Formation of Podiform Chromitite Deposits: Review and Prospects
-
摘要: 豆荚状铬铁矿是蛇绿岩的特征性矿产,对其成因的认识还存在较大的分歧,包括:(1)早期岩浆熔离;(2)地幔熔融残余;(3)熔体-岩石反应.豆荚状铬铁矿及其围岩地幔橄榄岩中大量异常地幔矿物群的发现,引起了地质学家对其形成过程的重新思考.回顾了铬铁矿的研究,借助pMELTS热力学软件模拟浅部地幔过程,使用定量化的方法限定这些过程对豆荚状铬铁矿形成的贡献,通过一个新的角度讨论其形成.初步模拟结果显示,单独的地幔部分熔融、熔体分离结晶以及拉斑质熔体与亏损地幔的反应等过程形成的铬铁矿,无论在数量还是品位上都难以达到矿床水平,暗示豆荚状铬铁矿的形成可能为多种作用耦合的结果,或与深部地幔作用有关.Abstract: As the characteristic ore deposits in ophiolites, podiform chromitite deposits mainly formed in the ultramafic section of an ophiolite complex. However, the following issues on podiform chromitite remain controversial:(1) crystal-melt separation; (2) residual of mantle partial melting; (3) melt-rock interaction. It is of particular importance to study the formation processes of podiform chromitite when large amounts of unusual minerals are found in podiform chromitite and its host rock peridotite. Petrogeneses of chromitite are reviewed in this paper. The pMELTS thermodynamic software was used to calculate the contribution of shallow mantle processes to the formation of podiform chromitite. Preliminary simulation results show that it is impossible to explain the formation of large-scale podiform chromitite deposits by individual mantle partial melting, mantle melt separation or tholeiitic melt-depleted mantle interaction processes, which implies that the podiform chromitite deposits may have been formed by multi-stage or deep mantle processes. Further researches are needed to be conducted on the origin of podiform chromitite deposits.
-
Key words:
- crystal-melt separation /
- partial melting /
- melt-rock reaction /
- podiform chromitite /
- ophiolite /
- petrology
-
图 2 地球显生宙造山带及蛇绿岩分布简图
据Dilek and Furnes(2011);其中正方形显示国内外一些豆荚状铬铁矿床
Fig. 2. Global distribution of major Phanerozoic orogenic belts and ophiolite
图 3 世界显生宙典型蛇绿岩格铁矿分布柱状示意图
图上厚度与实际不成比例,据Thayer(1964)、Boudier and Nicolas(1995)、Melcher et al.(1997)、Proenza et al.(1999)、Robertson(2002)、yumul(2004)、Rollinson(2008)、Hébert et al.(2012)、Johnson(2012)和Milushi(2015)
Fig. 3. Idealized lithologic columns for typical Phanerozoic ophiolites in the world
图 5 豆荚状铬铁矿熔体混合模型
据Arai and Miura(2015);Q.石英;Ol.橄榄石;Chr.铬铁矿
Fig. 5. Petrologic model for the formation of podiform chromitite via melt mixing
图 6 橄榄石(Ol)-石英(Q)-铬铁矿(Chr)系统
Fig. 6. Phase relations in the system olivine (Ol)-quartz (Q)-chromite (Chr)
图 7 亏损地幔Cr2O3含量随部分熔融程度的变化
使用pMELTS模拟计算亏损地幔(depleted MORB mantle, DMM, Workman and Hart, 2005)在尖晶石相(1.0 GPa)与石榴子石相(2.5 GPa)下分馏部分熔融成分变化
Fig. 7. Cr2O3 contents vary with partial melting degrees of depleted mantle
图 8 亏损地幔中尖晶石Cr#随部分熔融程度的变化
Cr#=100*Cr3+/(Cr3++Al3+).模拟条件同图 7
Fig. 8. Cr# of spinel vary with partial melting degree of depleted mantle
图 10 模拟熔体-岩石反应产物
a.熔体-岩石反应比例为1:2;b.熔体-岩石反应的比例为1:1;c.熔体-岩石反应的比例为2:1.其中行表示不同亏损程度的地幔橄榄岩:R1为DMM;R2为5%亏损的DMM;R3为10%亏损的DMM;R4为15%亏损的DMM;列表示不同成分的熔体,均为DMM在2.5 GPa下发生不同程度部分熔融的熔体:M1为3%;M2为7%;M3为11%;M4为15%;格子颜色表示反应产物的岩性;格子中的数字表示形成的岩石中尖晶石矿物的实际矿物含量
Fig. 10. Calculated modal compositions for residual mantle and melt reaction
-
[1] Abe, N., 2011.Petrology of Podiform Chromitite from the Ocean Floor at the 15°20'N FZ in the MAR, Site 1271, ODP Leg 209.Journal of Mineralogical and Petrological Sciences, 106(2):97-102. https://doi.org/10.2465/jmps.101022 [2] Arai, S., 1994.Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships:Review and Interpretation.Chemical Geology, 113(3-4):191-204. https://doi.org/10.1016/0009-2541(94)90066-3 [3] Arai, S., 1997.Origin of Podiform Chromitites.Journal of Asian Earth Sciences, 15(2-3):303-310.https://doi.org/10.1016/s1367-9120(97)00015-1 doi: 10.1016/S0743-9547(97)00015-9 [4] Arai, S., 2010.Possible Recycled Origin for Ultrahigh-Pressure Chromitites in Ophiolites.Journal of Mineralogical and Petrological Sciences, 105(5):280-285. https://doi.org/10.2465/jmps.100622a [5] Arai, S., 2013.Conversion of Low-Pressure Chromitites to Ultrahigh-Pressure Chromitites by Deep Recycling:A Good Inference.Earth and Planetary Science Letters, 379:81-87. https://doi.org/10.1016/j.epsl.2013.08.006 [6] Arai, S., Matsukage, K., 1998.Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific:A Comparison between Abyssal and Alpine-Type Podiform Chromitites.Lithos, 43(1):1-14.https://doi.org/10.1016/s0024-4937(98)00003-6 doi: 10.1016/S0024-4937(98)00003-6 [7] Arai, S., Miura, M., 2015.Podiform Chromitites do Form beneath Mid-Ocean Ridges.Lithos, 232:143-149. https://doi.org/10.1016/j.lithos.2015.06.015 [8] Arai, S., Yurimoto, H., 1994.Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products.Economic Geology, 89(6):1279-1288. https://doi.org/10.2113/gsecongeo.89.6.1279 [9] Asimow, P.D., 2001.Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV.Adiabatic Decompression and the Composition and Mean Properties of Mid-Ocean Ridge Basalts.Journal of Petrology, 42(5):963-998.https://doi.org/10.1093/petrology/42.5.963 https://academic.oup.com/petrology/article/42/5/963/1572822 [10] Bai, W.J., Zhou, M.F., Robinson, P.T., 1993.Possibly Diamond-Bearing Mantle Peridotites and Podiform Chromitites in the Luobusa and Donqiao Ophiolites, Tibet.Canadian Journal of Earth Sciences, 30(8):1650-1659. https://doi.org/10.1139/e93-143 [11] Bai, W.J., Shi, N.C., Fang, Q.S., et al., 2006.Luobusaite:A New Mineral.Acta Geologica Sinica-English Edition, 80(5):656-659.https://doi.org/10.1111/j.1755-6724.2006.tb00289.x https://www.researchgate.net/publication/264601503_Luobusaite_A_New_Mineral [12] Bai, W.J., Shi, N.C., Yang, J.S., et al., 2007.An Assemblage of Simple Oxide Minerals from Ophiolitic Podiform Chromitites in Tibet and Their Ultrahigh Pressure Origin.Acta Geologica Sinica, 81(11):1538-1549 (in Chinese with English abstract). [13] Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2001.Study on a Storehouse of Ultrahigh Pressure Mantle Minerals-Podiform Chromite Deposits.Earth Science Frontiers, 8(3):111-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200105000.htm [14] Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2002.Ultra-High Pressure Minerals:FeO, Fe, FeSi, Si and SiO2 Assemblage from Ophiolite in Tibet and Its Earth Dynamic Significance.Acta Geoscientia Sinica, 23(5):395-402 (in Chinese with English abstract). [15] Bai, W.J., Yang, J.S., Shi, N.C., et al., 2004.A Discovery of Ultrahigh Pressure Minerals-Wüstite and Native Iron from the Mantle Ophiolite, at Luobusa, Xizang.Geological Review, 50(2):184-188 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200402010 [16] Bao, P.S., 1999.The Chromite Deposits in China.Science Press, Beijing (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm [17] Bao, P.S., 2009.Further Discussion on the Genesis of the Podiform Chromite Deposits in the Ophiolites-Questioning about the Rock/Melt Interaction Metallogeny.Geological Bulletin of China, 28(12):1741-1761 (in Chinese with English abstract). https://www.researchgate.net/publication/285981984_Further_discussion_on_the_genesis_of_the_podiform_chromite_deposits_in_the_ophiolites-questioning_about_the_rock_melt_interaction_metallogeny [18] Boudier, F., Nicolas, A., 1995.Nature of the Moho Transition Zone in the Oman Ophiolite.Journal of Petrology, 36(3):777-796. https://doi.org/10.1093/petrology/36.3.777 [19] Cameron, E.N., 1977.Chromite in the Central Sector of the Eastern Bushveld Complex, South Africa.American Mineralogist, 62(11-12):1082-1096. http://rruff.info/doclib/am/vol62/AM62_1082.pdf [20] Cameron, E.N., Desborough, G.A., 1969.Occurrence and Characteristics of Chromite Deposits-Eastern Bushveld Complex.Econ.Geol.Mon., 4:23-40. https://pubs.geoscienceworld.org/books/book/1856/chapter/107712360/occurrence-and-characteristics-of-chromite [21] Campbell, I.H., Murck, B.W., 1993.Petrology of the G and H Chromitite Zones in the Mountain View Area of the Stillwater Complex, Montana.Journal of Petrology, 34(2):291-316. https://doi.org/10.1093/petrology/34.2.291 [22] Cassard, D., Nicolas, A., Rabinovitch, M., et al., 1981.Structural Classification of Chromite Pods in Southern New Caledonia.Economic Geology, 76(4):805-831. https://doi.org/10.2113/gsecongeo.76.4.805 [23] Cawthorn, R.G., Walraven, F., 1998.Emplacement and Crystallization Time for the Bushveld Complex.Journal of Petrology, 39(9):1669-1687. https://doi.org/10.1093/petroj/39.9.1669 [24] Chen, C., Su, B.X., Uysal, I., et al., 2015.Iron Isotopic Constraints on the Origin of Peridotite and Chromitite in the Klzllda Ophiolite, Southern Turkey.Chemical Geology, 417:115-124. https://doi.org/10.1016/j.chemgeo.2015.10.001 [25] Chi Chester Diamond Company, 1997.There is no Protogenesis or Residual Diamond in Luobusa or Dongqiao Peridotite, Tibet.Tibet Geology, (1):103-112 (in Chinese). [26] Coleman, R.G., 1977.Ophiolites:Ancient Oceanic Lithosphere?Springer, Heidelberg. https://www.sciencedirect.com/science/article/pii/0012825279901132?via%3Dihub [27] Cuicheng, D.J., 2015.48 m Thick Ore Body was Discovered in Luobusa Podiform Chromite Deposit, Tibet.China Mining, 24(Suppl.2):108 (in Chinese). [28] Dick, H.J.B., Bullen, T., 1984.Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas.Contributions to Mineralogy and Petrology, 86(1):54-76.https://doi.org/10.1007/bf00373711 doi: 10.1007/BF00373711 [29] Dickey, J.S., 1975.A Hypothesis of Origin for Podiform Chromite Deposits.Geochimica et Cosmochimica Acta, 39(6-7):1061-1074. https://doi.org/10.1016/0016-7037(75)90047-2 [30] Dilek, Y., Furnes, H., 2011.Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere.Geological Society of America Bulletin, 123(3-4):387-411.https://doi.org/10.1130/b30446.1 doi: 10.1130/B30446.1 [31] Dilek, Y., Furnes, H., 2014.Ophiolites and Their Origins.Elements, 10(2):93-100. https://doi.org/10.2113/gselements.10.2.93 [32] Dobrzhinetskaya, L.F., Wirth, R., Yang, J., et al., 2009.High-Pressure Highly Reduced Nitrides and Oxides from Chromitite of a Tibetan Ophiolite.Proceedings of the National Academy of Sciences, 106(46):19233-19238. https://doi.org/10.1073/pnas.0905514106 [33] Duke, J.M., 1982.Ore Deposit Model 7-Magma Segregation Deposits of Chromite.Geochimica et Cosmochimica Acta, 39:1061-1074. https://pubs.er.usgs.gov/publication/ofr20101232 [34] Eales, H.V., 2000.Implications of the Chromium Budget of the Western Limb of the Bushveld Complex.South African Journal of Geology, 103(2):141-150. https://doi.org/10.2113/103.2.141 [35] Eason, D.E., Dunn, R.A., 2015.Petrogenesis and Structure of Oceanic Crust in the Lau Back-Arc Basin.Earth and Planetary Science Letters, 429:128-138. https://doi.org/10.1016/j.epsl.2015.07.065 [36] Edwards, S.J., Pearce, J.A., Freeman, J., 2000.New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite.In:Dilek, Y., Moores, E.M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust:New Insights from Field Studies and the Ocean Drilling Program.Geological Society of America, U.S.A., 349:139-147. http://orca-mwe.cf.ac.uk/8600/ [37] Falloon, T.J., Danyushevsky, L.V., 2000.Melting of Refractory Mantle at 1.5, 2.0 and 2.5 GPa under Anhydrous and H2O-Undersaturated Conditions:Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting.Journal of Petrology, 41(2):257-283.https://doi.org/10.1093/petrology/41.2.257 [38] Fang, Q., Bai, W., Yang, J., et al., 2009.Qusongite (WC):A New Mineral.American Mineralogist, 94(2-3):387-390. https://doi.org/10.2138/am.2009.3015 [39] Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322 [40] Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., et al., 2002.The PMELTS:A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3 GPa.Geochemistry, Geophysics, Geosystems, 3(5):1-35.https://doi.org/10.1029/2001gc000217 http://www.agu.org/pubs/crossref/2002/2001GC000217.shtml [41] Ghiorso, M.S., Sack, R.O., 1995.Chemical Mass Transfer in Magmatic Processes IV.A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures.Contributions to Mineralogy and Petrology, 119(2-3):197-212. doi: 10.1007/BF00307281 [42] González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., et al., 2014.Chromitites in Ophiolites:How, Where, When, Why?Part Ⅱ.The Crystallization of Chromitites.Lithos, 189:140-158. https://www.sciencedirect.com/science/article/pii/S002449371300296X [43] González-Jiménez, J.M., Proenza, J.A., Gervilla, F., et al., 2011.High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba):Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements.Lithos, 125(1-2):101-121. https://doi.org/10.1016/j.lithos.2011.01.016 [44] Griffin, W.L., Afonso, J.C., Belousova, E.A., et al., 2016.Mantle Recycling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications.Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011 [45] Guo, G.L., Yang, J.S., Liu, X.D., et al., 2015.Implications of Unusual Minerals in Zedang Mantle Peridotite, Tibet.Geology in China, 42(5):1483-1492 (in Chinese with English abstract). [46] Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397. doi: 10.1016/j.gr.2011.10.013 [47] Hirschmann, M.M., Ghiorso, M.S., Wasylenki, L.E., et al., 1998.Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts.I.Review of Methods and Comparison with Experiments.Journal of Petrology, 39(6):1091-1115.https://doi.org/10.1093/petroj/39.6.1091 https://authors.library.caltech.edu/1463/ [48] Howell, D., Griffin, W.L., Yang, J., et al., 2015.Diamonds in Ophiolites:Contamination or a New Diamond Growth Environment?Earth and Planetary Science Letters, 430:284-295. https://doi.org/10.1016/j.epsl.2015.08.023 [49] Huang, X.N., Li, Z.H., Kusky, T.M., et al., 2004.Microstructures of the Zunhua 2.50 Ga Podiform Chromite, North China Craton and Implications for the Deformation and Rheology of the Archean Oceanic Lithospheric Mantle, Chapter 10.In:Kusky, T.M., ed., Precambrian Ophiolites and Related Rocks, Developments in Precambrian Geology 13.Elsevier, Amsterdam, 321-337. https://www.sciencedirect.com/science/article/pii/S0166263504130107 [50] Huang, Y., Wang, L., Kusky, T., et al., 2017.High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China:Implications for Its Tectonic Environment of Formation.Lithos, 288-289:35-54. https://doi.org/10.1016/j.lithos.2017.07.014 [51] Huang, Z., Yang, J.S., Zhu, Y.W., et al., 2015.The Study of Deep Mineral Association in Chromitites of the Hegenshan Ophiolite, Inner Mongolia, China.Acta Geologica Sinica (English Edition), 89(Suppl.2):30-31.https://doi.org/10.1111/1755-6724.12308_21 doi: 10.1111/1755-6724.12308_21 [52] Institute of Geology, Chinese Academy of Geological Sciences, 1981.The Discovery of Alpine-Type Diamond Bearing Ultramafic Intrusions in Xizang (Tibet).Geological Review, 27(5):455-457 (in Chinese with English abstract). [53] Irvine, T.N., 1975.Crystallization Sequences in the Muskox Intrusion and Other Layered Intrusions-Ⅱ Origin of Chromitite Layers and Similar Deposits of Other Magmatic Ores.Geochimica et Cosmochimica Acta, 39(6-7):991-1020. https://doi.org/10.1016/0016-7037(75)90043-5 [54] Irvine, T.N., 1977.Origin of Chromitite Layers in the Muskox Intrusion and Other Stratiform Intrusions:A New Interpretation.Geology, 