Geochronological Evidence of Ordovician and Jurassic Magmatic Events in Nyainrong Microcontinent, Tibet
-
摘要: 为了加深对班公湖-怒江缝合带构造演化过程的认识,选择聂荣微陆块内的花岗质片麻岩和花岗闪长质片麻岩中的锆石进行LA-ICP-MS U-Pb定年,结果主要显示两组206Pb/238U的加权平均年龄:一组为453.7±2.5 Ma; 另一组为176.6±1.1 Ma和178.04±0.8 Ma.花岗质片麻岩中黑云母和花岗闪长质片麻岩中白云母的40Ar-39Ar定年结果显示,坪年龄分别为161.8±1.1 Ma和178.9±1.2 Ma.上述年龄结果表明,聂荣微陆块主要经历了晚奥陶世和早侏罗世两期岩浆事件,这两期岩浆事件分别与冈瓦纳大陆北缘早古生代的造山作用和班公湖-怒江洋壳的俯冲闭合存在密切的动力学关系.Abstract: In order to deepen our knowledge and understanding about the tectonic evolution of the Bangonghu-Nujiang suture zone(BNS), zircon U-Pb dating was conducted for granitic gneiss and granodioritic gneiss of Nyainrong microcontinent by LA-ICP-MS in this study. Results show two groups of average zircon U-Pb ages, with one of 453.7±2.5 Ma, and the other of 176.6±1.1 Ma and 178.04±0.8 Ma. 40Ar-39Ar dating was conducted for biotite from granitic gneiss and muscovite from granodioritic gneiss in Nyainrong microcontinent.The 40Ar-39Ar plateau ages yield 161.8±1.1 Ma and 178.9±1.2 Ma, respectively, showing that the study area experienced the Late Ordovician and the Early Jurassic magmatic events. Combined with field condition and study results, it is suggested that the Ordovician magmatic event was related to the Early Paleozoic orogeny which could be caused by proto-Tethyan oceanic subduction along Gondwana continental margin, and the Jurassic magmatic event was related to the subduction and closure of the Bangong-Nujiang oceanic crust.
-
图 1 青藏高原地质简图
MBT.主边界断裂; YZS.雅鲁藏布江缝合带; BNS.班公湖-怒江缝合带; HJS.可可西里-金沙江缝合带; SKS.昆南缝合带; KJF.喀喇昆仑-嘉黎断裂; JSF.金沙江断裂; XSF.鲜水河断裂; EKF.东昆仑断裂.据吴珍汉等(2009)修改
Fig. 1. Geological sketch map of the Tibetan Plateau
表 1 聂荣微陆块片麻岩LA-ICP-MS锆石U-Pb同位素测年结果
Table 1. LA-ICP-MS data of zircons from gneisses in Nyainrong microcontinent
点号 Th/U 同位素比值 年龄(Ma) 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 花岗质片麻岩(样品B06) 1 0.106 1 0.027 0 0.000 2 0.185 0 0.002 1 0.049 8 0.000 5 171.8 1.2 172.4 1.8 2 2.136 5 0.072 9 0.000 4 0.597 9 0.005 0 0.059 5 0.000 4 453.4 2.6 475.9 3.2 3 5.476 5 0.014 2 0.000 1 0.434 8 0.003 4 0.222 9 0.001 2 90.6 0.6 366.6 2.4 4 1.373 9 0.064 2 0.000 3 0.502 5 0.003 6 0.056 8 0.000 3 400.9 2.0 413.4 2.5 5 0.228 7 0.028 1 0.000 1 0.197 5 0.001 2 0.051 1 0.000 2 178.4 0.8 183.0 1.1 6 1.353 6 0.073 0 0.000 7 0.584 4 0.005 9 0.058 1 0.000 3 454.0 4.2 467.3 3.8 7 0.635 9 0.028 3 0.000 1 0.204 8 0.003 4 0.0525 0.000 9 180.0 0.9 189.2 2.9 8 1.092 7 0.072 6 0.000 4 0.569 2 0.003 6 0.056 9 0.000 2 451.5 2.4 457.5 2.3 9 2.226 1 0.022 4 0.000 0.190 4 0.009 6 0.061 5 0.002 9 143.0 1.6 177.0 8.2 10 0.456 7 0.073 4 0.000 6 0.577 0 0.007 7 0.057 0 0.000 6 456.7 3.5 462.5 5.0 11 1.407 4 0.073 6 0.000 7 0.585 5 0.006 0 0.057 8 0.000 3 457.7 4.2 468.0 3.8 12 0.143 4 0.027 7 0.000 2 0.191 7 0.001 8 0.050 3 0.000 4 176.0 0.9 178.1 1.6 13 6.093 1 0.043 9 0.000 2 0.433 8 0.002 7 0.071 7 0.000 3 276.8 1.2 365.9 1.9 14 0.150 4 0.038 2 0.000 3 0.281 8 0.004 3 0.053 5 0.000 6 241.5 1.8 252.1 3.4 15 0.168 7 0.028 2 0.000 1 0.196 1 0.001 2 0.050 4 0.000 2 179.5 0.8 181.9 1.0 16 0.160 4 0.027 8 0.000 1 0.190 6 0.001 1 0.049 8 0.000 1 176.7 0.9 177.1 0.9 17 0.717 5 0.028 3 0.001 0 0.204 6 0.006 8 0.052 5 0.000 4 179.8 