H.M., Xie, Z.H., et al., 2010.Rare Earth Elements Geochemistry and Its Implication for Sediment Provenance in the Beijing Plain.Earth Science Frontiers, 17(6):72-80(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201006009.htm [29] Xie, X.J., Wang, Y.X., Li, J.X., et al., 2012.Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin.Earth Science, 37(2):381-390(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201202030.htm [30] Xie, Y.Y., Meng, J., Guo, L.F., et al., 2013.REE Geochemistry for Sand-Dust Fallouts in Harbin, Heilongjiang Province and Provenance Analysis.Earth Science, (5):923-933 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201305003.htm [31] Xiong, G.Q., Jiang, X.S., Cai, X.Y., et al., 2010.The Characteristics of Trace Element and REE Geochemistry of the Cretaceous Mudrocks and Shales from Southern Tibet and Its Analysis of Redox Condition.Advances in Earth Science, 25(7):730-745(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxjz201007014.htm [32] Yang, S.Y., Li, C.X., 1999.Research Progress in REE Tracer for Sediment Source.Acta Electronica Sinica, 14(2):164-167(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ902.009.htm [33] Yang, S.Y., Li, C.X., Lee, C.B., 2003.Geochemistry of Rare Earth Elements and Sediment Source Tracing in the Yellow Sea.Chinese Science Bulletin, 48(11):1233-1236(in Chinese with English abstract). [34] Yang, T., Zhu, Z.Y., Wu, Y., et al., 2010.Rare Earth Elements Geochemistry in Topsoils from the Eastern Part of China.Earth Science Frontiers, 17(3):233-241(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201003025.htm [35] Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2012.REE Geochemical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou.Geological Review, 54(1):3-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200801002.htm [36] Zhang, Q., Bai, J.F., Wang, Y., 2012.Analytical Scheme and Quality Monitoring System for China Geochemical Baselines.Earth Science Frontiers, 19(3):33-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203004.htm [37] Zhao, S., Xu, W.L., Tang, J., et al., 2016.Neoproterozoic Magmatic Events and Tectonic Attribution of the Erguna Massif:Constraints from Geochronological, Geochemical and Hf Isotopic Data of Intrusive Rocks.Earth Science, 41(11):1803-1829 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201611001.htm [38] Zhao, Y.Y., Yan, M.C., 1993.Abundance of Chemical Elements in Sediments of Shallow Sea of China.Science China Earth Sciences, 23(10):1084-1090(in Chinese with English abstract). [39] Zhu, L.M., Du, J.M., Zhang, Y.H., et al., 2006.Tracing the Sediment Source at E2 Hole in the South Yellow Sea with Rare Earth Element and Trace Element.Acta Scientiae Circumstantiae, 26(3):495-500(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200603022.htm [40] 曹军骥, 张小曳, 王丹, 等, 2001.晚新生代风尘沉积的稀土元素地球化学特征及其古气候意义.海洋地质与第四纪地质, 21(1):97-101. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hydz200101020&dbname=CJFD&dbcode=CJFQ [41] 陈莹, 王晓蓉, 彭安, 1999.稀土元素分馏作用研究进展.环境科学进展, (1):10-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjjz901.001&dbname=CJFD&dbcode=CJFQ [42] 迟清华, 2002.金在地壳、岩石和沉积物中的丰度.地球化学, 31(4):347-353. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200204005&dbname=CJFD&dbcode=CJFQ [43] 迟清华, 2004.汞在地壳、岩石和疏松沉积物中的分布.地球化学, 33(6):641-648. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200406012&dbname=CJFD&dbcode=CJFQ [44] 迟清华, 鄢明才, 2006.铂族元素在地壳、岩石和沉积物中的分布.地球化学, 35(5):461-471. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200605001&dbname=CJFD&dbcode=CJFQ [45] 迟清华, 鄢明才, 2007.应用地球化学元素丰度数据手册.北京:地质出版社. [46] 高山, 1999.关于大陆地壳化学组成研究中某些问题的讨论.地球科学, 24(3):228-233. http://www.earth-science.net/WebPage/Article.aspx?id=782 [47] 樊祺诚, 刘若新, 李惠民, 等, 1998.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学.科学通报, 43(2):133-137. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb199802002&dbname=CJFD&dbcode=CJFQ [48] 冯彩霞, 刘燊, 胡瑞忠, 等, 2010.