Petrogenesis of Granite Porphyry in Mariaicuo Area, Shuanghu County, Tibet, and Constraints on the Evolution in the Middle Section of Bangonghu-Nujiang Suture Zone
-
摘要: 为进一步了解班公湖-怒江缝合带中段闭合时限及构造演化模式,对西藏双湖县玛日埃错地区花岗斑岩进行了锆石U-Pb定年、岩石地球化学和Sr-Nd-Pb同位素方面的研究.结果显示,玛日埃错地区花岗斑岩形成于晚白垩世晚期(78.3±0.4 Ma);具有高硅(72.41%~74.06%)、富碱(Na2O+K2O=6.66%~7.14%)的特点,属钙碱性系列,A/CNK值介于1.01~1.07,具弱过铝质特征;稀土配分模式为轻稀土富集、重稀土亏损的右倾型,并且富集大离子亲石元素(如Rb、Ba、U、K、Th等),亏损高场强元素(如Nb、Ta、P、Ti),显示其源区残留相为石榴石-角闪岩相.岩石具有相对较低的87Sr/86Sr初始比值(0.705 2~0.706 0)和较低的正εNd(t)值(1.5~2.3),及相对年轻的二阶段模式年龄(tDM2=692~758 Ma);Pb同位素组成相对均一,具造山带演化特征.综合分析研究表明,玛日埃错地区花岗斑岩可能起源于伸展背景下的新生地壳部分熔融,源区富含流体,残留相以石榴石-角闪岩为主,不含斜长石.玛日埃错花岗斑岩形成于班怒洋盆闭合、两侧地体碰撞后的伸展背景下,表明班公湖-怒江缝合带中段地区在晚白垩世晚期已经进入后碰撞伸展阶段.Abstract: LA-ICP-MS zircon U-Pb dating, geochemical and Sr-Nd-Pb isotopic data analysis were conducted on the granite porphyry in Mariaicuo area in order to determine its formation time, petrogenesis, structural setting and geological significance. LA-ICP-MS zircon U-Pb dating of the granite porphyry in Mariaicuo yields a crystallization age of 78.3±0.4 Ma, indicating that the rock formed in the late of Late Cretaceous. Petrogeochemically, the samples of the rocks are high in SiO2 (72.41%-74.06%) and rich in Na2O+K2O of 6.66%-7.14%, which belong to calc-alkaline series. Its A/CNK ratios of 1.01-1.07 are of characteristics of weakly peraluminous granites. They are enriched in the large-ion lithospile elements of Rb, Ba, U, K and Th, and strongly depleted in high field strength elements Nb, Ta, P, and Ti. The REE distribution mode is obvious right-leaning, indicating that it remains garnet-amphibolite facies in source area. Their isotopic compositions are characterized by low initial (87Sr/86Sr)i of 0.705 2-0.706 0 and low positive εNd(t) (1.5-2.3) values and relatively young second-stage model age (tDM2=692-758 Ma) of crust. It has relatively homogeneous Pb isotope composition with the evolution of orogenic characteristics. Comprehensive analysis shows that the granite porphyry in Mariaicuo area may originate from the new partial melting of crust within extensional background, and its source region is enriched in fluid and remains garnet-amphibolite facies, excluding plagioclase. It formed in the post-collision extensional environment, which occurred after the closure of Bangonghu-Nujiang Tethys Ocean (BTO) and collision between tarranes on both sides, when the middle section of Bangonghu-Nujiang suture zone has entered the extension phase in Late Cretaceous.
-
图 1 西藏双湖县玛日埃错地区地质简图
图a据宋扬等(2014)修改;图b据西藏双湖县赞宗错地区1/5万四幅区域地质调查成果报告修改(内部资料未刊发)
Fig. 1. Geological sketch map of Mariaicuo area, Shuanghu County, Tibet
图 5 西藏双湖县玛日埃错地区花岗斑岩TAS图解(a)、K2O-SiO2图解(b)、A/NK-A/NCK图解(c)、(La/Yb)N-YbN图解(d)
图a据Middlemost(1994);图b据Irvine and Baragar(1971);图c据Shand(1927);图d据Drummond and Defant(1990)
Fig. 5. TAS diagram (a), K2O vs. SiO2 diagram (b), A/NK vs. A/NCK diagram (c) and (La/Yb)N vs. YbN diagram (d) of granite porphyry in Mariaicuo arca, Shuanghu County, Tibet
图 6 西藏双湖县玛日埃错地区花岗斑岩岩石稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)
Fig. 6. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace elements spider diagram (b) of granite porphyry in Mariaicuo area, Shuanghu County, Tibet
图 7 玛日埃错地区花岗斑岩207Pb/204Pb-206Pb/204Pb (a)和208Pb/204Pb-206Pb/204Pb增长曲线图(b)
Fig. 7. 207Pb/204Pb vs. 206Pb/204Pb (a) and 208Pb/204Pb vs. 206Pb/204Pb growth curve (b) of granite porphyry in Mariaicuo area
图 9 西藏双湖县玛日埃错地区花岗斑岩207Pb/204Pb-206Pb/204Pb图解(a)、208Pb/204Pb-206Pb/204Pb图解(b)、ISr-206Pb/204Pb图解(c)和εNd(t)-(87Sr/86Sr)i图解(d)
图b修改自Edwards et al.(1994);图d修改自Miller et al.(1999),Zhang et al.(2008);康志强等(2010)
Fig. 9. 207Pb/204Pb vs. 206Pb/204Pb diagram (a), 208Pb/204Pb vs. 206Pb/204Pb diagram (b), ISr vs. 206Pb/204Pb diagram (c) and εNd(t) vs. (87Sr/86Sr)i diagram (d) of granite porphyry in Mariaicuo, Shuanghu County, Tibet
图 10 西藏双湖县玛日埃错地区花岗斑岩Y-Nb (a)、Rb-(Y+Nb) (b)、R1-R2图解(c)、Rb/10-Hf-3×Ta图解(d)、207Pb/204Pb-206Pb/204Pb (e)和208Pb/204Pb-206Pb/204Pb (f)图解
底图据Zartman and Doe(1981); Pearce et al.(1984); Batchelor and Bowden(1985); Harris(1986); Pearce(1996).①地幔斜长花岗岩;②板块碰撞前花岗岩;③板块隆起期花岗岩;④晚造山期花岗岩;⑤非造山区A型花岗岩;⑥同碰撞花岗岩;⑦造山期后A型花岗岩.LC.下地壳;UC.上地壳;OIV.洋岛火山岩;OR.造山带;图e,f中的A,B,C,D分别为各区域中样品相对集中区域;图a,b,c,d中班怒带中段数据来自高顺宝等(2011b);定立等(2012);王江朋等(2012);李小赛等(2013);班怒带西段数据来自江军华等(2011);张志等(2013, 2017);李华亮等(2014);张硕等(2014);关俊雷等(2014);秦雅东等(2015)
Fig. 10. Digrams of Y vs. Nb (a), Rb vs. (Y+Nb) (b), R1 vs. R2 (c), Rb/10 vs. Hf vs. 3×Ta (d), 207Pb/204Pb vs. 206Pb/204Pb (e) and 208Pb/204Pb vs. 206Pb/204Pb (f) of granite porphyry in Mariaicuo area, Shuanghu County, Tibet
图 11 班公湖-怒江缝合带80 Ma左右花岗质岩体分布简图
据宋扬等(2014)修改.BNSZ.班公湖-怒江缝合带;YZSZ.雅鲁藏布江缝合带
Fig. 11. Distribution of the granitic pluton in BNSZ at about 80 Ma
表 1 西藏双湖县玛日埃错地区花岗斑岩锆石LA-ICP-MS U-Pb定年结果
Table 1. Dating results of LA-ICP-MS zircon U-Pb of granite porphyry for the samples in Mariaicuo area, Shuanghu County, Tibet
