• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    白令海陆架区柱样沉积物脂类分子特征及其气候变化响应

    高超 于晓果 杨义 杨欢 吕晓霞 阮小燕

    高超, 于晓果, 杨义, 杨欢, 吕晓霞, 阮小燕, 2018. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726
    引用本文: 高超, 于晓果, 杨义, 杨欢, 吕晓霞, 阮小燕, 2018. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726
    Gao Chao, Yu Xiaoguo, Yang Yi, Yang Huan, Lü Xiaoxia, Ruan Xiaoyan, 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726
    Citation: Gao Chao, Yu Xiaoguo, Yang Yi, Yang Huan, Lü Xiaoxia, Ruan Xiaoyan, 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726

    白令海陆架区柱样沉积物脂类分子特征及其气候变化响应

    doi: 10.3799/dqkx.2018.726
    基金项目: 

    国家自然科学基金项目 41330103

    南北极环境综合考察专项项目 CHINARE2016-03-02

    详细信息
      作者简介:

      高超(1990-),男,硕士研究生,主要从事海洋有机地球化学研究

      通讯作者:

      阮小燕

    • 中图分类号: P734.5

    Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf

    • 摘要: 为探究全球变暖对于高纬度海洋生态环境的影响,对中国第5次北极科学考察在白令海陆架区采集的BL16柱样沉积物中的脂类进行了研究.沉积物中检测到丰富的饱和烃和脂肪酸等化合物,其组成和分布显示,该沉积柱中有机质为陆源和海源混合输入.其中长链正构烷烃和长链饱和正构脂肪酸主要来源于陆源高等植物,饱和异构和反异构脂肪酸主要来源于海洋自生细菌,短碳链正构烷烃、反异构烷烃和烷基环戊烷烃的浓度相互间有较好的相关性,表明其来源较为一致,主要来源于海洋浮游藻类和细菌.海源短链正构烷烃与陆源长链正构烷烃的比值∑C15-21/∑C23-33在0.14~0.90之间,表明该沉积柱中正构烷烃主要以陆源输入为主.沉积柱中短链正构烷烃、反异构烷烃和烷基环戊烷浓度,以及脂肪酸中异构、反异构脂肪酸组分与长链饱和正构脂肪酸组分的相对变化与总有机碳含量(TOC)、总氮含量(TN)变化一致,尤其在20世纪70年代以来明显升高,可能反映了海洋初级生产力持续增加的趋势,并且对全球变暖做出了灵敏的响应.

       

    • 图  1  白令海水深、环流和采样站位

      修改自Grebmeier et al.(2006a)

      Fig.  1.  Water depths, circulations and sampling station in the Bering Sea

      图  2  沉积柱样中典型的饱和烃气相色谱图(a)、反异构烷烃(b)和烷基环戊烷质谱图(c)

      Fig.  2.  Typical GC spectrum of saturated hydrocarbon (a), mass spectrum of anteiso-alkane (b) and alkylcyclopentane (c) from sediment core

      图  3  沉积柱样中短链正构烷烃∑C15-21与反异构烷烃(a)、烷基环戊烷浓度(b)的相关性

      Fig.  3.  The correlation between concentrations of short chain n-alkanes ∑C15-21 and anteiso-alkanes (a) and alkylcyclopentanes (b) in sediment core

      图  4  沉积柱样中粒度与长链正构烷烃∑C23-33(a)、反异构烷烃(b)、短链正构烷烃∑C15-21(c)以及烷基环戊烷浓度的相关性(d)

      图a粒度数据来自胡利民等(2015)

      Fig.  4.  The correlations between sediment grain size and concentrations of long chain n-alkanes ∑C23-33 (a), anteiso-alkanes (b), short chain n-alkanes ∑C15-21 (c), and alkylcyclopentanes in sediment core (d)

      图  5  沉积样柱中TOC、TN、脂肪酸指标和各组分饱和烃浓度的垂向分布

      a.TOC、TN、年代数据胡利民等(2015);b.C15:0、C17:0异构/反异构脂肪酸之和比C24-28饱和正构脂肪酸之和

      Fig.  5.  Vertical distributions of TOC, TN, proxy of fatty acids and saturated hydrocarbon concentrations of each component in sediment core