6.6 189.0 5.7 18 0.165 9 0.027 7 0.000 1 0.189 1 0.001 1 0.049 6 0.000 2 175.9 0.7 175.8 0.9 19 0.650 2 0.028 1 0.000 3 0.196 9 0.002 2 0.050 9 0.000 6 178.5 2.1 182.5 1.9 20 1.678 9 0.027 9 0.000 6 0.201 7 0.004 4 0.052 4 0.001 2 177.6 3.7 186.6 3.7 21 0.164 2 0.027 5 0.000 2 0.189 9 0.001 5 0.050 0 0.000 3 175.2 1.0 176.5 1.2 22 1.394 4 0.072 8 0.000 6 0.595 5 0.004 6 0.059 5 0.000 3 453.1 3.6 474.3 2.9 23 5.921 5 0.047 9 0.000 5 0.478 9 0.007 5 0.072 6 0.000 8 301.8 3.3 397.3 5.1 花岗闪长质片麻岩(样品B65) 1 0.290 3 0.066 5 0.000 7 6.080 7 0.057 1 0.663 7 0.002 5 415.0 4.2 1 987.5 8.2 2 1.984 8 0.075 9 0.001 6 6.345 5 0.189 1 0.599 3 0.006 1 471.4 9.8 2 024.8 26.1 3 5.887 7 0.028 2 0.000 5 1.803 3 0.026 0 0.466 4 0.003 4 179.2 3.3 1 046.7 9.4 4 3.381 7 0.028 0 0.000 2 0.198 8 0.002 7 0.051 5 0.000 6 178.2 1.2 184.1 2.3 5 3.136 8 0.029 8 0.000 2 1.361 2 0.012 2 0.331 1 0.002 4 189.4 1.0 872.4 5.3 6 0.433 3 0.028 2 0.000 2 0.202 2 0.002 2 0.052 0 0.000 5 179.5 1.1 187.0 1.9 7 0.701 5 0.081 7 0.000 4 0.656 0 0.004 1 0.058 2 0.000 2 506.2 2.5 512.2 2.5 8 2.606 6 0.059 5 0.000 8 4.638 2 0.062 8 0.565 1 0.001 7 372.7 4.9 1 756.2 11.3 9 0.435 2 0.027 7 0.000 2 0.198 1 0.003 9 0.051 7 0.000 9 176.4 1.1 183.5 3.3 10 2.440 3 0.028 0 0.000 2 1.977 5 0.013 4 0.511 6 0.002 3 178.3 1.2 1 107.9 4.6 11 1.898 1 0.028 1 0.000 1 0.195 6 0.002 2 0.050 5 0.000 5 178.5 0.9 181.4 1.8 12 3.116 1 0.028 2 0.000 3 0.670 7 0.010 1 0.173 3 0.003 0 179.0 1.6 521.2 6.2 13 2.409 7 0.031 6 0.000 5 1.141 4 0.022 6 0.261 4 0.002 3 200.9 3.3 773.2 10.7 14 1.628 7 0.057 7 0.001 8 5.065 0 0.160 7 0.636 9 0.002 4 361.4 11.0 1 830.3 26.9 15 0.508 0 0.027 9 0.000 1 0.201 5 0.001 0 0.052 3 0.000 1 177.6 0.8 186.4 0.8 16 0.038 6 0.027 8 0.000 3 0.190 7 0.002 2 0.049 7 0.000 3 176.9 1.7 177.2 1.9 17 5.200 0 0.032 2 0.000 7 2.626 7 0.038 4 0.595 4 0.005 4 204.2 4.2 1 308.1 10.7 18 2.416 2 0.028 1 0.000 2 0.192 4 0.001 8 0.049 7 0.000 3 178.5 1.2 178.7 1.5 19 1.052 8 0.108 8 0.001 6 5.329 5 0.256 1 0.333 7 0.012 4 665.7 9.5 1 873.6 41.1 20 5.160 5 0.101 0 0.001 5 9.157 6 0.178 8 0.652 4 0.003 7 620.4 9.1 2 353.9 17.9 21 0.428 9 0.025 2 0.001 1 0.933 2 0.055 8 0.480 7 0.214 2 160.7 6.7 669.3 29.3 22 3.723 9 0.040 9 0.009 5 2.533 3 0.110 0 0.594 3 0.014 6 258.2 58.8 1 281.6 31.6 表 2 聂荣微陆块花岗质片麻岩黑云母和花岗闪长质片麻岩白云母常规40Ar/39Ar测年结果
Table 2. Conventionally 40Ar/39Ar isotopic age analyses of biotite and muscovite
T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) F 39Ar(10-14 mol) 39Ar(Cum.)(%) Age(Ma) ±1(Ma) 样品B06(花岗质片麻岩)黑云母W=28.03 mg J=0.004 267 700 56.020 7 0.151 9 8.741 9 0.043 7 20.96 11.8233 0.19 0.49 88.8 2.8 750 26.404 5 0.016 4 0.269 1 0.016 0 81.69 21.574 1 3.33 9.06 158.9 1.5 790 23.095 3 0.002 7 0.154 6 0.013 3 96.55 22.300 6 6.08 24.73 164.0 1.6 830 22.700 9 0.001 3 0.276 4 0.013 0 98.32 22.323 5 6.21 40.73 164.1 1.6 870 22.721 8 0.001 6 0.181 9 0.013 1 97.95 22.259 1 2.84 48.04 163.7 1.6 910 22.990 2 0.003 9 0.858 4 0.013 4 95.21 21.903 0 1.64 52.27 161.2 1.6 950 22.954 2 0.004 7 0.658 3 0.013 4 94.15 21.622 3 1.47 56.05 159.2 1.6 1 000 22.579 1 0.002 9 0.373 0 0.013 6 96.28 21.746 7 3.13 64.13 160.1 1.5 1 050 22.627 6 0.001 5 0.237 2 0.013 1 98.04 22.188 1 5.89 79.31 