样品号 含量(10-6) Th/
U同位素比值 年龄(Ma) 备注 Pb Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ R-GS-01 5.1 189.1 334.2 0.57 0.050 1 0.001 9 0.084 0 0.003 4 0.012 2 0.000 2 198.2 88.9 81.9 3.2 78.3 1.3 R-GS-02 5.7 209.1 345.8 0.61 0.050 4 0.002 1 0.085 5 0.003 6 0.012 5 0.000 2 213.0 91.7 83.3 3.3 79.8 1.0 R-GS-03 9.1 392.9 584.2 0.67 0.050 1 0.003 1 0.081 7 0.005 4 0.012 0 0.000 1 198.2 144.4 79.7 5.1 76.9 0.8 R-GS-04 7.9 326.9 500.8 0.65 0.050 0 0.001 6 0.082 8 0.002 6 0.012 2 0.000 1 194.5 108.3 80.8 2.4 78.3 0.9 R-GS-05 6.4 240.9 403.1 0.60 0.047 2 0.001 9 0.079 4 0.003 0 0.012 6 0.000 2 57.5 92.6 77.6 2.9 80.6 1.3 R-GS-06 8.8 364.7 547.3 0.67 0.049 9 0.001 6 0.084 5 0.002 6 0.012 5 0.000 2 190.8 71.3 82.3 2.5 79.8 1.0 R-GS-07 4.8 255.2 282.4 0.90 0.078 9 0.005 6 0.125 9 0.008 2 0.012 3 0.000 3 1168.5 142.6 120.4 7.4 78.9 1.8 排除 R-GS-08 10.7 408.6 666.0 0.61 0.049 2 0.001 5 0.0833 0.002 6 0.012 3 0.000 1 1 66.8 74.1 81.2 2.4 79.1 0.8 R-GS-09 14.9 626.0 944.8 0.66 0.071 3 0.002 4 0.114 8 0.004 0 0.011 6 0.000 1 966.4 66.7 110.3 3.7 74.7 0.8 排除 R-GS-10 8.7 327.4 563.2 0.58 0.046 6 0.001 8 0.076 6 0.002 8 0.012 1 0.000 1 27.9 92.6 75.0 2.7 77.2 0.9 R-GS-11 7.1 290.9 441.5 0.66 0.049 6 0.002 1 0.082 2 0.003 1 0.012 4 0.000 2 176.0 128.7 80.2 2.9 79.1 1.0 R-GS-12 10.2 452.6 635.8 0.71 0.048 5 0.001 6 0.081 2 0.002 7 0.012 2 0.000 1 124.2 77.8 79.3 2.5 78.2 0.8 R-GS-13 7.7 297.9 497.5 0.60 0.049 3 0.001 9 0.081 8 0.002 9 0.012 3 0.000 1 161.2 88.9 79.8 2.7 78.8 0.9 R-GS-14 7.3 260.1 463.8 0.56 0.054 9 0.001 9 0.092 2 0.003 1 0.012 3 0.000 1 405.6 77.8 89.6 2.9 79.0 1.0 排除 R-GS-15 6.7 275.6 424.9 0.65 0.049 4 0.002 0 0.082 4 0.003 3 0.012 3 0.000 1 164.9 96.3 80.4 3.1 78.8 0.9 R-GS-16 11.2 572.5 688.8 0.83 0.049 1 0.001 5 0.080 6 0.002 3 0.012 1 0.000 1 150.1 78.7 78.7 2.2 77.3 0.7 R-GS-17 12.1 550.9 767.0 0.72 0.048 4 0.001 4 0.080 6 0.002 4 0.012 1 0.000 1 120.5 68.5 78.7 2.2 77.6 0.8 R-GS-18 7.6 243.0 511.2 0.46 0.048 0 0.001 6 0.079 5 0.002 6 0.012 2 0.000 1 101.9 71.3 77.7 2.4 77.9 0.9 R-GS-19 11.7 595.3 706.1 0.83 0.047 9 0.001 4 0.079 7 0.002 2 0.012 2 0.000 1 100.1 70.4 77.8 2.1 78.3 0.8 R-GS-20 10.6 415.6 663.1 0.63 0.055 2 0.001 7 0.091 8 0.002 6 0.012 3 0.000 1 420.4 68.5 89.2 2.4 78.8 0.9 排除 R-GS-21 10.9 518.2 663.3 0.78 0.047 6 0.001 4 0.079 2 0.002 4 0.012 1 0.000 1 79.7 70.4 77.4 2.2 77.6 0.9 R-GS-22 8.8 367.0 551.0 0.67 0.048 2 0.001 6 0.080 5 0.002 6 0.012 2 0.000 1 109.4 78.7 78.6 2.4 78.5 0.8 R-GS-23 11.5 631.2 707.7 0.89 0.048 1 0.001 6 0.077 8 0.002 5 0.011 9 0.000 1 105.6 75.0 76.1 2.4 76.1 0.7 R-GS-24 9.9 332.2 649.5 0.51 0.047 9 0.001 6 0.079 2 0.002 5 0.012 1 0.000 1 100.1 77.8 77.4 2.3 77.8 0.8 R-GS-25 10.2 445.7 642.2 0.69 0.048 1 0.001 4 0.081 0 0.002 4 0.012 3 0.000 1 101.9 70.4 79.1 2.3 78.9 0.9 表 2 西藏双湖县玛日埃错地区花岗斑岩主量元素(%)、稀土元素(10-6)和微量元素(10-6)测试结果及有关参数
Table 2. Compositions of major elements (%), REE (10-6) and trace elements (10-6) of granite porphyry in Mariaicuo area, Shuanghu County, Tibet
Sample γ-HX1 γ-HX2 γ-HX3 γ-HX4 γ-HX5 γ-HX6 SiO2 70.27 70.83 69.73 70.36 69.52 71.68 TiO2 0.27 0.27 0.27 0.28 0.27 0.28 Al2O3 14.68 14.40 14.67 14.46 14.55 14.81 Fe2O3T 0.99 1.74 1.43 1.18 1.96 1.12 MnO 0.01 0.02 0.02 0.01 0.03 0.01 MgO 0.28 0.27 0.46 0.25 0.29 0.29 CaO 2.64 2.09 2.74 2.84 2.77 1.72 Na2O 3.66 3.54 3.85 3.50 3.71 3.92 K2O 3.03 2.86 3.02 2.97 2.84 2.85 P2O5 0.09 0.11 0.08 0.08 0.07 0.11 LOl 3.31 3.34 3.30 3.75 3.61 2.59 Total 99.23 99.47 99.57 99.68 99.62 99.38 N/K 1.21 1.24 1.27 1.18 1.31 1.38 A/CNK 1.04 1.13 1.01 1.02 1.02 1.17 DI 83.81 84.58 82.8 82.84 82.02 86.88 Mg# 35.91 23.51 38.92 29.56 22.67 33.90 σ43 1.64 1.47 1.77 1.53 1.62 1.60 R1 2 753 2 852 2 626 2 827 2 701 2 770 R2 609 541 627 625 621 505 La 21.50 21.82 20.99 20.60 21.92 21.32 Ce 40.94 41.78 40.11 38.83 41.48 40.13 Pr 4.13 4.21 4.04 3.95 4.19 4.03 Nd 13.59 13.80 13.26 12.89 13.77 13.22 Sm 2.31 2.41 2.29 2.21 2.38 2.29 Eu 0.74 0.77 0.66 0.70 0.77 0.72 Gd 1.98 2.07 1.93 1.89 2.02 1.94 Tb 0.26 0.27 0.25 0.25 0.27 0.26 Dy 1.43 1.49 1.38 1.38 1.47 1.41 Ho 0.27 0.29 0.25 0.26 0.28 0.26 Er 0.74 0.77 0.66 0.70 0.77 0.72 Tm 0.10 0.11 0.09 0.10 0.11 0.10 Yb 0.68 0.72 0.56 0.67 0.70 0.67 Lu 0.10 0.11 0.08 0.10 0.11 0.10 ∑REE 88.77 90.63 86.56 84.53 90.23 87.18 LREE 83.21 84.78 81.35 79.17 84.50 81.71 HREE 5.57 5.84 5.21 5.36 5.73 5.47 LREE/HREE 14.94 14.51 15.60 14.77 14.75 14.95 LaN/YbN 22.73 21.67 26.79 22.06 22.34 22.94 δEu 1.03 1.03 0.94 1.02 1.04 1.02 δCe 1.00 1.00 1.00 0.99 0.99 0.99 Li 65.598 76.771 56.196 70.974 64.854 85.086 P 402.508 447.332 394.570 392.020 386.750 435.540 Sc 4.170 4.299 3.888 3.812 4.100 4.185 Ti 1 596.27 1 663.10 1 573.56 1 494.00 1 509.48 1 598.58 V 31.13 32.68 29.90 28.57 29.45 29.56 Cr 20.06 24.56 18.86 16.13 22.03 24.30 Mn 100.05 231.56 165.95 102.85 235.98 75.16 Co 