Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block
-
摘要: 安山岩是俯冲相关构造环境的特征岩石;对安山岩的研究,可以获得俯冲作用发生时代和俯冲过程的相关信息.报道了中天山地块南缘乌瓦门地区早志留世安山岩的年代学和地球化学特征,探讨了其岩石成因和构造属性,为南天山洋及中天山陆块南缘构造演化提供制约.研究表明,乌瓦门安山岩具有安山结构,组成矿物为普通辉石、钙质角闪石、斜长石和钾钠长石,为高钾钙碱性粗面安山岩;全岩SiO2=56.23%~59.28%,K2O=2.70%~3.37%,Na2O=3.32%~4.11%.其锆石U-Pb年龄为430 Ma,形成于早志留世晚期.微量元素组成上,富集轻稀土、亏损重稀土,(La/Yb)N=18.5~20.9;Eu负异常不明显,δEu=0.82~0.88;富集Ba、Th、U,亏损Nb、Ta、Ti;初始87Sr/86Sr比值为0.706 2~0.707 5,εNd(t)=+2.96~+3.01;这些数据揭示乌瓦门安山岩为安第斯型陆弧岩石,起源于被俯冲带相关流体交代的地幔楔,并在上升过程中受到了古老地壳的改造.早志留世晚期,南天山洋向中天山陆块下俯冲,构成成熟的洋-陆俯冲体系;中天山陆块南缘为活动大陆边缘,发育典型的安第斯型陆弧岩石组合.Abstract: Andesite is a typical rock type in subduction-related environment, and can reveal important information on the subduction processes. In this paper, it is presented of zircon U-Pb geochronology, whole-rock major and trace element and Sr-Nd isotope data for the Wuwamen andesites in the southern margin of Central Tianshan block, to provide constraints on the evolution processes of the South Tianshan ocean and Central Tianshan block. The andesites are high-K, calc-alkaline trachyandesite composed of augite, calcic amphibole, plagioclase and K-Na feldspar, with SiO2=56.23%-59.28%, K2O=2.70%-3.37%, and Na2O=3.32%-4.11%. They are characterized by fractionated rare earth element patterns with (La/Yb)N=18.5-20.9, and show negligible Eu anomalies with δEu=0.82-0.88; they are highly enriched in Rb, Ba and Sr, and depleted in Nb, Ta and Ti. Their initial 87Sr/86Sr ratios are in the range of 0.706 2-0.707 5 and εNd(t) in the range of 2.96-3.01. The data suggest that the Wuwamen andesites are typical Andean-type continental arcs, which originated from the partial melting of the mantle wedge that had been previously metasomatized by subduction-related fluids; the parental magma has been modified by the old crustal rocks during the magmas ascent. The origin and tectonic affinity of the Wuwamen andesites indicate that the South Tianshan ocean has subducted northward beneath the southern margin of the Central Tianshan block at the end of Early Silurian, forming a mature oceanic-continental subduction system; the southern margin of the Central Tianshan block has been a typical active continental margin characterized by development of Andean-type continental arc rocks.
-
图 1 中天山及周边地质简图
CTB.中天山地块;STB.南天山;①中天山北缘边界断裂;②中天山南缘边界断裂.据Ma et al.(2014)修改
Fig. 1. Sketch map of the Central Tianshan and its surroundings
图 6 乌瓦门安山岩的矿物分类图解
a.Ca-Mg-Fe单斜辉石系列的硅灰石(Wo)-顽火辉石(En)-斜铁辉石(Fs)分类图解,据Morimoto(1988);b.钙质角闪石分类图解,据Leake(1997);c.长石分类图解
Fig. 6. Classification diagrams of the minerals from the Wuwamen andesites
图 7 乌瓦门安山岩的岩石分类图解
a.火山岩TAS分类图解,据Le Maitre(2002);b.AFM图解,据Irvine and Baragar(1971);c.K2O-SiO2图解,据Le Maitre(2002);南美安第斯陆弧中带火山岩数据引自Winter(2001)及其中的文献;巴布亚新几内亚TLTF(Tabar-Lihir-Tanga-Feni)高钾洋内岛弧岩石引自Stracke and Hegner(1998)
Fig. 7. Classification diagrams for the Wuwamen andesites
图 8 乌瓦门安山岩的球粒陨石标准化稀土元素配分模式和原始地幔标准化微量元素蛛网图
安第斯陆弧南带火山岩数据引自Winter(2001)及其中的文献;平均俯冲沉积物数据引自Plank and Langmuir(1998);平均陆壳数据引自Rudnick and Gao(2003);球粒陨石稀土元素数据采用Boynton(1984);原始地幔微量元素数据采用Sun and McDonough(1989);其他数据来源同图 7
Fig. 8. Chondrite-normalized REE patterns and primitive mantle-normalized spider diagrams for the Wuwamen andesites
图 9 乌瓦门安山岩的(143Nd/144Nd)i-(87Sr/86Sr)i相关图解
MORB范围采用Gale et al.(2013);安第斯陆弧中带弧下地幔范围引自Lucassen et al.(2006);安第斯陆弧中带古生代地壳范围引自Lucassen et al.(1999);安第斯陆弧中带火山岩范围引自Winter(2001)
Fig. 9. (143Nd/144Nd)i vs. (87Sr/86Sr)i diagram for the Wuwamen andesites
图 11 乌瓦门安山岩的微量元素判别图解
a, b.花岗岩类的Rb-(Y+Nb)和Nb-Y判别图解,据Pearce et al.(1984):VAG.火山弧花岗岩;ORG.洋脊花岗岩;WPG.板内花岗岩;Syn-COLG.同碰撞花岗岩;c, d.中酸性岩石的Th/Yb-Ta/Yb和Th/Ta-Yb判别图解,据Gorton and Schandl(2000):Oceanic arcs.岛弧;ACM.活动大陆边缘;WPVZ.板内火山带;WPB.板内玄武岩;MORB.大洋中脊玄武岩