163.2 1.6 1 080 26.087 2 0.014 8 0.254 4 0.015 2 83.24 21.718 6 3.37 87.99 159.9 1.5 1 120 23.158 5 0.003 1 0.181 3 0.013 2 96.13 22.265 0 3.91 98.07 163.7 1.6 1 400 126.013 0 0.410 7 1.920 1 0.084 4 3.79 4.789 6 0.75 100.00 36.5 1.1 样品B665(花岗闪长质片麻岩)白云母W=27.40 mg J=0.004 301 700 20.958 2 0.015 6 6.004 6 0.015 3 80.03 16.853 6 0.22 0.56 126.2 2.9 750 22.734 0 0.004 2 1.643 3 0.013 2 95.02 21.630 0 0.71 2.39 160.5 1.7 800 23.079 3 0.002 2 1.306 9 0.012 8 97.62 22.554 9 1.43 6.07 167.0 1.6 850 23.584 9 0.001 6 0.723 0 0.012 7 98.24 23.183 9 2.40 12.27 171.5 1.7 890 24.330 9 0.001 6 0.235 4 0.012 8 98.05 23.861 3 4.47 23.79 176.2 1.7 930 24.430 3 0.000 7 0.082 3 0.012 6 99.17 24.229 6 4.82 36.21 178.8 1.7 970 24.757 4 0.001 1 0.345 5 0.012 6 98.81 24.470 2 4.77 48.52 180.5 1.7 1 010 24.624 2 0.001 1 0.156 1 0.012 6 98.69 24.304 2 2.68 55.42 179.4 1.7 1 050 24.713 4 0.001 4 0.376 0 0.012 8 98.43 24.332 2 4.11 66.03 179.6 1.7 1 090 24.616 5 0.001 2 0.253 1 0.012 7 98.60 24.276 7 6.55 82.92 179.2 1.7 1 130 24.592 5 0.000 8 0.234 4 0.012 5 99.11 24.379 0 6.16 98.81 179.9 1.7 1 180 26.853 2 0.010 5 3.263 8 0.012 7 89.30 24.044 0 0.39 99.81 177.5 2.0 1 400 75.442 2 0.210 9 24.901 3 0.050 8 19.74 15.195 3 0.07 100.00 114.2 7.0 注:W.实验参数; J.照射参数. -
[1] Cawood, P.A., Buchan, C., 2007.Linking Accretionary Orogenesis with Supercontinent Assembly.Earth-Science Reviews, 82(3-4):217-256. https://doi.org/10.1016/j.earscirev.2007.03.003 [2] Chang, C.F., Zheng, X.L., 1973.The Geological Structure Characteristics of Everest in Southern of Tibet and the Formation of the East-West Striking Mountains in Tibet Plateau, China.Science in China, (2):190-201 (in Chinese). [3] Chen, G.R., Liu, H.F., Jiang, G.W., et al., 2004.Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet.Geological Bulletin of China, 23(2):193-194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200402015.htm [4] Chen, W., Zhang, Y., Zhang, Y.Q., et al., 2006.Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau—Evidence from Ar-Ar Thermochronology.Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009gecas..73r1512z [5] Chen, Y., Zhu, D.C., Zhao, Z.D., et al., 2014.Slab Break off Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet.Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005 [6] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701001.htm [7] Dong, M.L., Dong, G.C., Mo, X.X., et al., 2012.Geochronology and Geochemistry of the Early Palaeozoic Granitoids in Baoshan Block, Western Yunnan and Their Implications.Acta Petrologica Sinica, 28 (5):1453-1464 (in Chinese with English abstract). http://www.oalib.com/paper/1475754 [8] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). [9] Gu, P.Y., Li, R.S., He, S.P., et al., 2012.The Amphibolite from Nyainrong Rock Group in Northern Nagqu:Geological Records of Break-up of the Supercontinent Rodinia.Acta Petrologica et Mineralogica, 31(2):145-154 (in Chinese with English abstract). doi: 10.1080/00206814.2015.1065207 [10] Guynn, J.H., Kapp, P., Gehrels, G.E., et al., 2012.U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications.Journal of Asian Earth Sciences, 43(1):23-50. https://doi.org/10.1016/j.jseaes.2011.09.003 [11] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006.Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet.Geology, 34(6):505-508. doi: 10.1130/G22453.1 [12] Hu, J., Wan, Y.W., Tao, Z., et al., 2014.New Geochemistry and Geochronology Evidences Related to Southward Subduction of Tethys Ocean Basin in West Segment of Bangonghu-Nujiang Suture Belt.Journal of Chengdu University of Technology (Science & Technology Edition), 41(4):505-515 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CDLG201404014.htm [13] Hu, P.Y., Li, C., Su, L., et al., 2010.Zircon U-Pb Dating of Granitic Gneiss in Wugong Mountain Area, Central Qiangtang, Qinghai-Tibet Plateau:Age Records of Pan-African Movement and Indo-China Movement.Geology in China, 37(4):1050-1061 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi201004021.htm [14] Huang J.J., 2001.Tectonic Characteristics and Evolution of the Qiangtang Basin.Regional Geology of China, 20(2):178-186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200102010.htm [15] Jager, E., 1979. Introduction to Geochronology. In: Jager, E., Hunziker, J. C., eds., Lectures in Isotope Geology. Springer-Verlag, Berlin, 1-12. [16] Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):1-24. https://doi.org/10.1029/2001tc001332 [17] Knenedy, W. Q., 1964. The Structural Differentiation of Africa in the Pan-African (500 m. y. ) Tectonic Episode. Research Institute African Geology University Leeds 8th Ann, Report, 48. http://www.researchgate.net/publication/285376314_The_structural_differentiation_of_Africa_in_the_Pan-African_500_my_tectonic_episode [18] Li, Z.H., Lin, S.L., Cong, F., et al., 2012.U-Pb Ages of Zircon from Metamorphic Rocks of the Gaoligongshan Group in Western Yunnan and Its Tectonic Significance.Acta Petrologica Sinica, 28(5):1529-1541 (in Chinese with English abstract). http://www.oalib.com/paper/1476386 [19] Liu, D.L., Huang, Q.S., Fan, S.Q., et al., 2014.Subduction of the Bangong-Nujiang Ocean:Constraints from Granites in the Bangong Co Area, Tibet.Geological Journal, 49(2):188-206. https://doi.org/10.1002/gj.2510 [20] Liu, D.L., Shi, R.D., Ding, L., et al., 2017.Zircon U-Pb Age and Hf Isotopic Compositions of Mesozoic Granitoids in Southern Qiangtang, Tibet:Implications for the Subduction of the Bangong-Nujiang Tethyan Ocean.Gondwana Research, 41:157-172. https://doi.org/org/10.1016/j.gr.2015.04.007 [21] Liu, M., Zhao Z.D., Guan, Q., et al., 2011.Tracing Magma Mixing Genesis of the Middle Early-Jurassic Host Granites and Enclaves in Nyainrong Microcontinent, Tibet from Zircon LA-ICP-MS U-Pb Dating and Hf Isotopes.Acta Petrologica Sinica, 27(7):1931-1937 (in Chinese with English abstract). http://npd.nsfc.gov.cn/OutComeSearch!searchById.action?id=1061034&typeId=010 [22] Liu, M., Zhu, D.C., Zhao Z.D., et al., 2010.Magma Mixing of Late Early Jurassic Age from Nyainrong, Northern Tibet and Its Tectonic Significance.Acta Petrologica Sinica, 26(10):3117-3130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010023.htm [23] Lu, L., Wu, Z.H., Zhao, Z., et al., 2014.Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Significance of Granitic Gneisses in Amdo, Tibet.Journal of Earth Science, 25(3):473-485. https://doi.org/10.1007/s12583-014-0448-0 [24] Ludwig, K. R., 2001. Squid 1. 