5(5):273-277.https://doi.org/10.1130/0091-7613(1977)5<273:ooclit>2.0.co; 2 doi: 10.1130/0091-7613(1977)5<273:OOCLIT>2.0.CO;2 [55] Ishii, T., Kojitani, H., Fujino, K., et al., 2015.High-Pressure High-Temperature Transitions in MgCr2O4 and Crystal Structures of New Mg2Cr2O5 and Post-Spinel MgCr2O4 Phases with Implications for Ultrahigh-Pressure Chromitites in Ophiolites.American Mineralogist, 100(1):59-65. https://doi.org/10.2138/am-2015-4818 [56] Ishii, T., Kojitani, H., Tsukamoto, S., et al., 2014.High-Pressure Phase Transitions in FeCr2O4 and Structure Analysis of New Post-Spinel FeCr2O4 and Fe2Cr2O5 Phases with Meteoritical and Petrological Implications.American Mineralogist, 99(8-9):1788-1797. https://doi.org/10.2138/am.2014.4736 [57] Jin, Z.M., Bai, Q., Kohlstedt, D.L., et al., 1996.Experimental Study on the Relationship of Partial Melting in the Upper Mantle to Chromite Preconcentration.Geological Review, 42(5):424-429 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/1979RvGSP..17..744E [58] Johnson, C., 2012.Podiform Chromite at Voskhod, Kazakhstan (Dissertation).Cardiff University, Cardiff, 87-152. https://oatd.org/oatd/record?record=oai%5C%3Ahttp%5C%3A%5C%2F%5C%2Forca.cf.ac.uk%5C%3A40714 [59] Keith, M.L., 1954.Phase Equilibria in the System MgO-Cr2O3-SiO2.Journal of the American Ceramic Society, 37(10):490-496.https://doi.org/10.1111/j.1151-2916.1954.tb13981.x doi: 10.1111/jace.1954.37.issue-10 [60] Kelemen, P.B., Shimizu, N., Salters, V.J.M., 1995.Extraction of Mid-Ocean-Ridge Basalt from the Upwelling Mantle by Focused Flow of Melt in Dunite Channels.Nature, 375(6534):747-753. https://doi.org/10.1038/375747a0 [61] Kelemen, P.B., Joyce, D.B., Webster, J.D., et al., 1990.Reaction between Ultramafic Rock and Fractionating Basaltic Magma Ⅱ.Experimental Investigation of Reaction between Olivine Tholeiite and Harzburgite at 1 150-1 050℃ and 5 kb.Journal of Petrology, 31(1):99-134.https://doi.org/10.1093/petrology/31.1.99 https://www.researchgate.net/profile/Peter_Kelemen/publication/256917660_Reaction_Between_Ultramafic_Rock_and_Fractionating_Basaltic_Magma_II_Experimental_Investigation_of_Reaction_Between_Olivine_Tholeiite_and_Harzburgite_at_1150-1050C_and_5_kb/links/55f2c4f708ae336d49887bd3/Reaction-Between-Ultramafic-Rock-and-Fractionating-Basaltic-Magma-II-Experimental-Investigation-of-Reaction-Between-Olivine-Tholeiite-and-Harzburgite-at-1150-1050C-and-5-kb.pdf [62] Kimura, J.I., Sano, S., 2012.Reactive Melt Flow as the Origin of Residual Mantle Lithologies and Basalt Chemistries in Mid-Ocean Ridges:Implications from the Red Hills Peridotite, New Zealand.Journal of Petrology, 53(8):1637-1671. https://doi.org/10.1093/petrology/egs028 [63] Klein-BenDavid, O., Pettke, T., Kessel, R., 2011.Chromium Mobility in Hydrous Fluids at Upper Mantle Conditions.Lithos, 125(1-2):122-130. https://doi.org/10.1016/j.lithos.2011.02.002 [64] Kusky, T.M., Li, J.H., Raharimahefa, T., et al., 2004.Re-Os Isotope Chemistry and Geochronology of Chromite from Mantle Podiform Chromites from the Zunhua Ophiolitic Mélange Belt, N.China:Correlation with the Dongwanzi Ophiolite.Developments in Precambrian Geology, 100:275-282.https://doi.org/10.1016/s0166-2635(04)13008-9 [65] Li, J.H., Niu, X.L., Chen, Z., et al., 2002.The Discovery of Podiform Chromite in West Liaoning and Its Implication for Plate Tectonics.Acta Petrologica Sinica, 18(2):187-192 (in Chinese with English abstract). https://www.researchgate.net/publication/287779150_The_discovery_of_podiform_chromite_in_west_Liaoning_and_its_implication_for_plate_tectonics [66] Li, J.P., O'Neil, H.S.C., Seifert, F., 1995.Subsolidus Phase Relations in the System MgO-SiO2-Gr-O in Equilibrium with Metallic Cr, and their Significance for the Petrochemistry of Chromium.Journal of Petrology, 36(1):107-132. https://doi.org/10.1093/petrology/36.1.107 [67] Lian, D., Yang, J., Dilek, Y., et al., 2017.Diamond, Moissanite and Other Unusual Minerals in Podiform Chromitites from Pozanti-Karsanti Ophiolite, Southern Turkey:Implications for Deep Mantle Origin and Ultra-reducingConditions in Podiform Chromitite.American Mineralogist, 102(5):1101-1113. https://www.researchgate.net/publication/313900297_Diamond_Moissanite_and_other_unusual_minerals_in_podiform_chromitites_from_the_Pozanti-Karsanti_ophiolite_southern_Turkey_implications_for_the_deep_mantle_origin_and_ultra-reducing_conditions_in_podif [68] Liang, Y., Elthon, D., 1990.Evidence from Chromium Abundances in Mantle Rocks for Extraction of Picrite and Komatiite Melts.Nature, 343(6258):551-553. https://doi.org/10.1038/343551a0 [69] Lipin, B.R., 1993.Pressure Increases, the Formation of Chromite Seams, and the Development of the Ultramafic Series in the Stillwater Complex, Montana.Journal of Petrology, 34(5):955-976. doi: 10.1093/petrology/34.5.955 [70] Luo, Z.H., Liu, C., Su, S.G., 2014.Understanding the Physical Processes in Magmatic Systems.Acta Petrologica Sinica, 30(11):3113-3119 (in Chinese with English