Fig. 11. Discrimination diagrams for the Wuwamen andesites
表 1 乌瓦门安山岩锆石LA-ICP-MS U-Pb定年分析结果
Table 1. Zircon LA-ICP-MS U-Pb isotopic data for the Wuwamen andesites
分析点号 含量(10-6) Th/U 同位素比值 年龄(Ma) U Th 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 1 583 273 0.5 0.069 0 0.000 5 0.528 6 0.005 5 430 3 431 5 2 1 167 541 0.5 0.069 0 0.000 4 0.529 5 0.004 0 430 3 432 3 3 726 332 0.5 0.068 9 0.000 4 0.524 4 0.004 5 430 3 428 4 4 567 257 0.5 0.069 0 0.000 4 0.528 7 0.004 8 430 3 431 4 5 706 311 0.4 0.069 0 0.000 5 0.530 0 0.004 9 430 3 432 4 6 685 458 0.7 0.069 0 0.000 5 0.529 4 0.004 7 430 3 431 4 7 663 351 0.5 0.069 0 0.000 5 0.530 3 0.004 5 430 3 432 4 8 637 363 0.6 0.069 0 0.000 5 0.526 2 0.004 5 430 3 429 4 9 709 472 0.7 0.069 0 0.000 5 0.523 8 0.004 6 430 3 428 4 10 492 259 0.5 0.069 0 0.000 4 0.529 0 0.005 3 430 3 431 4 11 680 400 0.6 0.069 1 0.000 4 0.528 0 0.004 8 431 3 430 4 12 827 542 0.7 0.069 1 0.000 4 0.529 8 0.004 6 430 3 432 4 13 767 475 0.6 0.069 0 0.000 5 0.527 6 0.004 6 430 3 430 4 14 951 705 0.7 0.069 0 0.000 4 0.526 5 0.004 2 430 3 430 3 15 1 072 739 0.7 0.069 0 0.000 4 0.527 4 0.004 4 430 3 430 4 16 569 315 0.6 0.069 0 0.000 4 0.528 8 0.005 8 430 3 431 5 17 385 253 0.7 0.069 0 0.000 4 0.521 7 0.007 5 430 3 426 6 18 626 368 0.6 0.068 9 0.000 4 0.531 2 0.007 8 430 3 433 6 19 453 28 0.1 0.068 6 0.000 4 0.529 0 0.008 8 427 3 431 7 20 727 411 0.6 0.068 7 0.000 4 0.528 8 0.004 4 429 3 431 4 21 695 378 0.5 0.068 4 0.000 4 0.532 5 0.004 5 427 3 433 4 22 352 175 0.5 0.069 1 0.000 4 0.525 6 0.006 9 430 3 429 6 23 943 712 0.8 0.068 8 0.000 4 0.528 6 0.004 0 429 3 431 3 24 509 285 0.6 0.069 2 0.000 5 0.531 9 0.005 2 431 3 433 4 25 655 337 0.5 0.069 2 0.000 4 0.529 9 0.004 8 431 3 432 4 26 563 304 0.5 0.069 2 0.000 4 0.527 0 0.005 4 432 3 430 4 27 691 328 0.5 0.069 1 0.000 4 0.530 2 0.004 9 431 3 432 4 28 297 111 0.4 0.069 4 0.000 4 0.522 0 0.009 7 433 3 426 8 29 583 249 0.4 0.068 8 0.000 4 0.529 3 0.004 8 429 3 431 4 30 790 365 0.5 0.069 0 0.000 5 0.527 4 0.004 5 430 3 430 4 31 876 381 0.4 0.069 0 0.000 5 0.528 6 0.004 2 430 3 431 3 32 668 309 0.5 0.068 8 0.000 4 0.529 5 0.004 7 429 3 432 4 表 2 乌瓦门安山岩镁铁矿物(角闪石和辉石)的电子探针分析结果(%)
Table 2. Microprobe analyses of amphibole and pyroxene from the Wuwamen andesites
点号 A1 A2 A3 A4 A5 A6 A7 A8 A9 P1 P2 P3 矿物种类 Parg Eden Eden Eden Eden Parg Parg Eden Eden Augi Augi Augi SiO2 43.20 45.58 44.33 44.27 45.65 43.00 42.48 44.48 47.09 54.25 50.52 53.64 TiO2 2.94 2.69 2.81 2.59 2.12 2.98 2.78 1.29 0.92 0.18 1.46 0.11 Al2O3 9.43 9.15 8.92 9.06 7.93 9.79 10.46 9.39 7.68 1.92 3.58 1.68 Cr2O3 0.05 0.06 0.03 0 0 0.02 0.00 0.06 0 0.03 0.07 0.05 FeOT 11.78 13.05 11.90 12.31 11.87 12.17 12.54 12.45 11.41 12.21 11.59 11.60 MnO 0.27 0.28 0.17 0.25 0.21 0.20 0.16 0.20 0.18 0.30 0.23 0.22 MgO 14.60 13.44 14.89 14.58 14.83 14.15 14.07 15.66 16.70 15.79 15.27 16.13 CaO 10.91 10.76 11.07 10.92 11.28 11.07 10.96 10.26 10.53 12.60 12.41 12.70 Na2O 2.16 2.08 2.10 2.16 1.82 2.28 2.28 1.83 1.88 0.26 0.62 0.21 K2O 1.08 0.84 0.93 1.01 0.88 1.11 1.07 0.75 0.66 0.13 0.31 0.47 NiO 0 0 0 0 0.01 0.07 0.01 0.10 0.01 0 0 0.01 总计 96.44 97.93 97.15 97.15 96.60 96.82 96.81 96.47 97.05 97.66 96.07 96.81 基于23个氧原子计算的离子个数 基于6个氧原子计算的离子个数 Si 6.41 6.65 6.51 6.51 6.73 6.38 6.30 6.61 6.79 2.03 1.94 2.03 Ti 0.33 0.30 0.31 0.29 0.24 0.33 0.31 0.15 0.10 0.01 0.04 0 Al 1.65 1.57 1.54 1.57 1.38 1.71 1.83 1.64 1.31 0.09 0.16 0.08 Cr 0.01 0.01 0 0 0 0 0 0.01 0 0 0 0 Fe3+ 0.34 0.27 0.32 0.37 0.29 0.31 0.40 0 0.63 0 0 0 Fe2+ 1.13 1.33 1.14 1.14 1.17 1.20 1.16 1.55 0.75 0.38 0.37 0.37 Mn 0.03 0.04 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.01 0.01 0.01 Mg 3.23 2.92 3.26 3.20 3.26 3.13 3.11 3.47 3.59 0.88 0.87 0.91 Ca 1.74 1.68 1.74 1.72 1.78 1.76 1.74 1.64 1.63 0.51 0.51 0.52 Na 0.62 0.59 0.60 0.62 0.52 0.66 0.65 0.53 0.53 0.02 0.05 0.02 K 0.20 0.16 0.17 0.19 0.17 0.21 0.20 0.14 0.12 0.01 0.02 0.02 ∑ 15.79 15.59 15.74 15.76 15.65 15.82 15.85 15.74 15.68 3.93 3.97 3.95 注:Parg.韭闪石;Eden.浅闪石;Augi.普通辉石. 表 3 乌瓦门安山岩长石的电子探针分析结果(%)