遵义下寒武统富硒黑色岩系地球化学:成因和硒富集机理.地球科学, 35(6):947-958. http://www.earth-science.net/WebPage/Article.aspx?id=2040 [49] 付伟, 黄小荣, 杨梦力, 等, 2014.超基性岩红土风化壳中REE地球化学:不同气候风化剖面的对比.地球科学, 39(6):716-732. http://www.earth-science.net/WebPage/Article.aspx?id=2878 [50] 郭华明, 张波, 李媛, 等, 2010.内蒙古河套平原高砷地下水中稀土元素含量及分异特征.地学前缘, 17(6):59-66. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201006007&dbname=CJFD&dbcode=CJFQ [51] 亨德森, P., 1989. 稀土元素地球化学. 田丰, 施烺, 译. 北京: 地质出版社, 195-213. [52] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41(10):1665-1682. http://www.earth-science.net/WebPage/Article.aspx?id=3370 [53] 蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3):463-474. http://www.earth-science.net/WebPage/Article.aspx?id=3272 [54] 李定龙, 2000. 皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义., (2): 353. [55] 李立兴, 李厚民, 王登红, 等, 2009.河南桐柏地区铜锌多金属矿床的微量元素和稀土元素特征及成因意义.地学前缘, 16(6):325-336. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200906042&dbname=CJFD&dbcode=CJFQ [56] 刘建国, 陈忠, 颜文, 等, 2010.南海表层沉积物中细粒组分的稀土元素地球化学特征.地球科学, 35(4):563-571. http://www.earth-science.net/WebPage/Article.aspx?id=2000 [57] 凌其聪, 刘丛强, 2001.银山矿床成矿作用微量元素地球化学研究.地球科学, 26(5):473-480. http://www.earth-science.net/WebPage/Article.aspx?id=1036 [58] 马英军, 霍润科, 徐志方, 等, 2004.化学风化作用中的稀土元素行为及其影响因素.地球科学进展, 19(1):87-94. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz200401012&dbname=CJFD&dbcode=CJFQ [59] 任江波, 何高文, 姚会强, 等, 2016.西太平洋海山富钴结壳的稀土和铂族元素特征及其意义.地球科学, 41(10):1745-1757. http://www.earth-science.net/WebPage/Article.aspx?id=3376 [60] 王立军, 王玉琦, 章申, 等, 1997.中国不同类型土壤中稀土元素的形态分布特征.中国稀土学报, 15(1):65-71. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtxb701.013&dbname=CJFD&dbcode=CJFQ [61] 王学求, 2012.全球地球化学基准:了解过去, 预测未来.地学前缘, 19(3):854-864. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201203002&dbname=CJFD&dbcode=CJFQ [62] 王学求, 谢学锦, 张本仁, 等, 2010.地壳全元素探测——构建"化学地球".地质学报, 84(6):854-864. https://www.wenkuxiazai.com/doc/ad2a2e6ba8114431b90dd89d.html [63] 魏亮, 郭华明, 谢振华, 等, 2010.北京平原沉积物稀土元素地球化学特征及物源意义.地学前缘, 17(6):72-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201006009&dbname=CJFD&dbcode=CJFQ [64] 谢先军, 王焰新, 李俊霞, 等, 2012.大同盆地高砷地下水稀土元素特征及其指示意义.地球科学, 37(2):381-390. http://www.earth-science.net/WebPage/Article.aspx?id=2243 [65] 谢远云, 孟杰, 郭令芬, 等, 2013.哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析.地球科学, 38(5):923-933. http://www.earth-science.net/WebPage/Article.aspx?id=2784 [66] 熊国庆, 江新胜, 蔡习尧, 等, 2010.藏南白垩系泥、页岩微量、稀土元素特征及氧化-还原环境分析.地球科学进展, 25(7):730-745. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz201007014&dbname=CJFD&dbcode=CJFQ [67] 杨守业, 李从先, 1999.REE示踪沉积物物源研究进展.地球科学进展, 14(2):164-167. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz902.009&dbname=CJFD&dbcode=CJFQ [68] 杨守业, 李从先, Lee, C.B., 等, 2003.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报, 48(11):1233-1236. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb200311024&dbname=CJFD&dbcode=CJFQ [69] 杨恬, 朱照宇, 吴翼, 等, 2010.中国东部地带表土稀土元素的地球化学特征.地学前缘, 17(3):233-241. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201003025&dbname=CJFD&dbcode=CJFQ [70] 杨兴莲, 朱茂炎, 赵元龙, 等, 2012.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征.地质论评, 54(1):3-15. https://www.wenkuxiazai.com/doc/034967770722192e4536f6aa.html [71] 张勤, 白金峰, 王烨, 2012.地壳全元素配套分析方案及分析质量监控系统.地学前缘, 19(3):33-42. http://www.cnki.com.cn/Article/CJFDTotal-BJNY201424135.htm [72] 赵硕, 许文良, 唐杰, 等, 2016.额尔古纳地块新元古代岩浆作用与微陆块构造属性:来自侵入岩锆石U-Pb年代学、地球化学和Hf同位素的制约.地球科学, 41(11):1803-1829. http://www.earth-science.net/WebPage/Article.aspx?id=3381 [73] 赵一阳, 鄢明才, 1993.中国浅海沉积物化学元素丰度.中国科学:地球科学, 23(10):1084-1090. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jbxk199310011&dbname=CJFD&dbcode=CJFQ [74] 朱赖民, 杜俊民, 张远辉, 等, 2006.南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报, 26(3):495-500. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjxx200603022&dbname=CJFD&dbcode=CJFQ