    • [1] Blumer, M., Guillard, R.R.L., Chase, T., 1971.Hydrocarbons of Marine Phytoplankton.Marine Biology, 8(3):183-189.https://doi.org/10.1007/bf00355214 doi: 10.1007/BF00355214
      [2] Colombo, J.C., Silverberg, N., Gearing, J.N., 1996.Lipid Biogeochemistry in the Laurentian Trough:Ⅰ-Fatty Acids, Sterols and Aliphatic Hydrocarbons in Rapidly Settling Particles.Organic Geochemistry, 25(3-4):211-225.https://doi.org/10.1016/s0146-6380(96)00115-5 doi: 10.1016/S0146-6380(96)00115-5
      [3] Eglinton, G., Hamilton, R.J., 1967.Leaf Epicuticular Waxes.Science, 156(3780):1322-1335. https://doi.org/10.1126/science.156.3780.1322
      [4] Goñi, M.A., O'Connor, A.E., Kuzyk, Z.Z., et al., 2013.Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin.Journal of Geophysical Research(Oceans), 118(9):4017-4035. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8acabfaf230846adc7205338955b2213
      [5] Grebmeier, J.M., Cooper, L.W., Feder, H.M., et al., 2006a.Ecosystem Dynamics of the Pacific-Influenced Northern Bering and Chukchi Seas in the Amerasian Arctic.Progress in Oceanography, 71(2-4):331-361. https://doi.org/10.1016/j.pocean.2006.10.001
      [6] Grebmeier, J.M., Overland, J.E., Moore, S.E., et al., 2006b.A Major Ecosystem Shift in the Northern Bering Sea.Science, 311(5766):1461-1464. doi: 10.1126/science.1121365
      [7] Guan, H.X., Chen, D.F., Wu, N.Y., 2010.Distribution and Origin of Cycloalkane and Monocyclicaromatic in Seep-Carbonates from Lower Slopes of Gulf of Mexico.Marine Geology & Quaternary Geology, 30(3):113-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001301323
      [8] Hu, L.M., Guo, Z.G., Feng, J.L., et al., 2009.Distributions and Sources of Bulk Organic Matter and Aliphatic Hydrocarbons in Surface Sediments of the Bohai Sea, China.Marine Chemistry, 113(3-4):197-211. https://doi.org/10.1016/j.marchem.2009.02.001
      [9] Hu, L.M., Shi, X.F., Liu, Y.G., et al., 2015.Geochemical Characteristics and Burial Record of Organic Carbon in the Column Sediments from Western Bering Sea.Marine Geology & Quaternary Geology, 35(3):37-47 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201503007.htm
      [10] Hunt Jr, G.L., Stabeno, P., Walters, G., et al., 2002.Climate Change and Control of the Southeastern Bering Sea Pelagic Ecosystem.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(26):5821-5853.https://doi.org/10.1016/s0967-0645(02)00321-1 doi: 10.1016/S0967-0645(02)00321-1
      [11] Lu, B., Pan, J.M., Wang, Z.P., et al., 2002.The Composition Indexes of n-Alkanes in Sediments and Study on Paleoenvironment in the Arctic.Acta Oceanologica Sinica, 24(6):34-48 (in Chinese with English abstract).
      [12] Lu, B., Zhou, H.Y., Chen, R.H., et al., 2004.The Composition Characteristic of n-Alkanes in the Modern Sediments of the Arctic and the Comparison with That of Sea Areas of Different Latitudes.Chinese Journal of Polar Research, 16(4):281-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDYZ200404001.htm
      [13] Lu, Z.H., Gan, H.J., Shi, Y., et al., 2016.Geochemical Characteristics of Crude Oil and Oil-Source Correlation in the Western Fushan Depression.Earth Science, 41(11):1909-1920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201611007
      [14] Lü, X.X., Versteegh, G.J.M., Song, J.M., et al., 2016.Geochemistry of Middle Holocene Sediments from South Yellow Sea:Implications to Provenance and Climate Change.Journal of Earth Science, 27(5):751-762. https://doi.org/10.1007/s12583-015-0577-0
      [15] Matsumoto, G.I., Friedmann, E.I., Watanuki, K., et al., 1992.Novel Long-Chain Anteiso-Alkanes and Anteiso-Alkanoic Acids in Antarctic Rocks Colonized by Living and Fossil Cryptoendolithic Microorganisms.Journal of Chromatography, 598(2):267-276.https://doi.org/10.1016/0021-9673(92)85056-y doi: 10.1016/0021-9673(92)85056-Y