Table 3. Microprobe analyses of feldspar from the Wuwamen andesites
点号 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 矿物种类 Ab Ab Ab Ab Ab Ab Ab Or Or Or Or Or Or Or Or SiO2 67.81 68.24 68.30 69.31 67.56 68.32 67.96 66.23 69.76 65.98 65.97 64.43 70.01 65.93 66.47 TiO2 0.01 0.07 0.02 0.03 0.03 0.01 0 0 0.08 0 0 0.03 0 0.04 0.06 Al2O3 17.64 19.65 19.43 19.08 20.16 19.68 19.41 17.36 15.38 17.44 17.56 18.01 15.53 17.57 17.01 Cr2O3 0.0 0 0.02 0.05 0.01 0 0 0 0.01 0.01 0 0 0.01 0 0.01 FeOT 1.23 0.18 0.18 0.14 0.27 0.18 0.14 0.16 0.21 0.10 0.16 0.11 0.23 0.14 0.09 MnO 0.053 0 0 0.007 0 0 0 0.007 0.021 0.012 0 0.028 0.006 0.004 0 MgO 1.29 0.01 0.00 0.01 0.06 0.03 0.01 0 0 0 0 0 0 0 0 CaO 1.61 1.41 1.08 0.61 1.15 1.23 1.03 0.05 0.03 0 0.07 0.01 0.07 0.05 0.06 Na2O 10.06 10.21 10.50 10.86 9.84 10.37 10.38 0.36 0.19 0.16 0.16 0.14 0.30 1.54 0.57 K2O 0.09 0.10 0.21 0.11 0.74 0.16 0.34 15.93 14.04 16.39 16.36 16.61 13.68 14.05 15.61 NiO 0 0 0.01 0 0.01 0 0 0.03 0.02 0 0 0 0 0 0 总计 99.80 99.86 99.75 100.20 99.82 99.98 99.29 100.11 99.73 100.09 100.27 99.38 99.82 99.32 99.88 基于8个氧原子计算的离子个数 Si 2.98 2.98 2.99 3.02 2.96 2.98 2.99 3.05 3.17 3.04 3.04 3.00 3.17 3.04 3.06 Al 0.91 1.01 1.00 0.98 1.04 1.01 1.01 0.94 0.82 0.95 0.95 0.99 0.83 0.95 0.92 Ca 0.08 0.07 0.05 0.03 0.05 0.06 0.05 0 0 0 0 0 0 0 0 Na 0.86 0.87 0.89 0.92 0.84 0.88 0.89 0.03 0.02 0.01 0.01 0.01 0.03 0.14 0.05 K 0.01 0.01 0.01 0.01 0.04 0.01 0.02 0.94 0.81 0.96 0.96 0.99 0.79 0.83 0.92 ∑ 4.97 4.94 4.96 4.95 4.95 4.95 4.96 4.96 4.83 4.97 4.97 5.00 4.82 4.96 4.96 An 8 7 5 3 6 6 5 0 0 0 0 0 0 0 0 Ab 91 92 93 96 90 93 93 3 2 1 1 1 3 14 5 Or 1 1 1 1 4 1 2 96 98 99 98 99 96 85 94 表 4 乌瓦门安山岩的主量(%)和微量元素(10-6)组成
Table 4. Major (%) and trace element (10-6) compositions of the Wuwamen andesites
样品号 12YX11-23 12YX11-24 12YX11-25 12YX11-26 12YX11-27 12YX11-28 12YX11-29 12YX11-30 SiO2 56.4 58.5 58.6 56.8 56.2 57.4 58.9 59.3 TiO2 0.82 0.83 0.85 0.88 0.81 0.83 0.84 0.83 Al2O3 14.9 15.9 15.9 15.5 14.7 15.1 16.2 16.2 Fe2O3T 7.53 5.44 6.27 7.21 7.65 6.82 5.99 5.84 MnO 0.12 0.08 0.10 0.11 0.12 0.11 0.09 0.09 MgO 6.36 3.68 4.50 5.72 6.27 5.20 3.75 3.52 CaO 4.05 5.38 4.11 4.15 4.62 4.96 4.88 5.03 Na2O 3.22 3.99 3.96 3.77 3.24 3.73 3.94 3.94 K2O 3.27 2.99 2.95 2.76 3.00 2.68 2.74 2.64 P2O5 0.28 0.29 0.30 0.29 0.28 0.28 0.30 0.29 LOI 2.51 2.78 2.31 2.87 3.13 2.81 2.28 2.04 Total 99.42 99.9 99.82 100.11 100.05 99.91 99.87 99.68 Mg# 63 58 59 61 62 60 56 55 K2O+Na2O 6.49 6.98 6.91 6.53 6.24 6.41 6.68 6.58 Na2O/K2O 0.98 1.33 1.34 1.37 1.08 1.39 1.44 1.49 Cr 260 102 143 221 257 194 110 112 Mn 921 642 742 877 944 851 690 670 Co 25.0 15.8 21.3 24.6 20.7 23.6 16.5 15.4 Ni 159 64.6 83.8 127.0 153.0 114.0 65.4 67.0 Cu 8.75 7.83 9.18 19.60 9.87 39.00 11.30 7.68 Zn 66.9 44.3 53.0 62.4 66.6 58.9 44.3 42.4 Ga 18.0 18.5 19.1 18.3 17.9 18.2 19.4 19.4 Rb 157 58.4 61.1 63.0 123 57.1 56.3 52.9 Sr 405 619 476 421 393 435 652 706 Ba 1 286 1 074 1 176 1 132 1 142 995 968 919 Pb 4.55 10.1 8.43 5.49 4.03 7.64 9.68 9.30 Th 17.8 19.3 19.2 17.5 16.7 17.7 19.5 19.5 U 2.97 4.30 3.58 3.16 2.99 3.29 4.13 4.09 Nb 7.52 8.41 8.37 7.54 7.52 7.97 8.60 8.60 Ta 0.62 0.76 0.73 0.62 0.59 0.64 0.75 0.75 Zr 179 185 189 189 180 185 186 189 