02: A User Manual. Berkeley Geochronological Center Special Publication, Berkeley, 2: 19. [25] Mi, W.T., Zhu, L.D., Yang, W.G., et al., 2017.Provenance of the Niubao Formation and Its Geological Implications in the North Depression of the Nima Basin in the Tibet.Earth Science, 42(2):240-257 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201702006.htm [26] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://npd.nsfc.gov.cn/projectDetail.action?pid=40821061 [27] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080 [28] Pan, G.T., Wang, L.Q., Zhu, D.C., 2004.Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Plateau.Geological Bulletin of China, 23(1):12-19 (in Chinese with English abstract). http://www.nsfc.gov.cn/publish/portal1/tab284/info24555.htm [29] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009.Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau.Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200906005.htm [30] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2012.Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture, Tibetan Plateau.Lithos, 146-147:264-275. https://doi.org/10.1016/j.lithos.2012.05.006 [31] Shi, R.D., William, L.G., Suzanne, Y.O., et al., 2012.Melt/Mantle Mixing Produces Podiform Chromite Deposits in Ophiolites:Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet.Gondwana Research, 21:194-206. https://doi.org/10.1016/j.gr.2011.05.011 [32] Shi, R.D., Yang, J.S., Xu, Z.Q., et al., 2008.The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone.Journal of Asian Earth Sciences, 32(5-6):438-457. https://doi.org/10.1016/j.jseaes.2007.11.011 [33] Sui, Q.L., Wang, Q., Zhu, D.C., et al., 2013.Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone.Lithos, 168-169:144-159. https://doi.org/10.1016/j.lithos.2013.01.012 [34] Wang, M., Li, C., Xie, C.M., et al., 2012.LA-ICP-MS U-Pb Dating of Zircon from Granitic Gneiss of the Nierong Microcontinent:The Discovery of the Neoproterozoic Basement Rock and Its Significance.Acta Petrologica Sinica, 28(12):4101-4108 (in Chinese with English abstract). http://www.oalib.com/paper/1474698 [35] Wang, W.L., Aitchison, J.C., Lo, C.H., et al., 2008.Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet.Journal of Asian Earth Sciences, 33(1-2):122-138. https://doi.org/10.1016/j.jseaes.2007.10.022 [36] Wang, X.X., Zhang, J.J., Yang, X.Y., et al., 2011.Zircon SHRIMP U-Pb Ages, Hf Isotopic Features and Their Geological Significance of the Greater Himalayan Crystalline Complex Augen Gneiss in Gyirong Area, South Tibet.Earth Science Frontiers, 18(2):127-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201102014.htm [37] Wei, S.G., Tang, J.X., Song, Y., et al., 2017.Early Cretaceous Bimodal Volcanism in the Duolong Cu Mining District, Western Tibet:Record of Slab Break off That Triggered ca.108-113 Ma Magmatism in the Western Qiangtang Terrane.Journal of Asian Earth Sciences, 138:588-607. https://doi.org/10.1016/j.jseaes.2016.12.010 [38] Wu, Z.H., Wu, Z.H., Hu, D.G., et al., 2009.Uplift and Tectonic Evolution of the Cenozoic in the