2.53 0.98 0.41 2.50 0.44 2.10 Ni 10.10 17.47 13.06 12.40 12.09 11.93 Cu 16.71 15.58 17.28 15.22 15.57 14.60 Zn 24.47 35.67 35.50 18.24 38.12 23.46 Ga 16.12 16.18 15.78 15.19 15.34 16.02 Rb 112.68 106.48 108.34 102.87 101.68 105.95 Sr 198.04 194.96 180.54 196.92 207.18 203.76 Zr 137.69 151.96 50.84 137.90 140.06 141.22 Y 8.91 9.43 8.29 8.62 9.24 8.77 Nb 6.12 6.33 6.06 5.79 5.85 6.08 Cs 4.93 4.15 4.63 4.18 4.32 4.46 Ba 718.87 391.24 649.80 802.80 534.20 1 483.40 Hf 3.34 3.66 1.50 3.30 3.38 3.39 Ta 0.39 0.39 0.39 0.41 0.37 0.39 Pb 15.09 14.74 14.48 13.74 13.92 13.62 Th 11.51 11.75 11.17 11.20 11.71 11.90 U 2.27 2.45 2.26 2.20 2.38 2.02 注:A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7);σ=(Na2O+ K2O)2/(SiO2-43);DI=Qz+Or+Ab+Ne+Lc+Kp. 表 3 西藏双湖县玛日埃错地区花岗斑岩Sr-Nd同位素分析结果
Table 3. Results of Sr-Nd isotope analyses of granite porphyry in Mariaicuo area, Shuanghu County, Tibet
样品 t
(Ma)Rb
(10-6)Sr
(10-6)87Rb/
86Sr87Sr/
86Sr2σ
(10-6)(87Sr/
86Sr)iSm
(10-6)Nd
(10-6)143Sm/
144Nd143Nd/
144Nd2σ
(10-6)(143Nd/
144Nd)iεNd
(t)tDM1
(Ma)tDM2
(Ma)fSm/Nd g-HX1 78.3 112.68 198.04 1.641 998 0.707 89 16 0.706 07 2.31 13.59 0.102 88 0.512 685 9 0.512 632 1.9 640 729 -0.48 g-HX2 78.3 106.48 194.96 1.576 324 0.707 01 11 0.705 25 2.41 13.80 0.105 44 0.512 668 8 0.512 614 1.5 679 758 -0.46 g-HX3 78.3 108.34 180.54 1.731 888 0.707 36 11 0.705 43 2.29 13.26 0.104 35 0.512 672 6 0.512 619 1.6 667 751 -0.47 g-HX4 78.3 102.87 196.92 1.507 632 0.707 11 13 0.705 44 2.21 12.89 0.103 58 0.512 670 6 0.512 617 1.6 665 754 -0.47 g-HX5 78.3 101.68 207.18 1.416 422 0.707 04 16 0.705 46 2.38 13.77 0.104 57 0.512 709 8 0.512 655 2.3 617 692 -0.47 g-HX6 78.3 105.95 203.76 1.500 618 0.707 43 11 0.705 76 2.29 13.22 0.104 63 0.512 687 7 0.512 633 1.9 648 727 -0.47 注:Sm、Nd含量及147Sm/144Nd比值均是依据微量元素的ICPMS分析结果及公式换算得到的.参数87Sr/86Sr初始比值=0.705 4,(143Nd/144Nd)DM/CHUR=0.512 638;(147Sm/144Nd)DM=0.213 7,λ=6.54×10-12 a-1(Lugmair and Marti, 1978). 表 4 西藏双湖县玛日埃错地区花岗斑岩Pb同位素分析结果
Table 4. Results of Pb isotope analyses of granite porphyry in Mariaicuo area, Shuanghu County, Tibet
样品 t
(Ma)U
(10-6)Th
(10-6)Pb
(10-6)206Pb/
204Pb2σ 207Pb/
204Pb2σ 208Pb/
204Pb2σ (206Pb/
204Pb)t(207Pb/
204Pb)t(208Pb/
204Pb)tg-HX1 78.3 2.27 11.51 15.09 18.653 0.000 6 15.627 0.000 6 38.864 0.001 9 18.522 15.621 38.652 g-HX2 78.3 2.45 11.75 14.74 18.666 0.000 7 15.630 0.000 7 38.898 0.002 2 18.522 15.623 38.677 g-HX3 78.3 2.26 11.17 14.48 18.660 0.000 7 15.627 0.000 8 38.875 0.002 2 18.525 15.621 38.661 g-HX4 78.3 2.20 11.20 13.74 18.663 0.000 7 15.630 0.000 7 38.882 0.002 1 18.524 15.623 38.656 g-HX5 78.3 2.38 11.71 13.92 18.672 0.000 7 15.631 0.000 6 38.892 0.001 9 18.523 15.624 38.659 g-HX6 78.3 2.02 11.90 13.62 18.644 0.000 7 15.628 0.000 7 38.899 0.001 9 18.516 15.622 38.657 表 5 班公湖-怒江成矿带80 Ma左右花岗质侵入岩体特征对比
Table 5. Comparison of the granitic pluton in Bangonghu-Nujiang suture zone at about 80 Ma
序号 地区 岩性 年龄(Ma) 源区性质及岩石成因 构造环境 来源 1 班戈县雪如岩体 似斑状二长花岗岩 79.7 下地壳石榴石角闪岩相-斜长角闪岩相镁铁质岩石部分熔融形成 后碰撞 高顺宝等,2011b 2 班戈县雪如、查朗拉、更乃矿床 似斑状二长花岗岩、斜长花岗岩 79.7~76.1 下地壳石榴石角闪岩相-斜长角闪岩相镁铁质岩石部分熔融形成 同碰撞 王江朋等,2012;李小赛等,2013 3 雄巴岩体 花岗闪长岩 77.4、79.8 / 后碰撞 定立等,2012 4 冈底斯西北缘 石英二长岩 85.6 地幔软流圈底辟作用造成先存的构造薄弱带发生地壳线性热隆伸展和部分熔融 洋陆转换、热隆伸展 李华亮等,2014 5 尕尔穷、嘎拉勒 石英闪长玢岩、花岗闪长岩 87.1、88 成矿物质来源具有地幔与壳源混源特征 伸展构造环境 唐菊兴等,2013;张志等, 2013, 2017;姚晓峰等,2013 6 日松岩体、甲维岩脉 花岗闪长岩、英云闪长岩、花岗闪长玢岩 82、90.7 可能与加厚下地壳熔融以及幔源玄武质岩浆底侵作用有关 板内伸展环境 张硕等,2014 7 日土南拉梅拉山口 花岗岩体(钾长花岗岩、二长花岗岩、花岗闪长岩) 79.4、81、81.3 富角闪石的下地壳,既有新生地壳,又有古老基底地壳构成的混合地壳发生部分熔融而形成 南向俯冲碰撞的产物 关俊雷等,2014 8 班公湖地区日土县一带 闪长玢岩或石英闪长玢岩、花岗斑岩 76.9、79.6 花岗斑岩岩浆源区较浅,斜长石和角闪石残留;闪长玢岩岩浆形成于更大的深度,源区以榴辉岩或石榴石角闪岩相 伸展环境 江军华等,2011 9 班公湖地区蛇绿混杂岩带内 斜长花岗斑岩和花岗闪长岩、辉石闪长岩脉 97.4、91.9、80~76 斜长花岗斑岩和花岗闪长岩推测为玄武质岩浆底侵加厚下地壳部分熔融形成、辉石闪长岩脉源区为经过熔体交代的上地幔 在97~92 Ma为同碰撞环境;92 Ma后,挤压转变为伸展;80~76 Ma,伸展加剧 秦雅东等,2015 注:“/”表示原文出处无此项内容. -
[1] Baker, J., Waight, T., 2002.Pb Isotope Analysis Using Tl and a 207Pb/204Pb Spike on a Double Focusing MC-ICPMS.Geochimica et Cosmochimica Acta, 66(15A):A44-A44. [2] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1):43-55. https://www.sciencedirect.com/science/article/pii/0009254185900348 [3] Cai, J.H., Yan, G.H., Xiao, C.D., et al., 2004.Nd, Sr, Pb Isotopic Characteristics of the Mesozoic Intrusive Rocks in Taihang-Da Hinggan Mountains Tectonomagmatic Belt and Their Source Region.Acta Petrologica Sinica, 20(5):1225-1242 (in Chinese with English abstract). http://www.oalib.com/paper/1472605 [4] Chen, G.R., Liu, H.F., Jiang, G.W., et al., 2004.Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet.Geological Bulletin of China, 23(2):193-194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200402015.htm [5] Crofu, F., Hanchar, J.M., Hoskin, P.W., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469 [6] de Paolo, D.J., Linn, A.M., Schubert, G., 1991.The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States.Journal of Geophysical Research, 96(B2):2071-2088. https://doi.org/10.1029/90jb02219 [7] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [8] Ding, L., Zhao, Y.Y., Yang, Y.Q., et al., 2012.