Hf 4.82 4.95 5.00 4.89 4.53 4.88 5.00 5.05 Ti 4 952 4 873 5 172 5 318 4 967 5 115 4 970 5 106 V 109 106 109 112 108 107 108 105 Y 17.3 18.3 18.0 18.1 17.6 17.7 17.8 18.1 La 46.0 48.3 48.0 45.9 43.9 45.9 49.3 48.8 Ce 81.0 85.2 84.4 81.1 78.3 80.4 86.9 85.1 Pr 9.64 10.1 10.0 9.73 9.43 9.55 10.2 9.88 Nd 37.3 40.2 40.0 37.8 37.0 37.9 38.7 38.2 Sm 6.01 6.47 6.41 6.19 5.88 5.94 6.46 6.26 Eu 1.52 1.74 1.70 1.53 1.54 1.53 1.70 1.65 Gd 5.10 5.40 5.42 4.95 5.02 4.89 5.64 5.20 Tb 0.68 0.72 0.70 0.69 0.64 0.67 0.70 0.70 Dy 3.52 3.79 3.68 3.59 3.48 3.46 3.62 3.71 Ho 0.65 0.67 0.66 0.67 0.64 0.63 0.66 0.67 Er 1.84 1.81 1.91 1.89 1.76 1.81 1.83 1.86 Tm 0.24 0.23 0.25 0.25 0.24 0.24 0.24 0.24 Yb 1.61 1.56 1.72 1.67 1.55 1.58 1.66 1.64 Lu 0.23 0.25 0.26 0.25 0.23 0.24 0.25 0.25 ∑REE 195.34 206.44 205.11 196.21 189.61 194.74 207.86 204.16 δEu 0.82 0.88 0.86 0.82 0.85 0.84 0.84 0.86 (La/Yb)N 19.3 20.9 18.8 18.5 19.1 19.6 20.0 20.1 表 5 乌瓦门安山岩的Sr-Nd同位素组成
Table 5. Sr-Nd isotopic data of the Wuwamen andesites
样号 Rb Sr 87Rb/
86Sr87Sr/
86Sr2σ (87Sr/
86Sr)iSm Nd 147Sm/
144Nd143Nd/
144Nd2σ (143Nd/
144Nd)iεNd(t) TDM
(Ma)12YX11-23 155 399 1.149 0 0.713 209 8 0.706 2 5.98 36.8 0.098 2 0.512 512 9 0.512 235 2.96 842 12YX11-25 59.8 470 0.375 5 0.709 770 7 0.707 5 6.51 41.3 0.095 8 0.512 508 7 0.512 238 3.01 830 12YX11-27 125 403 0.916 7 0.712 304 9 0.706 7 6.00 38.4 0.094 6 0.512 503 9 0.512 237 2.98 828 12YX11-29 57.9 659 0.258 4 0.708 685 8 0.707 1 6.50 39.7 0.099 2 0.512 516 8 0.512 237 2.98 844 注:根据锆石U-Pb年龄,采用430 Ma计算初始同位素组成. -
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Boynton, W. V., 1984. Geochemistry of the Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, New York, 63-114. [3] Charvet, J., Shu, L.S., Laurent-Charvet, S., et al., 2011.Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China.Science China Earth Sciences, 54(2):166-184. https://doi.org/10.1007/s11430-010-4138-1 [4] Chen, X.Y., Wang, Y.J., Sun, L.H., et al., 2009.Zircon SHRIMP U-Pb Dating of the Granitic Gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and Their Geological Significances.Geochimica, 38(5):424-431 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200905003.htm [5] Chen, Y.B., Zhang, G.W., Liu, X.M., et al., 2012.Zircons LAICP-MS U-Pb Dating on the Baluntai Deformed Granitoids, Central Tianshan Block, Northwest China, and Its Tectonic Implications.Geological Review, 58(1):117-125 (in Chinese with English abstract). [6] Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011.Syn-and Post-Collisional Granitoids in the Central Tianshan Orogen:Geochemistry, Geochronology and Implications for Tectonic Evolution.Gondwana Research, 20(2-3):568-581. https://doi.org/10.1016/j.gr.2011.01.013 [7] Dong, Y.P., Zhou, D.W., Zhang, G.W., et al., 2005.Tectonic Setting of the Wuwamen Ophiolite at the Southern Margin of Middle Tianshan Belt.Acta Petrologica Sinica, 21(1):37-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501004.htm [8] Gale, A., Dalton, C.A., Langmuir, C.H., 2013.The Mean Composition of Ocean Ridge Basalts.Geochemistry, Geophysics, Geosystems, 14(3):489-518. https://doi.org/10.1029/2012GC004334 [9] Gao, J., Li, M.S., Xiao, X.C., et al., 1998.Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China.Tectonophysics, 287(1-4):213-231. https://doi.org/10.1016/s0040-1951(98)80070-x [10] Gao, J., Long, L.L., Klemd, R., et al., 2009.Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China:Geochemical and Age Constraints of Granitoid Rocks.International Journal of Earth Sciences, 98(6):1221-1238. https://doi.org/10.1007/s00531-008-0370-8 [11] Gao, J., Wang, X.S., Klemd, R., et al., 2015.Record of Assembly and Breakup of Rodinia in the Southwestern Altaids:Evidence from Neoproterozoic Magmatism in the Chinese Western Tianshan Orogen.Journal of Asian Earth Sciences, 113:173-193. https://doi.org/10.1016/j.jseaes.2015.02.002 [12] Ge, R.F., Zhu, W.B., Wu, H.L., et al., 2012.The Paleozoic Northern Margin of the Tarim Craton:Passive or Active?Lithos, 142-143:1-15. https://doi.org/10.1016/j.lithos.2012.02.010 [13] Gorton, M.P., Schandl, E.S., 2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.The Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [14] Guo, C.T., Gao, J., Li, Z., et al., 2017.Depositional and Provenance Records of Upper Devonian to Lower Carboniferous Sandstones from Bachu Area, Northwestern Tarim Basin:Implications for Tectonic Evolution.Earth Science, 42(3):421-434 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201703009.htm [15] Han, B.F., He, G.Q., Wang, X.C., et al., 2011.Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tianshan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China.Earth-Science Reviews, 109(3-4):74-93. https://doi.org/10.1016/j.earscirev.2011.09.001 [16] Hao, J., Liu, X.H., 1993.Ophiolite Melange Time and Tectonic Evolutional Model in South Tianshan Area.Scientia Geologica Sinica, 28(1):93-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199301011.htm [17] He, Z.Y., Zhang, Z.M., Zong, K.Q., et al., 2012.Zircon Geochronology of Xingxingxia Quartz Dioritic Gneisses:Implications for the Tectonic Evolution and Precambrian Basement Affinity of Chinese Tianshan Orogenic Belt.Acta Petrologica Sinica, 28(6):1857-1874 (in Chinese with English abstract). http://www.oalib.com/paper/1473564 [18] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [19] Kröner, A., Windley, B.F., Badarch, G., et al., 2007.Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield.Geological Society of America Memoirs, 8:181-209. https://doi.org/10.1130/2007.1200(11) [20] Le Maitre, R.W., 2002.Igneous Rocks:A Classification and Glossary of Terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks.Cambridge University Press, Cambridge, 30-39. [21] Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.Mineralogical Magazine, 61(405):295-321. https://doi.org/10.1180/minmag.1997.061.405.13 [22] Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [23] Li, M. S., He, G. Q., Gao, J., et al., 1996. Ophiolite Belts in Southwest Chinese Tianshan. In: Zhang, Q., ed., Study on Ophiolites and Geodynamics. Geological Publishing House, Being, 112-116 (in Chinese). [24] Lin, W., Faure, M., Shi, Y.H., et al., 2009.Palaeozoic Tectonics of the South-Western Chinese Tianshan:New Insights from a Structural Study of the High-Pressure/Low-Temperature Metamorphic Belt.International Journal of Earth Sciences, 98(6):1259-1274. https://doi.org/10.1007/s00531-008-0371-7 [25] Long, L.L., Gao, J., Qian, Q., et al., 2008.Geochemical Characteristics and Tectonic Setting of Carboniferous Volcanic Rocks from Yili Region, Western Tianshan.Acta Petrologica Sinica, 24(4):699-710 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20080409 [26] Long, L.L., Gao, J., Xiong, X.M., et al., 2007.Geochemistry and Geochronology of Granitoids in Bikai Region, Southern Central-Tianshan Mountains, Xinjiang.Acta Petrologica Sinica, 23(4):719-732 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200704005.htm [27] Lucassen, F., Franz, G., Thirlwall, M.F., et al., 1999.Crustal Recycling of Metamorphic Basement:Late Palaeozoic Granitoids of Northern Chile (Similar to 22 Degrees S).Implications for the Composition of the Andean Crust.Journal of Petrology, 