Tibetan Plateau.Geological Publishing House, Beijing (in Chinese). [39] Xia, B., Xu, L.F., Wei, Z.Q., et al., 2008.SHRIMP Zircon Dating of Gabbro from the Donqiao Ophiolite in Tibet and Its Geological Implications.Acta Geologica Sinica, 82(4):528-531 (in Chinese with English abstract). http://www.researchgate.net/publication/279556448_SHRIMP_zircon_dating_of_gabbro_from_the_Donqiao_ophiolite_in_Tibet_and_its_geological_implications [40] Xiao, X.C., Li, T.D., 2000.The Tectonic Evolution and Uplift of the Tibet Plateau.Guangdong Science and Technology Press, Guangzhou, 239-268 (in Chinese). [41] Xie, C. M., 2013. Tectonic Evolution of the Nyainrong Microcontinent, Tibet—Constraints from Geochronology and Geochemistry (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [42] Xie, C.M., Li, C., Su, L., et al., 2010.LA-ICP-MS U-Pb Dating of Zircon from Granite-Gneiss in the Amdo Area, Northern Tibet, China.Geological Bulletin of China, 29(12):1737-1744 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201012003.htm [43] Xie, C.M., Li, C., Wu, Y.W., et al., 2014.40Ar/39Ar Thermochronology Constraints on Jurassic Tectonothermal Event of Nyainrong Microcontinent.Journal of Earth Science, 25(1):98-108. https://doi.org/10.1007/s12583-014-0403-0 [44] Xu, R.H., Schärer, U., Allègre, C.J., 1985.Magmatism and Metamorphism in the Lhasa Block (Tibet):A Geochronological Study.The Journal of Geology, 93(1):41-57. https://doi.org/10.1086/628918 [45] Xu, Z.Q., Yang, J.S, Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501001.htm [46] Yang, H., Liu, F.L., Liu, P.H., et al., 2013.40Ar-39Ar Dating for Muscovite in Garnet Muscovite-Felsic Schists of the Dahongshan Group in Southwestern Yangtze Block and Its Geological Significance.Acta Petrologica Sinica, 29(6):2161-2170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201306022.htm [47] Ye, P.S., Wu, Z.H., Hu, D.G., et al., 2004.Geochemical Characteristics and Tectonic Setting of Ophiolite of Dongqiao, Tibet.Geoscience, 18(3):309-315 (in Chinese with English abstract). http://www.researchgate.net/publication/284938968_Geochemical_characteristics_and_tectonic_setting_of_ophiolite_of_Dongqiao_Tibet [48] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [49] Zeitler, P.K., 1985.Cooling History of the NW Himalaya, Pakistan.Tectonics, 4(1):127-151. https://doi.org/10.1029/tc004i001p00127 [50] Zhang, X.R., Shi, R.D., Huang, Q.S., et al., 2010.Finding of High-Pressure Mafic Granulites in the Amdo Basement, Central Tibet.Chinese Science Bulletin, 55(27-28):2702-2711 (in Chinese). doi: 10.1007/s11434-010-4127-y [51] Zhang, X.R., Shi, R.D., Huang, Q.S., et al., 2014.Early Jurassic High-Pressure Metamorphism of the Amdo Terrane, Tibet:Constraints from Zircon U-Pb Geochronology of Mafic Granulites.Gondwana Research, 26(3-4):975-985. https://doi.org/10.1016/j.gr.2013.08.003 [52] Zhang, X.Z., Dong, Y.S., Xie, C.M., et al., 2010.Identification and Significance of High-Pressure Granulite in Anduo Area, Tibetan Plateau.Acta Petrologica Sinica, 26(7):2106-2112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201007013.htm [53] Zhang, Y., Chen, W., Chen, K.L., et al., 2006.Study on the Ar-Ar Age Spectrum of Diagenetic I/S and the Mechanism of 39Ar Recoil Loss—Examples from the Clay Minerals of P-T Boundary in Changxing, Zhejiang Province.Geological Review, 52(4):556-561 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/004019519290128S [54] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [55] Zhu, D.C., Mo, X.X, Niu, Y.L, et al., 2009.Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet.Chemical Geology, 268(3):298-312. http://npd.nsfc.gov.cn/projectDetail.action?pid=40830317 [56] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008a.Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China.Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). http://www.researchgate.net/publication/287635476_Spatial-temporal_distribution_and_tectonic_setting_of_Jurassic_magmatism_in_the_Gangdise_belt_Tibet [57] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008b.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1536 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809015.htm [58] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://www.oalib.com/paper/1472180 [59] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [60] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [61] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane.Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201201003.htm [62] 常承法, 郑锡澜, 1973.中国西藏南部珠穆朗玛地区地质构造特征以及青藏高原东西向诸山系形成的探讨.中国科学, (2): 190-201. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jaxk197302006&dbname=CJFD&dbcode=CJFQ [63] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报, 23(2): 193-194. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200402015 [64] 陈文, 张彦, 张岳桥, 等, 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报, 22(4): 867-872. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20060492&journal_id=ysxb [65] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1): 1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409 [66] 董美玲, 董国臣, 莫宣学, 等, 2012.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义.岩石学报, 28(5): 1453-1464. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120509 [67] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7): 1993-2002. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201107009&dbname=CJFD&dbcode=CJFQ [68] 辜平阳, 李荣社, 何世平, 等, 2012.西藏那曲县北聂荣微地块聂荣岩群中斜长角闪岩——Rodinia超大陆裂解的地质纪录.岩石矿物学杂志, 31(2): 145-154. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201202003 [69] 胡隽, 万永文, 陶专, 等, 2014.班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据.成都理工大学学报(自然科学版), 41(4): 505-515. http://d.wanfangdata.com.cn/Periodical_cdlgxyxb201404014.aspx [70] 胡培远, 李才, 苏犁, 等, 2010.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录.中国地质, 37(4): 1050-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004019 [71] 黄继钧, 2001.藏北羌塘盆地构造特征及演化.中国区域地质, 20(2): 178-186. http://www.cqvip.com/qk/95894X/200102/5234128.html [72] 李再会, 林仕良, 丛峰, 等, 2012.滇西高黎贡山群变质岩的锆石年龄及其构造意义.岩石学报, 28(5): 1529-1541. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120515 [73] 刘敏, 赵志丹, 管琪, 等, 2011.西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA-ICP-MS U-Pb定年和Hf同位素证据.岩石学报, 27(7): 1931-1937. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107002 [74] 刘敏, 朱弟成, 赵志丹, 等, 2010.藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义.岩石学报, 26(10): 3117-3130. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010023.htm [75] 密文天, 朱利东, 杨文光, 等, 2017.西藏尼玛盆地北部古近系牛堡组物源及地质意义.地球科学, 42(2): 240-257. http://www.earth-science.net/WebPage/Article.aspx?id=3429 [76] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3): 281-290. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503001 [77] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [78] 潘桂棠, 王立全, 朱弟成, 2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报, 23(1): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401003.htm [79] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6): 523-535. http://d.old.wanfangdata.com.cn/Periodical/dqhx200906002 [80] 王明, 李才, 解超明, 等, 2012.聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年——新元古代基底岩石的发现及其意义.岩石学报, 28(12): 4101-4108. http://www.oalib.com/paper/1474698 [81] 王晓先, 张进江, 杨雄英, 等, 2011.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义.地学前缘, 18(2): 127-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102011 [82] 吴珍汉, 吴中海, 胡道功, 等, 2009.青藏高原新生代构造演化与隆升过程.北京:地质出版社. [83] 夏斌, 徐力峰, 韦振权, 等, 2008.西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义.地质学报, 82(4): 528-531. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200804010 [84] 肖序常, 李廷栋, 2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社, 239-268. [85] 解超明, 李才, 苏黎, 等, 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年.地质通报, 29(12): 1737-1744. doi: 10.3969/j.issn.1671-2552.2010.12.002 [86] 解超明, 2013. 青藏高原聂荣微陆块构造演化——年代学与地球化学制约. 长春: 吉林大学. [87] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501001 [88] 杨红, 刘福来, 刘平华, 等, 2013.扬子地块西南缘大红山群石榴白云母-长石石英片岩的白云母40Ar-39Ar定年及其地质意义.岩石学报, 29(6): 2161-2170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306021 [89] 叶培盛, 吴珍汉, 胡道功, 等, 2004.西藏东巧蛇绿岩的地球化学特征及其形成的构造环境.现代地质, 18(3): 309-315. http://d.old.wanfangdata.com.cn/Periodical/xddz200403007 [90] 张晓冉, 史仁灯, 黄启帅, 等, 2010.青藏高原安多高压基性麻粒岩的发现及其地质意义.科学通报, 55(27-28): 2702-2711. https://www.researchgate.net/profile/Xiaoran_Zhang3/publication/267439734_qingcanggaoyuananduogaoyajixingmaliyandefaxianjiqidezhiyiyi/links/544f6c760cf26dda08906120/qingcanggaoyuananduogaoyajixingmaliyandefaxianjiqidezhiyiyi.pdf [91] 张修政, 董永胜, 解超明, 等, 2010.安多地区高压麻粒岩的发现及其意义.岩石学报, 26(7): 2106-2112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007012 [92] 张彦, 陈文, 陈克龙, 等, 2006.成岩混层(I/S)Ar-Ar年龄谱型及.39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例.地质论评, 52(4): 556-561. http://www.oalib.com/paper/4573945 [93] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3): 534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm [94] 朱弟成, 潘桂棠, 王立全, 等, 2008a.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4): 458-468. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200804003 [95] 朱弟成, 潘桂棠, 王立全, 等, 2008b.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9): 1535-1536. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200809013 [96] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1): 1-15. https://www.researchgate.net/profile/Yaoling_Niu/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane/links/54c645600cf219bbe4f79a90.pdf?origin=publication_detail