      [16] Méheust, M., Fahl, K., Stein, R., 2013.Variability in Modern Sea Surface Temperature, Sea Ice and Terrigenous Input in the Sub-Polar North Pacific and Bering Sea:Reconstruction from Biomarker Data.Organic Geochemistry, 57:54-64. https://doi.org/10.1016/j.orggeochem.2013.01.008
      [17] Méheust, M., Stein, R., Fahl, K., et al., 2015.High-Resolution IP25-Based Reconstruction of Sea-Ice Variability in the Western North Pacific and Bering Sea during the Past 18 000 Years.Geo-Marine Letters, 36(2):101-111. doi: 10.1007/s00367-015-0432-4
      [18] Meyer, V.D., Max, L., Hefter, J., et al., 2016.Glacial-to-Holocene Evolution of Sea Surface Temperature and Surface Circulation in the Subarctic Northwest Pacific and the Western Bering Sea.Paleoceanography, 31(7):916-927.https://doi.org/10.1002/2015pa002877 doi: 10.1002/palo.v31.7
      [19] Meyers, P.A., Ishiwatari, R., 1993.Lacustrine Organic Geochemistry-An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments.Organic Geochemistry, 20(7):867-900.https://doi.org/10.1016/0146-6380(93)90100-p doi: 10.1016/0146-6380(93)90100-P
      [20] Müller, P.J., 1977.Cn Ratios in Pacific Deep-Sea Sediments:Effect of Inorganic Ammonium and Organic Nitrogen Compounds Sorbed by Clays.Geochimica et Cosmochimica Acta, 41(6):765-776. https://doi.org/10.1016/0016-7037(77)90047-3
      [21] Nagashima, K., Asahara, Y., Takeuchi, F., et al., 2012.Contribution of Detrital Materials from the Yukon River to the Continental Shelf Sediments of the Bering Sea Based on the Electron Spin Resonance Signal Intensity and Crystallinity of Quartz.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 61-64:145-154.https://doi.org/10.1016/j.dsr2.2011.12.001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4eece333b03f987d556735b309d22398
      [22] Naidu, A.S., Cooper, L.W., Finney, B.P., et al., 2000.Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments.International Journal of Earth Sciences, 89(3): 522-532.https://doi.org/10.1007/s005310000121
      [23] Naidu, A.S., Scalan, R.S., Feder, H.M., et al., 1993.Stable Organic Carbon Isotopes in Sediments of the North Bering-South Chukchi Seas, Alaskan-Soviet Arctic Shelf.Continental Shelf Research, 13(5-6):669-691.https://doi.org/10.1016/0278-4343(93)90099-j doi: 10.1016/0278-4343(93)90099-J
      [24] Overland, J.E., Roach, A.T., 1987.Northward Flow in the Bering and Chukchi Seas.Journal of Geophysical Research:Oceans, 92(C7):7097-7105.doi: 10.1029/JC092iC07p07097
      [25] Pachauri, R.K., Allen, M.R., Barros, V.R., et al., 2014.Climate Change 2014: Synthesis Report.IPCC, Switzerland.
      [26] Ruan, J.P., Huang, Y.H., Shi, X.F., et al., 2017.Holocene Variability in Sea Surface Temperature and Sea Ice Extent in the Northern Bering Sea:A Multiple Biomarker Study.Organic Geochemistry, 113:1-9. doi: 10.1016/j.orggeochem.2017.08.006
      [27] Schubert, C.J., Calvert, S.E., 2001.Nitrogen and Carbon Isotopic Composition of Marine and Terrestrial Organic Matter in Arctic Ocean Sediments:Implications for Nutrient Utilization and Organic Matter Composition.Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 48(3):789-810.https://doi.org/10.1016/s0967-0637(00)00069-8 doi: 10.1016/S0967-0637(00)00069-8
      [28] Screen, J.A., Simmonds, I., 2010.The Central Role of Diminishing Sea Ice in Recent Arctic Temperature Amplification.Nature, 464(7293):1334-1337. https://doi.org/10.1038/nature09051
      [29] Shaffer, G., Bendtsen, J., 1994.Role of the Bering Strait in Controlling North Atlantic Ocean Circulation and Climate.Nature, 367(6461):354-357. https://doi.org/10.1038/367354a0
      [30] Takahashi, K., Fujitani, N., Yanada, M., 2002.Long Term Monitoring of Particle Fluxes in the Bering Sea and the Central Subarctic Pacific Ocean, 1990-2000.Progress in Oceanography, 55(1-2):95-112.https://doi.org/10.1016/s0079-6611(02)00072-1 doi: 10.1016/S0079-6611(02)00072-1
      [31] Takahashi, K., 2005.The Bering Sea and Paleoceanography.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(16-18):2080-2091.doi: 10.1016/j.dsr2.2005.08.003