40(10):1527-1551. https://doi.org/10.1093/petroj/40.10.1527 [28] Lucassen, F., Kramer, W., Bartsch, V., et al., 2006.Nd, Pb, and Sr Isotope Composition of Juvenile Magmatism in the Mesozoic Large Magmatic Province of Northern Chile (18-27°S):Indications for a Uniform Subarc Mantle.Contributions to Mineralogy and Petrology, 152(5):571-589. https://doi.org/10.1007/s00410-006-0119-y [29] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, Berkeley, 4:1-71. https://searchworks.stanford.edu/view/6739593 [30] Ma, X.X., Shu, L.S., Meert, J.G., et al., 2014.The Paleozoic Evolution of Central Tianshan:Geochemical and Geochronological Evidence.Gondwana Research, 25(2):797-819. https://doi.org/10.1016/j.gr.2013.05.015 [31] McInnes, B.I.A., Cameron, E.M., 1994.Carbonated, Alkaline Hybridizing Melts from a Sub-Arc Environment:Mantle Wedge Samples from the Tabar-Lihir-Tanga-Feni Arc, Papua New Guinea.Earth and Planetary Science Letters, 122(1-2):125-141. https://doi.org/10.1016/0012-821x(94)90055-8 [32] Morimoto, N., 1988.Nomenclature of Pyroxenes.Mineralogical Magazine, 52(367):535-550. https://doi.org/10.1180/minmag.1988.052.367.15 [33] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [34] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3-4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [35] Pu, X.F., Song, S.G., Zhang, L.F., et al., 2011.Silurian Arc Volcanic Slices and Their Tectonic Implications in the Southwestern Tianshan UHPM Belt, NW China.Acta Petrologica Sinica, 27(6):1675-1687 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201106009.htm [36] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford. [37] Sengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., ed., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486-640. [38] Shu, L.S., Charvet, J., Guo, L., et al., 1999.A Large-Scale Paleozoic Dextral Ductile Strike Slip Zone:The Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt, Xinjiang, NW China.Acta Geologica Sinica (English Edition), 73:148-162. https://doi.org/10.3321/j.issn:1000-9515.1999.02.003 [39] Shu, L.S., Charvet, J., Lu, H.F., et al., 2002.Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern-Central Tianshan Belt, China.Acta Geologica Sinica (English Edition), 76(3):308-323. https://doi.org/10.1111/j.1755-6724.2002.tb00547.x [40] Shu, L.S., Yu, J.H., Charvet, J., et al., 2004.Geological, Geochronological and Geochemical Features of Granulites in the Eastern Tianshan, NW China.Journal of Asian Earth Sciences, 24(1):25-41. https://doi.org/10.1016/j.jseaes.2003.07.002 [41] Stracke, A., Hegner, E., 1998.Rifting-Related Volcanism in an Oceanic Post-Collisional Setting:The Tabar-Lihir-Tanga-Feni (TLTF) Island Chain, Papua New Guinea.Lithos, 45(1-4):545-560. https://doi.org/10.1016/S0024-4937(98)00049-8 [42] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345. [43] Tang, Y.Q., Gao, J., Zhao, M., et al., 1995.The Ophiolites and Blueschists in Southwestern Tianshan Orogenic Belt, Xinjiang, Northwestern China.Geological Publishing House, Beijing (in Chinese). [44] Wang, B., Chen, Y., Zhan, S., et al., 2007a.Primary Carboniferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt.Earth and Planetary Science Letters, 263(3-4):288-308. https://doi.org/10.1016/j.epsl.2007.08.037 [45] Wang, B., Shu, L.S., Cluzel, D., et al., 2007b.Geochemical Constraints on Carboniferous Volcanic Rocks of the Yili Block (Xinjiang, NW China):Implication for the Tectonic Evolution of Western Tianshan.Journal of Asian Earth Sciences, 29(1):148-159. https://doi.org/10.1016/j.jseaes.2006.02.008 [46] Wang, B., Shu, L.S., Cluzel, D., et al., 