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Ore-Bearing Granite in Skarn-Type Iron Polymetallic Deposits of Duoba Area, Baingoin County, Tibet, and Their Significance.Acta Petrologica et Mineralogica, 31(4):479-496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204003.htm [9] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701001.htm [10] Drummond, M.S., Defant, M.J., 1990.A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons.Journal of Geophysical Research, 95(B13):21503-21521. https://doi.org/10.1029/jb095ib13p21503 [11] Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., et al., 1994.The Transition to Potassic Volcanism in Island Arcs:The Ringgit-Beser Complex, East Jast Lava, Indonesia.J.Petrology, 35:1557-1595. doi: 10.1093/petrology/35.6.1557 [12] Förster, H.J., Tischendorf, G., Trumbull, R.B., 1997.An Evaluation of the Rb vs.(Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks.Lithos, 40(2-4):261-293. https://doi.org/10.1016/s0024-4937(97)00032-7 [13] Gao, S., Liu, X.M., Yuan, H.L., et al., 2002.Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 26(2):181-196. https://doi.org/10.1111/j.1751-908x.2002.tb00886.x [14] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011a.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110706 [15] Gao, S.B., Zheng, Y.Y., Xie, M.C., et al., 2011b.Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet.Earth Science, 36(4):729-739 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201104011.htm [16] Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003.Neogene Porphyries from Gangdese:Petrological, Geochemical Characteristics and Geodynamic Significances.Acta Petrologica Sinica, 19(3):418-428 (in Chinese with English abstract). http://www.oalib.com/paper/1471890 [17] Guan, J.L., Geng, Q.R., Wang, G.Z., et al., 2014.Geochemical, Zircon U-Pb Dating and Hf Isotope Compositions Studies of the Granite in Ritu County-Lameila Pass Area, North Gangdese, Tibet.Acta Petrologica Sinica, 30(6):1666-1684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201406010.htm [18] Han, B.F., 2007.Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination.Earth Science Frontiers, 14(3):64-72 (in Chinese with English abstract). doi: 10.1007/s12583-013-0346-x [19] Hanchar, J.M., Miller, C.F., 1993.Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images:Implications for Interpretation of Complex Crustal Histories.Chemical Geology, 110(1-3):1-13. https://doi.org/10.1016/0009-2541(93)90244-d [20] Harris, N.B.W., 1986.Geochemical Characteristics of Collision Zone Magmatism.Collision Tectonics, 19(5):67-81. http://adsabs.harvard.edu/abs/1986GSLSP..19...67H [21] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200904009.htm [22] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposit:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in North Chile.Mineral Deposits, 22(1):1-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200301000.htm [23] Huang, Q.S., Shi, R.D., Ding, B.H., et al., 2012.Re-Os Isotopic Evidence of MOR-Type Ophiolite from the Bangong Co for the Opening of Bangong-Nujiang Tethys Ocean.Acta Petrologica et Mineralogica, 31(4):465-478 (in Chinese with English abstract). https://www.researchgate.net/publication/284761968_Re-Os_isotopic_evidence_of_MOR-type_ophiolite_from_the_Bangong_Co_for_the_opening_of_Bangong-Nujiang_Tethys_Ocean [24] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [25] Jiang, J.H., Wang, R.J., Qu, X.M., et al., 2011.Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, after the Closure of the Tethys Oceanic Basin.Earth Science, 36(6):1021-1026, 1028-1032 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201106008.htm [26] Kang, Z.Q., Xu, J.F., Wang B.D., et al., 2010.Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). https://www.researchgate.net/publication/283768751_Qushenla_Formation_volcanic_rocks_in_north_Lhasa_block_Products_of_Bangong_Co-Nujiang_Tethy's_southward_subduction [27] Kapp, P., Murphy, M.A., Yin, A., et al., 2003.Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet.Tectonics, 22(4):253-253. https://doi.org/10.1029/2001tc001332 [28] Li, D.W., 2008.Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area.Earth Science, 33(6):723-742 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200806000.htm [29] Li, G.M., Li, J.X., Qin, K.Z., et al., 2007.High Temperature, Salinity and Strong Oxidation Ore-Forming Fluid at Duobuza Gold-Rich Porphyry Copper Deposit in the Bangonghu Tectonic Belt, Tibet:Evidence from Fluid Inclusions.Acta Petrologica Sinica, 23(5):925-952 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200705009.htm [30] Li, H.L., Gao, C., Li, Z.H., et al., 2016.Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet.Geotectonica et Metallogenia, 40(4):663-673 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DGYK201604004.htm [31] Li, H.L., Yang, S., Li, D.W., et al., 2014.Geochronology, Geochemistry, Tectonic Setting and Metallogenetic Significance of the Late Cretaceous Quartz Monzonite in the Northwestern Gangdise Terrane.Geotectonica et Metallogenia, 38(3):694-705 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201403021.htm [32] Li, W., 2012. Geochemistry and Zircon U-Pb Chronology of Qushenla Group Volcanic Rocks in Gerze, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [33] Li, X.S., Zhao, Y.Y., Wang, J.P., et al., 2013.Geochemical Characteristics, Chronology and Significance of Gengnai Skarn-Type Iron Polymetallic Deposit, Tibet.Acta Geologica Sinica, 87(11):1679-1693 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201311004.htm [34] Li, Z.Z., Qin, K.Z., Li, G.M., et al., 2014.Formation of the Giant Chalukou Porphyry Mo Deposit in Northern Great Xing'an Range, NE China:Partial Melting of the Juvenile Lower Crust in Intra-Plate Extensional Environment.Lithos, 202-203:138-156. https://doi.org/10.1016/j.lithos.2014.04.018 [35] Liao, L.G., Cao, S.H, .Xiao, Y.B., et al., 2005.The Delineation and Significance of the Continental-Margin Volcanic-Magmatic Arc Zone in the Northern Part of the Bangong-Nujiang Suture Zone.Sedimentary Geology and Tethyan Geology, 25(1-2):163-170 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912013004756 [36] Liu, D.L., Huang, Q.S., Fan, S.Q., et al., 2013.Subduction of the Bangong-Nujiang Ocean:Constraints from Granites in the Bangong Co Area, Tibet.Geological Journal, 49(2):188-206. https://doi.org/10.1002/gj.2510 [37] Liu, Q.H., Xiao, Z.J., Cao, S.H., et al., 2004.A Preliminary Study of the Spatio-Temporal Framework of the Archipelagic Arc-Basin System in the Western Part of the Bangong-Nujiang Suture Zone, Xizang.Sedimentary Geology and Tethyan Geology, 24(3):15-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200403002.htm [38] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002.Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm LA-ICPMS.Acta Petrologica Sinica, 18(3):408-418 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200203016.htm [39] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [40] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochemical Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [41] Lugmair, G.W., Marti, K., 1978.Lunar Initial 143Nd/144Nd:Differential Evolution of the Lunar Crust and Mantle.Earth and Planetary Science Letters, 39(3):349-357. doi: 10.1016/0012-821X(78)90021-3 [42] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [43] Miller, C., Schuster, R., Klotzli, U., et al., 1999.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424. https://doi.org/10.1093/petroj/40.9.1399 [44] Mo, X.X., Pan, G.T., 2006.From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectonic-Magmatic Events.Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm [45] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ [46] Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004.Bangong Lake-Nu River Suture Zone-The Northern Boundary of Gondwanaland:Evidence from Geology and Geophysics.Earth Science Frontiers, 11(4):371-382 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dxqy200404004 [47] Pearce, J.A., 1996.Source and Setting of Granitic Rocks.Episodes, 19(4):120-125. [48] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [49] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192 [50] Qin, Y.D., Li, D.W., Lin, S.L., et al., 2015.Conversion of Tectonic Regimes from Compression to Extension in the Bangong Lake Area, Xizang during the Late Cretaceous:Evidence from Magmatic Rocks.Sedimentary Geology and Tethyan Geology, 35(4):92-105 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201504014 [51] Qu, X.M., Hou, Z.Q., Huang, W., 2001.Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt?Mineral Deposits, 20(4):355-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200104009.htm [52] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009.Geochronology and Geochemistry of Igeous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau.Geochimica, 38(6):523-535 (in Chinese with English abstract). [53] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2012.Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture, Tibetan Plateau.Lithos, 146-147:264-275. https://doi.org/10.1016/j.lithos.2012.05.006 [54] Qu, X.M., Xin, H.B., 2006.Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet, China.Geological Bulletin of China, 25(7):792-799 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200607005.htm [55] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constrains on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14 (in Chinese with English abstract). [56] Rapp, R. P., 1997. Heterogneous Source Regions for Archean Granitoids. In: de Wit, M. J., Ashwal, L. D., eds., Greenstones Belts. Oxford University Press, Oxford. [57] Rollison, H. R., Yang, X. M., Yang, X. Y., 2000. Rock Geochemistry. Science and Technology of China Press, Hefei. [58] Rubatto, D., Gebauer, D., 2000.Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps.Cathodoluminescence in Geosciences, 146:373-400. https://doi.org/10.1007/978-3-662-04086-7_15 [59] Rudnick, R.L., 1995.Making Continental Crust.Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0 [60] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust Treaties on Geochemistry. Elsevier Pergamon, Oxford. [61] Rui, Z.Y., Li, G.M., Wang, L.S., 2004.Metal Mineral Resources in the Qinghai-Tibet Plateau.Geological Bulletin of China, 23(1):20-23 (in Chinese). [62] Shand, S.J., 1927.On the Relations between Silica, Alumina, and the Bases in Eruptive Rocks, Considered as a Means of Classification.Geological Magazine, 64(10):446-449. https://doi.org/10.1017/s0016756800103760 [63] Shen, W.Z., Ling, H.F., Li, W.X., et al., 2000.Nd Pattern Age and Crustal Evolution of Granitoids in Southeast China.Science in China (Series D), 30(5):471-478 (in Chinese). https://www.researchgate.net/profile/Hong-Fei_Ling/publication/226091457_Crust_evolution_in_Southeast_China_Evidence_from_Nd_model_ages_of_granitoids/links/53d245890cf228d363e92e04.pdf [64] Shi, R.D., 2007.Constraints on the Time Limit of the Bangong Lake-Nujiang Ocean from the Age of the Bangong Lake SSZ-Type Ophiolite.Chinese Science Bulletin, 52(2):223-227 (in Chinese). [65] Shi, R.D., 2007.SHRIMP Dating of the Bangong Lake SSZ-Type Ophiolite:Constraints on the Closure Time of Ocean in the Bangong Lake-Nujiang River, Northwestern Tibet.Chinese Science Bulletin, 52(7):936-941. https://doi.org/10.1007/s11434-007-0134-z [66] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [67] Song, Y., Qu, X.M., Xin, H.B., et al., 2013.The Crustal Carbon Cycling in the Late Cretaceous Extension of Bangong Lake Arc Zone in the Xizang (Tibetan) Plateau.Geological Review, 59(2):225-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201302006.htm [68] Song, Y., Tang, J.X., Qu, X.M., et al., 2014.Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition.Advances in Earth Science, 29(7):795-809 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkxjz201407004 [69] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [70] Tang, J.X., Zhang, Z., Li, Z.J., et al., 2013.The Metallogensis, Deposit Model and Prospecting Direction of the Ga'erqiong-Galale Copper-Gold Ore Field, Tibet.Acta Geoscientica Sinica, 34(4):385-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201304002.htm [71] Turner, S., Arnaud, N., Liu, J., et al., 1996.Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts.Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45 [72] Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016 [73] Wang, J.P., Zhao, Y.Y., Cui, Y.B., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Important Skarn Type Iron(Copper) Polymetallic Deposits in Baingoin County of Tibet and Geochemical Characteristics of Granites.Geological Bulletin of China, 31(9):1435-1450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201209008.htm [74] Wang, N., Wu, C.L., Qin, H.P., et al., 2016.Zircon U-Pb Geochronology and Hf Isotopic Characteristics of the Daocheng Granite and Haizishan Granite in the Yidun Arc, Western Sichuan, and Their Geological Significance.Acta Geologica Sinica, 90(11):3227-3245 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201611016.htm [75] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Uniwin Hymen, London. [76] Wu, F. Y., Ge, W. C., Sun, D. Y., 2002. The Idea, Identified Signs and Geological Significance of Adakite. In: Xiao Q. H., Deng, J. F., Ma, D. S., et al., eds., The Ways of Investigation on Granitoids. Geological Publishing House, Beijing, 179 (in Chinese with English abstract). [77] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm [78] Wu, F.Y., Jahn, B.M., Lin, Q., 1997.Highly Fractionted Ⅰ-Type Granites in Northeastern China:Geochemistry, Petrogenesis and Implications for Continental Crustal Growth.Chinese Science Bulletin, 42(20):2188-2192 (in Chinese). doi: 10.1007/BF02883724 [79] Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircon and Its Constraints on the Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1007/BF03184122 [80] Yang, Z.M., Hou, Z.Q., Jiang, Y.F., et al., 2011.Sr-Nd-Pb and Zircon Hf Isotopic Constraints on Petrogenesis of the Late Jurassic Granitic Porphyry at Qulong, Tibet.Acta Petrologica Sinica, 27(7):2003-2010 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/270560/1/1000012763440.pdf [81] Yao, X.F., Tang, J.X., Li, Z.J., et al., 2013.The Redefinition of the Ore-Forming Porphyry's Age in Gaerqiong Skarn-Type Gold-Copper Deposit, Western Bangong Lake-Nujiang River Metallogenic Belt, Xizang (Tibet).Geological Review, 59(1):193-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201301027.htm [82] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics-The Model.Tectonophysics, 75(1-2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [83] Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249. https://doi.org/10.1016/j.earscirev.2012.06.001 [84] Zhang, L.C., Zhou, X.H., Ying, J.F., et al., 2008.Geochemistry and Sr-Nd-Pb-Hf Isotopes of Early Cretaceous Basalts from the Great Xinggan Range, NE China:Implications for Their Origin and Mantle Source Characteristics.Chemical Geology, 256(1-2):12-23. https://doi.org/10.1016/j.chemgeo.2008.07.004 [85] Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007.Are Discrimination Diagrams always Indicative of Correct Tectonic Setting of Granites?Some Crucial Questions on Granite Study (3).Acta Petrologica Sinica, 23(11):2683-2698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711003.htm [86] Zhang, S., Shi, H.F., Hao, H.J., et al., 2014.Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet.Earth Science, 39(5):509-524 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/269906/1/1000014452265.pdf [87] Zhang, Z., Geng, Q.R., Peng, Z.M., et al., 2011.Geochemistry and Geochronology of the Caima Granites in the Western Part of the Bangong Lake-Nujiang Metallogenic Zone, Xizang.Sedimentary Geology and Tethyan Geology, 31(4):86-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201104013.htm [88] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201706002.htm [89] Zhang, Z., Tang, J.X., Li, Z.J., et al., 2013.Petrology and Geochemistry of Intrusive Rocks in the Gaerqiong-Galale Ore Concentration Area, Tibet and Their Geological Implications.Geology and Exploration, 49(4):676-688 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201304012.htm [90] Zhao, T.P., Zhou, M.F., Zhao, J.H., et al., 2008.Geochronology and Geochemistry of the c.80 Ma Rutog Granitic Pluton, Northwestern Tibet:Implications for the Tectonic Evolution of the Lhasa Terrane.Geological Magazine, 145(6):845-857. https://doi.org/10.1017/s0016756808005025 [91] Zhao, Y.Y., Cui, Y.B., Lü, L.N., et al., 2011.Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb201107021.htm [92] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201709001.htm [93] Zhu, D.C., Zhao Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [94] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting.Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm [95] 蔡剑辉, 阎国翰, 肖成东, 等, 2004.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨.岩石学报, 20(5):1225-1242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200405018 [96] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报, 23(2):193-194. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200402015 [97] 定立, 赵元艺, 杨永强, 等, 2012.西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义.岩石矿物学杂志, 31(4):479-496. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201204002 [98] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. http://www.earth-science.net/WebPage/Article.aspx?id=3409 [99] 高顺宝, 郑有业, 王进寿, 等, 2011a.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110706&flag=1 [100] 高顺宝, 郑有业, 谢名臣, 等, 2011b.西藏班戈地区雪如岩体的形成环境及成矿意义.地球科学, 36(4):729-739. http://www.earth-science.net/WebPage/Article.aspx?id=2140 [101] 高永丰, 侯增谦, 魏瑞华, 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报, 19(3):418-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303005 [102] 关俊雷, 耿全如, 王国芝, 等, 2014.北冈底斯带日土县-拉梅拉山口花岗岩体的岩石地球化学特征、锆石U-Pb测年及Hf同位素组成.岩石学报, 30(6):1666-1684. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406010.htm [103] 韩宝福, 2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘, 14(3):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200703006 [104] 侯可军, 李延河, 田友荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://mall.cnki.net/magazine/Article/KCDZ200904009.htm [105] 侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12. doi: 10.3969/j.issn.0258-7106.2003.01.001 [106] 黄启帅, 史仁灯, 丁炳华, 等, 2012.班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约.岩石矿物学杂志, 31(4):465-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201204001 [107] 江军华, 王瑞江, 曲晓明, 等, 2011.青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用.地球科学, 36(6):1021-1026, 1028-1032. http://www.earth-science.net/WebPage/Article.aspx?id=2178 [108] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98201010022 [109] 李德威, 2008.青藏高原及邻区三阶段构造演化与成矿演化.地球科学, 33(6):723-742. http://www.earth-science.net/WebPage/Article.aspx?id=1764 [110] 李光明, 李金祥, 秦克章, 等, 2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报, 23(5):935-952. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20070590 [111] 李华亮, 高成, 李正汉, 等, 2016.西藏班公湖地区竟柱山组时代及其构造意义.大地构造与成矿学, 40(4):663-673. http://www.airitilibrary.com/Publication/Index/ddgzyckx201604004 [112] 李华亮, 杨绍, 李德威, 等, 2014.冈底斯西北缘晚白垩世石英二长岩的年代学、地球化学、构造环境及成矿意义.大地构造与成矿学, 38(3):694-705. http://www.oalib.com/paper/4891515 [113] 李伟, 2012. 西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约(硕士学位论文). 北京: 中国地质大学. [114] 李小赛, 赵元艺, 王江朋, 等, 2013.西藏更乃矽卡岩型铁多金属矿床地球化学特征、年代学及意义.地质学报, 87(11):1679-1693. http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=2013027&flag=1 [115] 廖六根, 曹圣华, 肖业斌, 等, 2005.班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义.沉积与特提斯地质, 25(1-2):163-170. http://d.old.wanfangdata.com.cn/Periodical/yxgdl200501030 [116] 刘庆宏, 肖志坚, 曹圣华, 等, 2004.班公湖-怒江结合带西段多岛弧盆系时空结构初步分析.沉积与特提斯地质, 24(3):15-21. https://www.wenkuxiazai.com/doc/494fe33887c24028915fc3c9.html [117] 柳小明, 高山, 袁洪林, 等, 2002.193nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报, 18(3):408-418. http://d.wanfangdata.com.cn/Periodical_ysxb98200203017.aspx [118] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [119] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm [120] 潘桂棠, 朱弟成, 王立全, 等, 2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘, 11(4):371-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404004 [121] 秦雅东, 李德威, 林仕良, 等, 2015.西藏班公湖地区晚白垩世构造体制由挤压向伸展的转换:来自岩浆岩的证据.沉积与特提斯地质, 35(4):92-105. http://www.cqvip.com/QK/98500X/201504/667707558.html [122] 曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?矿床地质, 20(4):355-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200104009 [123] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6):523-535. http://d.old.wanfangdata.com.cn/Periodical/dqhx200906002 [124] 曲晓明, 辛洪波, 2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报, 25(7):792-799. https://www.cnki.com.cn/qikan-ZQYD200607005.html [125] 曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqhx201201001 [126] 芮宗瑶, 李光明, 王龙生, 2004.青藏高原的金属矿产资源.地质通报, 23(1):20-23. https://www.wenkuxiazai.com/doc/c34b082db4daa58da0114a6f-4.html [127] 沈渭洲, 凌洪飞, 李武显, 等, 2000.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑:地球科学), 30(5):471-478. http://earth.scichina.com:8080/sciD/fileup/PDF/00zd0471.pdf [128] 史仁灯.2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报, 52(2):223-227. http://www.oalib.com/paper/4274997 [129] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. https://www.wenkuxiazai.com/doc/54c17ed4b8f67c1cfad6b862-2.html [130] 宋扬, 曲晓明, 辛洪波, 等, 2013.西藏班公湖岛弧带晚白垩世地壳伸展期间碳的壳内循环.地质论评, 59(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/dzlp201302005 [131] 宋扬, 唐菊兴, 曲晓明, 等, 2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展, 29(7):795-809. http://www.adearth.ac.cn/CN/Y2014/V29/I7/795 [132] 唐菊兴, 张志, 李志军, 等, 2013.西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向.地球学报, 34(4):385-394. doi: 10.3975/cagsb.2013.04.01 [133] 王江朋, 赵元艺, 崔玉斌, 等, 2012.西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征.地质通报, 31(9):1435-1450. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201209008 [134] 王楠, 吴才来, 秦海鹏, 等, 2016.川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义.地质学报, 90(11):3227-3245. doi: 10.3969/j.issn.0001-5717.2016.11.016 [135] 吴福元, 葛文春, 孙德有, 2002. 埃达克岩的概念、识别标志及其地质意义, 见: 肖庆辉, 邓晋福, 马大栓等编, 花岗岩的研究思维与方法. 北京: 地质出版社, 179. [136] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.doc88.com/p-7925944469437.html [137] 吴福元, 江博明, 林强, 1997.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报, 42(20):2188-2192. doi: 10.3321/j.issn:0023-074X.1997.20.017 [138] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [139] 杨志明, 侯增谦, 江迎飞, 等, 2011.西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究.岩石学报, 27(7):2003-2010. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107009 [140] 姚晓峰, 唐菊兴, 李志军, 等, 2013.班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义.地质论评, 59(1):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201301021 [141] 张旗, 潘国强, 李承东, 等, 2007.花岗岩构造环境问题:关于花岗岩研究的思考之三.岩石学报, 23(11):2683-2698. doi: 10.3969/j.issn.1000-0569.2007.11.002 [142] 张硕, 史洪峰, 郝海健, 等, 2014.青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义.地球科学, 39(5):509-524. http://www.earth-science.net/WebPage/Article.aspx?id=2860 [143] 张璋, 耿全如, 彭智敏, 等, 2011.班公湖-怒江成矿带西段材玛花岗岩体岩石地球化学及年代学.沉积与特提斯地质, 31(4):86-96. http://www.cnki.com.cn/Article/CJFDTotal-HDDZ201401007.htm [144] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. http://www.earth-science.net/WebPage/Article.aspx?id=3584 [145] 张志, 唐菊兴, 李志军, 等, 2013.西藏尕尔穷-嘎拉勒铜金矿集区侵入岩岩石地球化学特征及其地质意义.地质与勘探, 49(4):676-688. http://d.old.wanfangdata.com.cn/Periodical/dzykt201304009 [146] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020 [147] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. http://www.earth-science.net/WebPage/Article.aspx?id=3652 [148] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609008