• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学

    任军平 王杰 张东红 DokoweA.P. ChikambweE.M. 左立波 许康康 刘晓阳 贺福清

    任军平, 王杰, 张东红, DokoweA.P., ChikambweE.M., 左立波, 许康康, 刘晓阳, 贺福清, 2018. 赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学. 地球科学, 43(6): 1850-1860. doi: 10.3799/dqkx.2018.610
    引用本文: 任军平, 王杰, 张东红, DokoweA.P., ChikambweE.M., 左立波, 许康康, 刘晓阳, 贺福清, 2018. 赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学. 地球科学, 43(6): 1850-1860. doi: 10.3799/dqkx.2018.610
    Ren Junping, Wang Jie, Zhang Donghong, Dokowe A. P., Chikambwe E. M., Zuo Libo, Xu Kangkang, Liu Xiaoyang, He Fuqing, 2018. Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology. Earth Science, 43(6): 1850-1860. doi: 10.3799/dqkx.2018.610
    Citation: Ren Junping, Wang Jie, Zhang Donghong, Dokowe A. P., Chikambwe E. M., Zuo Libo, Xu Kangkang, Liu Xiaoyang, He Fuqing, 2018. Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology. Earth Science, 43(6): 1850-1860. doi: 10.3799/dqkx.2018.610

    赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学

    doi: 10.3799/dqkx.2018.610
    基金项目: 

    中国地质调查局项目 1212011220910

    中国地质调查局项目 121201006000150014

    商务部技术援外项目 [2012]558

    商务部技术援外项目 [2015]352

    详细信息
      作者简介:

      任军平(1980-), 男, 高级工程师, 从事地质矿产勘查与研究工作

      通讯作者:

      王杰

    • 中图分类号: P618

    Reactivation of Lufilian Arc in Zambia: Zircon and Apatite Fission Track Chronology

    • 摘要: 锆石和磷灰石裂变径迹年代学对揭示构造热事件的形成及演化过程具有重要的研究意义.利用锆石和磷灰石裂变径迹测试及热史模拟探讨了卢弗里安弧构造带自泛非构造运动以来的构造热演化过程.谦比希铜矿床和恩昌加铜(钴)矿床位于卢弗里安弧铜-钴成矿带中的赞比亚境内.对采自该两个矿床中的5件新鲜岩石样品进行挑选,获得了5件锆石和4件磷灰石样品.首次获得了卢弗里安弧构造带中的裂变径迹年龄,5件锆石样品的年龄分别为265±22 Ma、230±10 Ma、228±9 Ma、225±9 Ma和221±10 Ma.4件磷灰石样品的年龄分别为145±10 Ma、133±10 Ma、130±10 Ma和92±9 Ma,径迹长度介于(11.4±2.4)~(11.8±2.4)μm.从热历史模拟结果可看出,从300~260 Ma,古地温持续降低至90 ℃左右;随后,缓慢降低至现今的地表温度.对比卢弗里安弧构造带、赞比西构造带和达马拉构造带中的年龄数据,研究表明非洲中南部地区二叠纪-白垩纪的构造活动是一个区域性的构造活动事件.

       

    • 图  1  卢弗里安弧地区地质图及重要矿床位置

      Muchez et al.(2010)修改

      Fig.  1.  Geological map of the Lufilian arc and major ore deposits

      图  2  样品的镜下特征

      QJ2.变质粉砂岩;QJ3.变质长石石英砂岩;EJ1.变质砂岩;EJ2.变质砂岩;EJ3.变质砂岩;Kfs.钾长石;Q.石英;Ms.白云母;Bi.黑云母;Cc.方解石

      Fig.  2.  Microphotographs of the dating samples

      图  3  锆石样品裂变径迹单颗粒年龄雷达图、直方图及其年龄频率曲线

      Fig.  3.  Radial plots and histograms and frequency curves of zircon single grain fission track ages

      图  4  磷灰石样品裂变径迹长度直方图、单颗粒年龄雷达图、直方图及其年龄频率曲线

      Fig.  4.  Confined track length histograms radial plots and histograms and frequency curves of apatite single grain fission track ages