2006.Geochemical Characteristics and Tectonic Significance of Carboniferous Volcanic Rocks in the Northern Part of the Ili Block, Xinjiang.Geology in China, 33(3):498-508 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603005.htm [47] Wang, B., Shu, L.S., Faure, M., et al., 2011.Paleozoic Tectonics of the Southern Chinese Tianshan:Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China).Tectonophysics, 497(1-4):85-104. https://doi.org/10.1016/j.tecto.2010.11.004 [48] Wang, Y.X., Gu, L.X., Zhang, Z.Z., et al., 2007.Sr-Nd-Pb Isotope Geochemistry of Rhyolite of the Late Carboniferous Dashitou Group in Eastern Tianshan.Acta Petrologica Sinica, 23(7):1749-1755 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200707019.htm [49] Wang, Y., Foley, S.F., Prelevi, D., 2017.Potassium-Rich Magmatism from a Phlogopite-Free Source.Geology, 45(5):467-470. https://doi.org/10.1130/g38691.1 [50] Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [51] Winter, J. D., 2001. An Introduce to Igneous and Metamorphic Petrology. Prentic Hall, New Jersey, 293-342. [52] Xiao, W.J., 2004.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China):Implications for the Continental Growth of Central Asia.American Journal of Science, 304(4):370-395. https://doi.org/10.2475/ajs.304.4.370 [53] Xiao, W.J., Windley, B.F., Allen, M.B., et al., 2013.Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage.Gondwana Research, 23(4):1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [54] Xiao, W.J., Windley, B.F., Han, C.M., et al., 2009.End Permian to Mid-Triassic Termination of the Southern Central Asian Orogenic Belt.International Journal of Earth Sciences, 98:1189-1217. doi: 10.1007/s00531-008-0407-z [55] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069. https://doi.org/10.1029/2002tc001484 [56] Xu, X.Z., Yang, J.S., Guo, G.L., et al., 2011.The Yushugou-Tonghuashan Ophiolites in Tianshan, Xinjiang, and Their Tectonic Setting.Acta Petrologica Sinica, 27(1):96-120 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110106 [57] Yang, J.S., Xu, X.Z., Li, T.F., et al., 2011.U-Pb Ages of Zircons from Ophiolite and Related Rocks in Kumishi Region at the Southern Margin of Middle Tianshan, Xinjiang:Evidence of Early Paleozoic Oceanic Basic.Acta Petrologica Sinica, 27(1):77-95 (in Chinese with English abstract). http://www.oalib.com/paper/1474223 [58] Yang, T.N., Li, J.Y., Sun, G.H., et al., 2006.Earlier Devonian Active Continental Arc in Central Tianshan:Evidence of Geochemical Analyses and Zircon SHRIMP Dating on Mylonitized Granitic Rock.Acta Petrologica Sinica, 22(1):41-48 (in Chinese with English abstract). http://www.oalib.com/paper/1471515 [59] Zhang, C.L., Zhou, D.W., Wang, J.L., et al., 2007.Geochronology, Geochemistry and Sr-Nd Isotopic Composition and Genesis Implications of Huangjianshishan Granite Intrusion in Kumishi Area of Southern Tianshan.Acta Petrologica Sinica, 23(8):1821-1829 (in Chinese with English abstract). http://www.oalib.com/paper/1491841 [60] Zhao, Y.J., Yang, J.S., Liu, S.J., et al., 2015.The Origin of the Baluntai Diorite in Central Tianshan Mountains, Xinjiang, and Its Geological Significance.Geology in China, 42(5):1228-1241 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201505005.htm [61] Zhu, Y., Guo, X., Song, B., et al., 2009.Petrology, Sr-Nd-Hf Isotopic Geochemistry and Zircon Chronology of the Late Palaeozoic Volcanic Rocks in the Southwestern Tianshan Mountains, Xinjiang, NW China.Journal of the Geological Society, 166(6):1085-1099. https://doi.org/10.1144/0016-76492008-130 [62] Zhu, Y.F., Zhang, L.F., Gu, L.B., et al., 2005.SHRIMP Geochronology and Element Geochemistry of Carboniferous Volcanic Rocks in the Western Tianshan Area.Chinese Science Bulletin, 50(18):2004-2014 (in Chinese). [63] Zhu, Z.X., Wang, K.Z., Zheng, Y.J., et al., 2006.Zircon SHRIMP Dating of Silurian and Devonian Granitic Intrusions in the Southern Yili Block, Xinjiang and Preliminary Discussion on Their Tectonic Setting.Acta Petrologica Sinica, 22(5):1193-1200 (in Chinese with English abstract). [64] 陈新跃, 王岳军, 孙林华, 等, 2009.