abstract). https://www.researchgate.net/publication/279027799_Understanding_the_physical_processes_in_magmatic_systems [71] Mallmann, G., O'Neill, H.S.C., 2009.The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with Some Other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb).Journal of Petrology, 50(9):1765-1794. doi: 10.1093/petrology/egp053 [72] Matsumoto, I., Arai, S., 2001.Morphological and Chemical Variations of Chromian Spinel in Dunite-Harzburgite Complexes from the Sangun Zone (SW Japan):Implications for Mantle/Melt Reaction and Chromitite Formation Processes.Mineralogy and Petrology, 73(4):305-323. https://doi.org/10.1007/s007100170004 [73] Matveev, S., Ballhaus, C., 2002.Role of Water in the Origin of Podiform Chromitite Deposits.Earth and Planetary Science Letters, 203(1):235-243.https://doi.org/10.1016/s0012-821x(02)00860-9 doi: 10.1016/S0012-821X(02)00860-9 [74] Mazzucchelli, M., Rivalenti, G., Brunelli, D., et al., 2009.Formation of Highly Refractory Dunite by Focused Percolation of Pyroxenite-Derived Melt in the Balmuccia Peridotite Massif (Italy).Journal of Petrology, 50(7):1205-1233. https://doi.org/10.1093/petrology/egn053 [75] McGowan, N.M., Griffin, W.L., González-Jiménez, J.M., et al., 2015.Tibetan Chromitites:Excavating the Slab Graveyard.Geology, 43(2):179-182.https://doi.org/10.1130/g36245.1 doi: 10.1130/G36245.1 [76] Melcher, F., Grum, W., Simon, G., et al., 1997.Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite.Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419 [77] Melcher, F., Grum, W., Thalhammer, T.V., et al., 1999.The Giant Chromite Deposits at Kempirsai, Urals:Constraints from Trace Element (PGE, REE) and Isotope Data.Mineralium Deposita, 34(3):250-272. https://doi.org/10.1007/s001260050202 [78] Milushi, I., 2015.An Overview of the Albanian Ophiolite and Related Ore Minerals.Acta Geologica Sinica (English Edition), 89(Suppl.2):61-64.https://doi.org/10.1111/1755-6724.12308_39 doi: 10.1111/1755-6724.12308_39 [79] Mondal, S.K., Mathez, E.A., 2006.Origin of the UG2 Chromitite Layer, Bushveld Complex.Journal of Petrology, 48(3):495-510.https://doi.org/10.1093/petrology/egl069 https://academic.oup.com/petrology/article/48/3/495/1491978 [80] Moores, E.M., Vine, F.J., 1971.The Troodos Massif, Cyprus and Other Ophiolites as Oceanic Crust:Evaluation and Implications.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 268(1192):443-467. https://doi.org/10.1098/rsta.1971.0006 [81] Morishita, T., Andal, E.S., Arai, S., et al., 2006.Podiform Chromitites in the Lherzolite-Dominant Mantle Section of the Isabela Ophiolite, the Philippines.The Island Arc, 15(1):84-101.https://doi.org/10.1111/j.1440-1738.2006.00511.x doi: 10.1111/iar.2006.15.issue-1 [82] Morishita, T., Maeda, J., Miyashita, S., et al., 2007.Petrology of Local Concentration of Chromian Spinel in Dunite from the Slow-Spreading Southwest Indian Ridge.European Journal of Mineralogy, 19(6):871-882. https://doi.org/10.1127/0935-1221/2007/0019-1773 [83] Mosier, D.L., Singer, D.A., Moring, B.C., et al., 2012.Podiform Chromite Deposits-Diabase and Grade and Tonnage Models.US Geological Survey Scientific Investigations, Report, 2012-5157. https://pubs.er.usgs.gov/publication/sir20125157 [84] Nicolas, A., Prinzhofer, A., 1983.Cumulative or Residual Origin for the Transition Zone in Ophiolites:Structural Evidence.Journal of Petrology, 24(2):188-206. https://doi.org/10.1093/petrology/24.2.188 [85] Paktunc, A.D., 1990.Origin of Podiform Chromite Deposits by Multistage Melting, Melt Segregation and Magma Mixing in the Upper Mantle.Ore Geology Reviews, 5(3):211-222.https://doi.org/10.1016/0169-1368(90)90011-b doi: 10.1016/0169-1368(90)90011-B [86] Papike, J.J., Karner, J.M., Shearer, C.K., 2005.Comparative Planetary Mineralogy:Valence State Partitioning of Cr, Fe, Ti, and V among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts.American Mineralogist, 90(2-3):277-290. https://doi.org/10.2138/am.2005.1779 [87] Payot, B.D., Arai, S., Dick, H.J.B., et al., 2014.Podiform Chromitite Formation in a Low-Cr/High-Al System:An Example from the Southwest Indian Ridge (SWIR).Mineralogy and Petrology, 108(4):533-549. https://doi.org/10.1007/s00710-013-0317-z [88] Pearce, J.A., Lippard, S.J., Roberts, S., 1984.Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites.Geological Society, London, Special Publications, 16(1):77-94.https://doi.org/10.1144/gsl.sp.1984.016.01.06 doi: 10.1144/GSL.SP.1984.016.01.06 [89] Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012.Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton:Implications for South China's Amalgamation History with the Rodinian Supercontinent.Gondwana Research, 21(2-3):577-594. https://doi.org/10.1016/j.gr.2011.07.010 [90] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a.Early Paleozoic Subduction in Cathaysia (Ⅰ):New Evidence from Nuodong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract). https://www.researchgate.net/publication/305144667_Early_paleozoic_subduction_in_Cathaysia_I_New_evidence_from_Nuodong_Ophiolite [91] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b.Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947 (in Chinese with English abstract). [92] Proenza, J., Gervilla, F., Melgarejo, J., et al., 1999.Al-And Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle.Economic Geology, 94(4):547-566. https://doi.org/10.2113/gsecongeo.94.4.547 [93] Robertson, A.H.F., 2002.Overview of the Genesis and Emplacement of Mesozoic Ophiolites in the Eastern Mediterranean Tethyan Region.Lithos, 65(1-2):1-67.https://doi.org/10.1016/s0024-4937(02)00160-3 doi: 10.1016/S0024-4937(02)00160-3 [94] Robinson, P.T., Bai, W.J., Malpas, J., et al., 2004.Ultra-High Pressure Minerals in the Luobusa Ophiolite, Tibet, and Their Tectonic Implications.Geological Society, London, Special Publications, 226(1):247-271. https://doi.org/10.1144/GSL.SP.2004.226.01.14 [95] Roeder, P., Gofton, E., Thornber, C., 2006.Cotectic Proportions of Olivine and Spinel in Olivine-Tholeiitic Basalt and Evaluation of Pre-Eruptive Processes.Journal of Petrology, 47(5):883-900. https://doi.org/10.1093/petrology/egi099 [96] Roeder, P.L., Reynolds, I., 1991.Crystallization of Chromite and Chromium Solubility in Basaltic Melts.Journal of Petrology, 32(5):909-934. https://doi.org/10.1093/petrology/32.5.909 [97] Rollinson, H., 2008.The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite:Inferred Parental Melt Compositions.Contributions to Mineralogy and Petrology, 156(3):273-288. https://doi.org/10.1007/s00410-008-0284-2 [98] Ruskov, T., Spirov, I., Georgieva, M., et al., 2010.Mössbauer Spectroscopy Studies of the Valence State of Iron in Chromite from the Luobusa Massif of Tibet:Implications for a Highly Reduced Deep Mantle.Journal of Metamorphic Geology, 28(5):551-560.https://doi.org/10.1111/j.1525-1314.2010.00878.x doi: 10.1111/jmg.2010.28.issue-5 [99] Sano, S., Kimura, J.I., 2006.Clinopyroxene REE Geochemistry of the Red Hills Peridotite, New Zealand:Interpretation of Magmatic Processes in the Upper Mantle and in the Moho Transition Zone.Journal of Petrology, 48(1):113-139. https://doi.org/10.1093/petrology/egl056 [100] Satsukawa, T., Griffin, W.L., Piazolo, S., et al., 2015.Messengers from the Deep:Fossil Wadsleyite-Chromite Microstructures from the Mantle Transition Zone.Scientific Reports, 5:16484. doi: 10.1038/srep16484 [101] Shi, R.D., Alard, O., Zhi, X.C., et al., 2007.Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet.Earth and Planetary Science Letters, 261(1):33-48.https://doi.org/10.1016/j.epsl.2007.05.044 [102] Shi, R.D., Huang, Q.S., Liu, D.L., et al., 2012.Recycling of Ancient Sub-continental Lithospheric Mantle Constraints on the Genesis of the Ophiolitic Podiform Chromitites.Geological Review, 58(4):643-652 (in Chinese with English abstract). https://www.researchgate.net/publication/284631961_Geodynamic_constraints_on_the_recycling_of_ancient_SCLM_and_genesis_of_Tibetan_diamondiferous_ophiolites [103] Spandler, C., Mavrogenes, J., Arculus, R., 2005.Origin of Chromitites in Layered Intrusions:Evidence from Chromite-Hosted Melt Inclusions from the Stillwater Complex.Geology, 33(11):893-896.https://doi.org/10.1130/g21912.1 doi: 10.1130/G21912.1 [104] Su, B.X., Zhou, M.F., Robinson, P.T., 2016.Extremely Large Fractionation of Li Isotopes in a Chromitite-Bearing Mantle Sequence.Scientific Reports, 6(1):22370. https://doi.org/10.1038/srep22370 [105] Taylor, R.N., Nesbitt, R.W., Vidal, P., et al., 1994.Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan.Journal of Petrology, 35(3):577-617. https://doi.org/10.1093/petrology/35.3.577 [106] Taylor, W.R., Milledge, H.J., Griffin, B.J., et al., 1995.Characteristics of Microdiamonds from Ultramafic Massifs in Tibet:Authentic Ophiolitic Diamonds or Contamination?Sixth International Kimberlite Conference:Extended Abstracts.Proceedings of the International Kimberlite Conference, 6:623-624. [107] Thayer, T.P., 1964.Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey.Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497 [108] Thayer, T.P., 1970.Chromite Segregations as Petrogenetic Indicators.Geological Society of South Africa Special Publication, 1:380-390. doi: 10.1111/j.1945-5100.2005.tb00138.x [109] Tian, Y.Z., Yang, J.S., Robinson, P.T., et al., 2015.Diamond Discovered in High-Al Chromitites of the Sartohay Ophiolite, Xinjiang, China.Acta Geologica Sinica (English Edition), 89(2):332-340. https://doi.org/10.1111/1755-6724.12433 [110] Umino, S., Kitamura, K., Kanayama, K., et al., 2015.Thermal and Chemical Evolution of the Subarc Mantle Revealed by Spinel-Hosted Melt Inclusions in Boninite from the Ogasawara (Bonin) Archipelago, Japan.Geology, 43(2):151-154.https://doi.org/10.1130/g36191.1 doi: 10.1130/G36191.1 [111] Vuollo, J., Liipo, J., Nykanen, V., et al., 1995.An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland.Economic Geology, 90(2):445-452. https://doi.org/10.2113/gsecongeo.90.2.445 [112] Walker, D.A., Cameron, W.E., 1983.Boninite Primary Magmas:Evidence from the Cape Vogel Peninsula, PNG.Contributions to Mineralogy and Petrology, 83(1-2):150-158.https://doi.org/10.1007/bf00373088 doi: 10.1007/BF00373088 [113] Wang, X.B., Bao, P.S., 1987.The Genesis of Podiform Chromite Deposits-A Case Study of the Luobusa Chromite Deposit, Tibet.Acta Geologica Sinica, 22(2):166-181 (in Chinese with English abstract). [114] Wang, X.B., Hao, Z.G., Bao, P.S., et al., 1992.Genetic Types and Some Metallogenic Characteristics of Chromite Deposits in Ophiolites within Phanerozoic Orogenic Belts of China.Mineral Deposits, 11(1):21-34 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S1367912000000481 [115] Workman, R.K., Hart, S.R., 2005.Major and Trace Element Composition of the Depleted MORB Mantle (DMM).Earth and Planetary Science Letters, 231(1-2):53-72. https://doi.org/10.1016/j.epsl.2004.12.005 [116] Wu, W.W., Yang, J.S., Dilek, Y., et al., 2017a.Multiple Episodes of Melting, Depletion, and Enrichment of the Tethyan Mantle:Petrogenesis of the Peridotites and Chromitites in the Jurassic Skenderbeu Massif, Mirdita Ophiolite, Albania.Lithosphere, 10(1):54-78.https://doi.org/10.1130/l606.1 https://pubs.geoscienceworld.org/gsa/lithosphere/article/10/1/54/350189/multiple-episodes-of-melting-depletion-and [117] Wu, W.W., Yang, J.S., Ma, C.Q., et al., 2017b.Discovery and Significance of Diamonds and Moissanites in Chromitite within the Skenderbeu Massif of the Mirdita Zone Ophiolite, West Albania.Acta Geologica Sinica (English Edition), 91(3):882-897.https://doi.org/10.1111/1755-6724.13316 doi: 10.1111/acgs.2017.91.issue-3 [118] Wu, Y., Xu, M.J., Jin, Z.M., et al., 2016.Experimental Constraints on the Formation of the Tibetan Podiform Chromitites.Lithos, 245:109-117. https://doi.org/10.1016/j.lithos.2015.08.005 [119] Xiong, F.H., Yang, J.S., Ba, D.Z., et al., 2014.Different Type of Chromitite and Genetic Model from Luobusa Ophiolitic, Tibet.Acta Petrologica Sinica, 30(8):2137-2163 (in Chinese with English abstract). [120] Xiong, F.H., Yang, J.S., Liu, Z., et al., 2013.High-Cr and High-Al Chromitite Found in Western Yarlung-Zangbo Suture Zone in Tibet.Acta Petrologica Sinica, 29(6):1878-1908 (in Chinese with English abstract). [121] Xiong, F.H., Yang, J.S., Robinson, P.T., 2016.Diamonds and Other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet.Acta Geologica Sinica (English Edition), 90(2):425-439.https://doi.org/10.1111/1755-6724.12681 doi: 10.1111/acgs.2016.90.issue-2 [122] Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008 [123] Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2017.Diamonds Discovered from High-Cr Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite, Albania.Acta Geologica Sinica (English Edition), 91(2):455-468.https://doi.org/10.1111/1755-6724.13111 doi: 10.1111/acgs.2017.91.issue-2 [124] Xu, X.Z., 2009.Origin of the Kangjinla Podiform Chromite Deposit and Mantle Peridotite, South Tibet (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [125] Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2008.Diamond Discovered from the Kangjinla Chromitite in the Yarlung Zangbo Ophiolite Belt, Tibet.Acta Petrologica Sinica, 24(7):1453-1462 (in Chinese with English abstract). [126] Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2015.Diamond Discovered from the Dongbo Mantle Peridotite in the Yarlung Zangbo Suture Zone, Tibet.Geology in China, 42(5):1471-1482 (in Chinese with English abstract). [127] Xu, X.Z., Yang, J.S., Chen, S.Y., et al., 2009.Unusual Mantle Mineral Group from Chromitite Orebody Cr-11 in Luobusa Ophiolite of Yarlung-Zangbo Suture Zone, Tibet.Journal of Earth Science, 20(2):284-302. https://doi.org/10.1007/s12583-009-0026-z [128] Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. doi: 10.1016/j.gr.2014.05.010 [129] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003 [130] Yang, F.Y., Kang, Z.Q., Liu, S.C., 1981.A New Octahedral Pseudomorph of Lizardite and Its Origin.Acta Mineralogica Sinica, 1(1):52-55, 69 (in Chinese with English abstract). [131] Yang, J.S., Ba, D.Z., Xu, X.Z., et al., 2010.A Restudy of Podiform Chromite Deposits and Their Ore-Prospecting Vista in China.Geology in China, 37(4):1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm [132] Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878.https://doi.org/10.1130/g23766a.1 doi: 10.1130/G23766A.1 [133] Yang, J.S., Meng, F.C., Xu, X.Z., et al., 2015.Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals.Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004 [134] Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127 [135] Yang, J.S., Xu, X.Z., Li, Y., et al., 2011.Diamonds Recovered from Peridotite of the Purang Ophiolite in the Yarlung-Zangbo Suture of Tibet:A Proposal for a New Type of Diamond Occurrence.Acta Petrologica Sinica, 27(11):3171-3178 (in Chinese with English abstract). [136] Yao, F.L., Sun, F.Y., 2006.Economic Geology.Geological Publishing House, Beijing (in Chinese). [137] Yumul, G.P., 2004.Zambales Ophiolite Complex (Philippines) Transition-Zone Dunites:Restite, Cumulate, or Replacive Products?International Geology Review, 46(3):259-272. https://doi.org/10.2747/0020-6814.46.3.259 [138] Zhang, J., Wang, D.H., Fu, P., 2009.The Present Situation of Chromium Resources and Prospecting Direction in China.Northwestern Geology, 42(3):69-76 (in Chinese with English abstract). [139] Zhang, R.Y., Yang, J.S., Ernst, W.G., et al., 2016.Discovery of In Situ Super-Reducing, Ultrahigh-Pressure Phases in the Luobusa Ophiolitic Chromitites, Tibet:New Insights into the Deep Upper Mantle and Mantle Transition Zone.American Mineralogist, 101(6):1285-1294. https://doi.org/10.2138/am-2016-5436 [140] Zhou, M.F., Robinson, P.T., 1994.High-Cr and High-Al Podiform Chromitites, Western China:Relationship to Partial Melting and Melt/Rock Reaction in the Upper Mantle.International Geology Review, 36(7):678-686. https://doi.org/10.1080/00206819409465481 [141] Zhou, M.F., Robinson, P.T., 1997.Origin and Tectonic Environment of Podiform Chromite Deposits.Economic Geology, 92(2):259-262. https://doi.org/10.2113/gsecongeo.92.2.259 [142] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3 [143] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639.https://doi.org/10.1093/petrology/egh091 [144] Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011 [145] 白文吉, 施倪承, 杨经绥, 等. 2007.西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因.地质学报, 81(11): 1538-1549. doi: 10.3321/j.issn:0001-5717.2007.11.009 [146] 白文吉, 杨经绥, 方青松, 等. 2001.寻找超高压地幔矿物的储存库—豆荚状铬铁矿.地学前缘, 8(3): 111-121. http://www.cqvip.com/QK/98600X/2001003/5687602.html [147] 白文吉, 杨经绥, 方青松, 等. 2002.西藏蛇绿岩的超高压矿物:FeO、Fe、FeSi、Si和SiO2组合及其地球动力学意义.地球学报, 23(5): 395-402. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb200205001&dbname=CJFD&dbcode=CJFQ [148] 白文吉, 杨经绥, 施倪承, 等. 2004.西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁.地质论评, 50(2): 184-188. [149] 鲍佩声. 1999.中国铬铁矿床.北京:科学出版社. [150] 鲍佩声. 2009.再论蛇绿岩中豆荚状铬铁矿的成因—质疑岩石/熔体反应成矿说.地质通报, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008 [151] 崔成多吉. 2015.西藏罗布莎铬铁矿探获48 m厚矿体.中国矿业, 24(S2): 108. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgka2015s2027&dbname=CJFD&dbcode=CJFQ [152] 郭国林, 杨经绥, 刘晓东, 等. 2015.西藏泽当地幔橄榄岩中的异常矿物及其指示意义.中国地质, 42(5): 1483-1492. [153] 金振民, Bai Q., Kohlstedt D.L., 等. 1996.铬铁矿预富集和上地幔部分熔融关系的实验研究.地质论评, 42(5): 424-429. http://www.oalib.com/paper/4887729 [154] 李江海, 牛向龙, 陈征, 等. 2002.辽西豆荚状铬铁矿的发现及其意义.岩石学报, 18(2): 187-192+258-259. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20020221&journal_id=ysxb&year_id=2002 [155] 罗照华, 刘翠, 苏尚国. 2014.理解岩浆系统的物理过程.岩石学报, 30(11): 3113-3119. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411002.htm [156] 彭松柏, 刘松峰, 林木森, 等. 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5): 765-778. http://www.earth-science.net/WebPage/Article.aspx?id=3295 [157] 彭松柏, 刘松峰, 林木森, 等. 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6): 931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309 [158] 切切斯特钻石公司考察团. 1997. 西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石. 西藏地质, (1): 103-112. [159] 史仁灯, 黄启帅, 刘德亮, 等. 2012.古老大陆岩石圈地幔再循环与蛇绿岩中铬铁矿床成因.地质论评, 58(4): 643-652. http://www.cqvip.com/QK/91067X/201204/42540856.html [160] 王希斌, 鲍佩声. 1987.豆荚状铬铁矿床的成因—以西藏自治区罗布莎铬铁矿床为例.地质科学, 22(2): 166-181. https://www.wenkuxiazai.com/doc/796eaa00de80d4d8d15a4f45.html [161] 王希斌, 郝梓国, 鲍佩声, 等. 1992.中国造山带蛇绿岩中铬铁矿床的成因类型及其成矿的若干特征.矿床地质, 11(1): 21-34. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199201002.htm [162] 熊发挥, 杨经绥, 巴登珠, 等. 2014.西藏罗布莎不同类型铬铁矿的特征及成因模式讨论.岩石学报, 30(8): 2137-2163. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201408003&dbname=CJFD&dbcode=CJFQ [163] 熊发挥, 杨经绥, 刘钊, 等. 2013.西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体.岩石学报, 29(6):1878-1908. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201306005&dbname=CJFD&dbcode=CJFQ [164] 徐向珍. 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究(博士学位论文). 北京: 中国地质科学院. [165] 徐向珍, 杨经绥, 巴登珠, 等. 2008.雅鲁藏布江蛇绿岩带的康金拉铬铁矿中发现金刚石.岩石学报, 24(7): 1453-1462. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080703&journal_id=ysxb&year_id=2008 [166] 徐向珍, 杨经绥, 巴登珠, 等. 2015.西藏雅鲁藏布江缝合带东波地幔橄榄岩中金刚石的发现及地质意义.中国地质, 42(5): 1471-1482. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201505019&dbname=CJFD&dbcode=CJFQ [167] 杨凤英, 康志勤, 刘淑春. 1981.蛇纹石的八面体新假象及其成因的初步讨论.矿物学报, 1(1): 52-55+69. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kwxb198101008&dbname=CJFD&dbcode=CJFQ [168] 杨经绥, 巴登珠, 徐向珍, 等. 2010.中国铬铁矿床的再研究及找矿前景.中国地质, 37(4): 1141-1150. https://www.wenkuxiazai.com/doc/e1fea79ce87101f69f319553-4.html [169] 杨经绥, 徐向珍, 李源, 等. 2011.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11): 3171-3178. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111002&dbname=CJFD&dbcode=CJFQ [170] 姚凤良, 孙丰月. 2006.矿床学教程.北京:地质出版社. [171] 张建, 王登红, 付平. 2009.中国铬矿资源形势及其找矿方向.西北地质, 42(3): 69-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200903007 [172] 中国地质科学院地质研究所金刚石组. 1981. 西藏首次发现含金刚石的阿尔卑斯型岩体. 地质论评, 27(5): 455-457.