      图  5  QJ2-2样品热历史模拟结果

      t1.实测年龄;t2.模拟年龄;MTL-GOF.径迹长度拟合参数;Age-GOF.年龄拟合参数

      Fig.  5.  Modeling results of ecological thermal evolution history

      图  6  中南部非洲前寒武纪地质构造简图

      Haest and Muchez(2011)修改

      Fig.  6.  Precambrian tectonic sketch map in central-southern Africa

      表  1  样品采样位置

      Table  1.   Location of samples

      样品编号 经纬度 岩石类型 主要矿物组合 采样位置 对应地层单元
      QJ2 28°1′59″E
      12°39′5″S
      变质粉砂岩 石英、黑云母、白云母、绿帘石和方解石 谦比希西矿体 罗安群
      QJ3 28°1′59″E
      12°39′5″S
      变质长石石英砂岩 石英、钾长石、黑云母、绿泥石和方解石 谦比希西矿体 罗安群
      EJ1 27°52′15″E
      12°30′36″S
      变质砂岩 石英和长石,少量白云母 恩昌加矿体 罗安群
      EJ2 27°52′15″E
      12°30′36″S
      变质砂岩 石英和长石,少量黑云母、白云母、绿泥石、阳起石和粘土矿物 恩昌加矿体 罗安群
      EJ3 27°52′15″E
      12°30′36″S
      变质砂岩 石英、钾长石、黑云母、白云母、方解石和绿泥石 恩昌加矿体 罗安群
      下载: 导出CSV

      表  2  锆石裂变径迹分析结果

      Table  2.   Zircon fission track analytical results

      样品编号 锆石颗粒数 ρs(105/cm2)(Ns) ρi(105/cm2)(Ni) ρd(105/cm2)(Nd) P(χ2)(%) 中心年龄t(Ma)(±1σ)
      QJ2-1 5 217.023
      (960)
      50.865
      (225)
      14.006
      (8 055)
      25.9 265±22
      QJ3-1 30 118.602
      (7 170)
      33.099
      (2 001)
      14.375
      (8 055)
      85.0 230±10
      EJ1-1 26 120.552
      (5 937)
      36.225
      (1 784)
      14.867
      (8 055)
      40.1 221±10
      EJ2-1 35 122.312
      (8 789)
      36.837
      (2 647)
      15.359
      (8 055)
      36.1 228±9
      EJ3-1 33 130.325
      (7 251)
      40.997
      (2 281)
      15.851
      (8 055)
      53.8 225±9
      注:ρs为自发径迹密度,ρi为诱发径迹密度,ρd为标准径迹密度,Ns为自发径迹数,Ni为诱发径迹数,Nd为标准径迹数.
      下载: 导出CSV