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义.地球化学, 38(5):424-431. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200905003&dbname=CJFD&dbcode=CJFQ [65] 陈义兵, 张国伟, 柳小明, 等, 2012.中天山巴仑台地区变形花岗岩类LA-ICP-MS U-Pb年代学及其构造意义.地质论评, 58(1):117-125. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp201201014&dbname=CJFD&dbcode=CJFQ [66] 董云鹏, 周鼎武, 张国伟, 等, 2005.中天山南缘乌瓦门蛇绿岩形成构造环境.岩石学报, 21(1):37-44. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200501004&dbname=CJFD&dbcode=CJFQ [67] 郭春涛, 高剑, 李忠, 等, 2017.塔里木盆地巴楚地区上泥盆统-下石炭统沉积-物源记录及其构造演化.地球科学, 42(3):421-434. http://www.earth-science.net/WebPage/Article.aspx?id=3539 [68] 郝杰, 刘小汉, 1993.南天山蛇绿混杂岩形成时代及大地构造意义.地质科学, 28(1):93-95. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx199301011&dbname=CJFD&dbcode=CJFQ [69] 贺振宇, 张泽明, 宗克清, 等, 2012.星星峡石英闪长质片麻岩的锆石年代学:对天山造山带构造演化及基底归属的意义.岩石学报, 28(6):1857-1874. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201206013&dbname=CJFD&dbcode=CJFQ [70] 李茂松, 何国琦, 高俊, 等, 1996. 中国西南天山的蛇绿岩带. 见: 张旗主编, 蛇绿岩与地球动力学研究. 北京: 地质出版社, 112-116. [71] 龙灵利, 高俊, 钱青, 等, 2008.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境.岩石学报, 24(4):699-710. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200804010&dbname=CJFD&dbcode=CJFQ [72] 龙灵利, 高俊, 熊贤明, 等, 2007.新疆中天山南缘比开地区花岗岩地球化学特征及年代学研究.岩石学报, 23(4):719-733. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200704005&dbname=CJFD&dbcode=CJFQ [73] 蒲晓菲, 宋述光, 张立飞, 等, 2011.西南天山超高压变质带中志留纪岛弧火山岩岩片及其构造意义.岩石学报, 27(6):1675-1687. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201106009&dbname=CJFD&dbcode=CJFQ [74] 汤耀庆, 高俊, 赵民, 等, 1995.西南天山蛇绿岩和蓝片岩.北京:地质出版社. [75] 王博, 舒良树, Cluzel D., 等, 2006.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义.中国地质, 33(3):498-508. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200603005&dbname=CJFD&dbcode=CJFQ [76] 王银喜, 顾连兴, 张遵忠, 等, 2007.东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究.岩石学报, 23(7):1749-1755. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200707019&dbname=CJFD&dbcode=CJFQ [77] 徐向珍, 杨经绥, 郭国林, 等, 2011.新疆天山地区榆树沟-铜花山蛇绿岩特征和构造背景.岩石学报, 27(1):96-120. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201101007&dbname=CJFD&dbcode=CJFQ [78] 杨经绥, 徐向珍, 李天福, 等, 2011.新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年:早古生代洋盆的证据.岩石学报, 27(1):77-95. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201101006&dbname=CJFD&dbcode=CJFQ [79] 杨天南, 李锦轶, 孙桂华, 等, 2006.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据.岩石学报, 22(1):41-48. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200601004&dbname=CJFD&dbcode=CJFQ [80] 张成立, 周鼎武, 王居里, 等, 2007.南天山库米什南黄尖石山岩体的年代学、地球化学和Sr-Nb同位素组成及其成因意义.岩石学报, 23(8):1821-1829. http://d.wanfangdata.com.cn/Conference_6576451.aspx [81] 赵一珏, 杨经绥, 刘仕军, 等, 2015.新疆中天山巴仑台闪长岩成因及其地质意义.中国地质, 42(5):1228-1241. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201505005&dbname=CJFD&dbcode=CJFQ [82] 朱永峰, 张立飞, 古丽冰, 等, 2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究.科学通报, 50(18):2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014 [83] 朱志新, 王克卓, 郑玉洁, 等, 2006.新疆伊犁地块南缘志留纪和泥盆纪花岗质侵入体锆石SHRIMP定年及其形成时构造背景的初步探讨.岩石学报, 22(5):1193-1200. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200605011&dbname=CJFD&dbcode=CJFQ