      [32] Tanaka, S., Takahashi, K., 2005.Late Quaternary Paleoceanographic Changes in the Bering Sea and the Western Subarctic Pacific Based on Radiolarian Assemblages.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(16-18):2131-2149. https://doi.org/10.1016/j.dsr2.2005.07.002
      [33] Thiel, V., Jenisch, A., Wörheide, G., et al., 1999.Mid-Chain Branched Alkanoic Acids from "Living Fossil" Demosponges:A Link to Ancient Sedimentary Lipids? Organic Geochemistry, 30(1):1-14.https://doi.org/10.1016/s0146-6380(98)00200-9 doi: 10.1016/S0146-6380(98)00200-9
      [34] Volkman, J.K., Barrett, S.M., Blackburn, S.I., et al., 1998.Microalgal Biomarkers:A Review of Recent Research Developments.Organic Geochemistry, 29(5-7):1163-1179.https://doi.org/10.1016/s0146-6380(98)00062-x doi: 10.1016/S0146-6380(98)00062-X
      [35] Volkman, J.K., Johns, R.B., Gillan, F.T., et al., 1980.Microbial Lipids of an Intertidal Sediment-Ⅰ.Fatty Acids and Hydrocarbons.Geochimica et Cosmochimica Acta, 44(8):1133-1143. https://doi.org/10.1016/0016-7037(80)90067-8
      [36] Wehner, H., Teschner, M., Bosecker, K., 1986.Chemical Reactions and Stability of Biomarkers and Stable Isotope Ratios during in Vitro Biodegradation of Petroleum.Organic Geochemistry, 10(1-3):463-471.https://doi.org/10.1016/0146-6380(86)90046-x doi: 10.1016/0146-6380(86)90046-X
      [37] Xie, S.C., Liang, B., Guo, J.Q., et al., 2003.Biomarkers and the Related Global Change.Quaternary Sciences, 23(5):521-528 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_65c5f181bf7e17eda621e9e8b8ede512
      [38] Yang, H., Ding, W.H., Xie, S.C., 2014.Distribution of Microbial Fatty Acids and Fatty Alcohols in Soils from an Altitude Transect of Mt.Jianfengling in Hainan, China:Implication for Paleoaltimetry and Paleotemperature Reconstruction.Science China:Earth Sciences, 57(5):999-1012.https://doi.org/10.1007/s11430-013-4729-8. doi: 10.1007/s11430-013-4729-8
      [39] Yu, X.G., Bian, Y.P., Ruan, X.Y., et al., 2015.Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea.Marine Geology & Quaternary Geology, 35(3):11-22 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201503005.htm
      [40] Zhao, M.X., Zhang, Y.Z., Xing, L., et al., 2011.The Composition and Distribution of n-Alkanes in Surface Sediments from the South Yellow Sea and Their Potential as Organic Matter Source Indicators.Periodical of Ocean University of China, 41(4):90-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201104014
      [41] 管红香, 陈多福, 吴能友, 2010.墨西哥湾深水下陆坡区冷泉碳酸盐岩中的环烷烃及单环芳烃的特征与来源.海洋地质与第四纪地质, 30(3):113-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001301323
      [42] 胡利民, 石学法, 刘焱光, 等, 2015.白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录.海洋地质与第四纪地质, 35(3):37-47. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201503007.htm
      [43] 卢冰, 潘建明, 王自磐, 等, 2002.北极沉积物中正构烷烃的组合特征及古沉积环境的研究.海洋学报, 24(6):34-48. doi: 10.3321/j.issn:0253-4193.2002.06.004
      [44] 卢冰, 周怀阳, 陈荣华, 等, 2004.北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比.极地研究, 16(4):281-294. http://d.old.wanfangdata.com.cn/Periodical/jdyj200404002
      [45] 卢政环, 甘华军, 时阳, 等, 2016.福山凹陷西部地区原油地化特征与油源对比.地球科学, 41(11):1909-1920. http://earth-science.net/WebPage/Article.aspx?id=3389
      [46] 谢树成, 梁斌, 郭建秋, 等, 2003.生物标志化合物与相关的全球变化.第四纪研究, 23(5):521-528. doi: 10.3321/j.issn:1001-7410.2003.05.007
      [47] 于晓果, 边叶萍, 阮小燕, 等, 2015.北冰洋沉积物中四醚脂类来源与TEX86指数初步研究.海洋地质与第四纪地质, 35(3):11-22. http://www.cqvip.com/QK/96122X/201503/665635198.html
      [48] 赵美训, 张玉琢, 邢磊, 等, 2011.南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义.中国海洋大学学报(自然科学版), 41(4):90-96. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201104014
    • 加载中
    图(5)
    计量
    • 文章访问数:  3296
    • HTML全文浏览量:  1151
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-11
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回