      表  3  磷灰石裂变径迹分析结果

      Table  3.   Apatite fission track analytical results

      样品编号 磷灰石颗粒数 ρs(105/cm2)
      (Ns)
      ρi(105/cm2)
      (Ni)
      ρd(105/cm2)
      (Nd)
      P(χ2)(%) 中心年龄t
      (Ma)(±1σ)
      径迹长度L(μm)
      (N)
      QJ2-2 35 1.283
      (353)
      2.880
      (792)
      14.640
      (6 788)
      84.7 133±10 11.7±2.5
      (99)
      QJ3-2 30 3.573
      (842)
      7.423
      (1 749)
      14.849
      (6 788)
      2.6 145±10 11.8±2.4
      (111)
      EJ2-2 34 3.244
      (966)
      7.936
      (2 363)
      15.163
      (6 788)
      0 130±10 11.4±2.4
      (104)
      EJ3-2 35 2.621
      (455)
      7.569
      (1 314)
      13.178
      (6 788)
      0 92±9 11.5±2.0
      (95)
      注:ρs为自发径迹密度,ρi为诱发径迹密度,ρd为标准径迹密度,Ns为自发径迹数,Ni为诱发径迹数,Nd为标准径迹数, N为径迹长度数.
      下载: 导出CSV
    • [1] Armstrong, R.A., Robb, L.J., Masters, S., et al., 1999.New U-Pb Age Constraints on the Katangan Sequence, Central African Copperbelt.Journal of African Earth Sciences, 28(4):6-7. https://www.deepdyve.com/lp/elsevier/the-neoproterozoic-mwashya-kansuki-sedimentary-rock-succession-in-the-L962UKMbkI
      [2] Batumike, M.J., Kampunzu, A.B., Cailteux, J.H., 2006.Petrology and Geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, Southeast Congo:Implications for Provenance, Paleoweathering and Geotectonic Setting.Journal of African Earth Sciences, 44(1):97-115. https://doi.org/10.1016/j.jafrearsci.2005.11.007
      [3] Cailteux, J.L.H., Kampunzu, A.B., Lerouge, C., 2007.The Neoproterozoic Mwashya-Kansuki Sedimentary Rock Succession in the Central African Copperbelt, Its Cu-Co Mineralization, and Regional Correlations.Gondwana Research, 11(3):414-431. https://doi.org/10.1016/j.gr.2006.04.016
      [4] Chartrand, F.M., Brown, A.C., 1984.Preliminary Comparison of Diagenetic Stratiform Copper Mineralization from Redstone, NW Territories, Canada, and Kamoto, Shaban Copperbelt, Zaire.Journal of the Geological Society, 141(2):291-297. https://doi.org/10.1144/gsjgs.141.2.0291
      [5] Chen, T.Y., 2005.The Expansion of the Rotating Earth and the Breakup of Gondwanaland.Acta Geoscientica Sinica, 26(3):195-202 (in Chinese with English abstract). http://www.oalib.com/paper/1557974
      [6] Donelick, R.A., Miller, D.S., 1991.Enhanced Tint Fission Track Densities in Low Spontaneous Track Density Apatites Using 252Cf-Derived Fission Fragment Tracks:A Model and Experimental Observations.International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18(3):301-307. https://doi.org/10.1016/1359-0189(91)90022-a
      [7] Eby, G.N., Roden-Tice, M., Krueger, H.L., et al., 1995.Geochronology and Cooling History of the Northern Part of the Chilwa Alkaline Province, Malawi.Journal of African Earth Sciences, 20(3-4):275-288. https://doi.org/10.1016/0899-5362(95)00054-w
      [8] Eglinger, A., Vanderhaeghe, O., André-Mayer, A.S., et al., 2016.Tectono-Metamorphic Evolution of the Internal Zone of the Pan-African Lufilian Orogenic Belt (Zambia):Implications for Crustal Reworking and Syn-Orogenic Uranium Mineralizations.Lithos, 240-243:167-188. https://doi.org/10.13039/501100004794
      [9] Fernandes, P., Cogné, N., Chew, D.M., et al., 2015.The Thermal History of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique:An Integrated Vitrinite Reflectance and Apatite Fission Track Thermochronology Study.Journal of African Earth Sciences, 112:55-72. https://doi.org/10.1016/j.jafrearsci.2015.09.009
      [10] Foster, D.A., Gleadow, A.J.W., 1992.The Morphotectonic Evolution of Rift-Margin Mountains in Central Kenya:Constraints from Apatite Fission-Track Thermochronology.Earth and Planetary Science Letters, 113(1-2):157-171. https://doi.org/10.1016/0012-821x(92)90217-j
      [11] Galbraith, R.F., 1981.On Statistical Models for Fission Track Counts:Reply.Journal of the International Association for Mathematical Geology, 13(6):485-488. https://doi.org/10.1007/bf01034500
      [12] Gernon, T.M., Fontana, G., Field, M., et al., 2009.Pyroclastic Flow Deposits from a Kimberlite Eruption:The Orapa South Crater, Botswana.Lithos, 112:566-578. https://doi.org/10.1016/j.lithos.2009.04.016
      [13] Gleadow, A.J.W., Duddy, I.R., Green, P.F., et al., 1986.Confined Fission Track Lengths in Apatite:A Diagnostic Tool for Thermal History Analysis.Contributions to Mineralogy and Petrology, 94(4):405-415. https://doi.org/10.1007/bf00376334
      [14] Goscombe, B., Armstrong, R., Barton, J.M., 2000.Geology of the Chewore Inliers, Zimbabwe:Constraining the Mesoproterozoic to Palæozoic Evolution of the Zambezi Belt.Journal of African Earth Sciences, 30(3):589-627. https://doi.org/10.1016/s0899-5362(00)00041-5
      [15] Green, P.F., 1986.On the Thermo-Tectonic Evolution of Northern England:Evidence from Fission Track Analysis.Geological Magazine, 123(5):493-506. https://doi.org/10.1017/s0016756800035081
      [16] Haest, M., Muchez, P., 2011.Stratiform and Vein-Type Deposits in the Pan-African Orogen in Central and Southern Africa:Evidence for Multiphase Mineralisation.Geologica Belgica, 14(1-2):23-44. http://www.mendeley.com/catalog/stratiform-veintype-deposits-panafrican-orogen-central-southern-africa-evidence-multiphase-mineralis/
      [17] Hurford, A.J., Green, P.F., 1982.A Users' Guide to Fission Track Dating Calibration.Earth and Planetary Science Letters, 59(2):343-354. https://doi.org/10.1016/0012-821x(82)90136-4
      [18] Kampunzu, A.B., Cailteux, J.L.H., Moine, B., et al., 2005.Geochemical Characterisation, Provenance, Source and Depositional Environment of "Roches Argilo-Talqueuses" (RAT) and Mines Subgroups Sedimentary Rocks in the Neoproterozoic Katangan Belt (Congo):Lithostratigraphic Implications.Journal of African Earth Sciences, 42(1-5):119-133. https://doi.org/10.1016/j.jafrearsci.2005.08.003
      [19] Key, R.M., Liyungu, A.K., Njamu, F.M., et al., 2001.The Western Arm of the Lufilian Arc in NW Zambia and Its Potential for Copper Mineralization.Journal of African Earth Sciences, 33(3-4):503-528. https://doi.org/10.1016/s0899-5362(01)00098-7
      [20] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017.Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block.Earth Science, 42(4):485-501(in Chinese with English abstract).
      [21] Luft, F.F., Luft Jr., J.L., Chemale Jr., F., et al., 2005.Post-Gondwana Break-up Record Constraints from Apatite Fission Track Thermochronology in NW Namibia.Radiation Measurements, 39(6):675-679. https://doi.org/10.1016/j.radmeas.2004.08.010
      [22] Milesi, J.P., Toteu, S.F., Deschamps, Y., et al., 2006.An Overview of the Geology and Major Ore Deposits of Central Africa:Explanatory Note for the 1:4 000 000 Map "Geology and Major Ore Deposits of Central Africa".Journal of African Earth Sciences, 44(4-5):571-595. https://doi.org/10.1016/j.jafrearsci.2005.10.016
      [23] Milner, S.C., Le Roex, A.P., O'Connor, J.M., 1995.Age of Mesozoic Igneous Rocks in Northwestern Namibia, and Their Relationship to Continental Breakup.Journal of the Geological Society, 152(1):97-104. https://doi.org/10.1144/gsjgs.152.1.0097
      [24] Muchez, P., Brems, D., Clara, E., et al., 2010.Evolution of Cu-Co Mineralizing Fluids at Nkana Mine, Central African Copperbelt, Zambia.Journal of African Earth Sciences, 58(3):457-474. https://doi.org/10.1016/j.jafrearsci.2010.05.003
      [25] Phillips, D., Harris, J.W., 2009.Diamond Provenance Studies from 40Ar/39Ar Dating of Clinopyroxene Inclusions:An Example from the West Coast of Namibia.Lithos, 112:793-805. https://doi.org/10.1016/j.lithos.2009.05.003
      [26] Raab, M.J., Brown, R.W., Gallagher, K., et al., 2002.Late Cretaceous Reactivation of Major Crustal Shear Zones in Northern Namibia:Constraints from Apatite Fission Track Analysis.Tectonophysics, 349(1-4):75-92. https://doi.org/10.1016/s0040-1951(02)00047-1
      [27] Rainaud, C., Master, S., Armstrong, R.A., et al., 2005.Monazite U-Pb Dating and 40Ar-39Ar Thermochronology of Metamorphic Events in the Central African Copperbelt during the Pan-African Lufilian Orogeny.Journal of African Earth Sciences, 42(1-5):183-199. https://doi.org/10.1016/j.jafrearsci.2005.08.007
      [28] Ren, J.P., Wang, J., Liu, X.Y., et al., 2013.Research Progresses on the Cu-Co Deposits of Lufilian Area in the Mid-Southern Africa.Geological Science and Technology Information, 32(5):135-145(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201305022.htm
      [29] Ren, J.P., Wang, J., Zuo, L.B., et al., 2017.Zircon U-Pb and Biotite 40Ar/39Ar Geochronology from the Anzan Emerald Deposit in Zambia.Ore Geology Reviews, 91:612-619. https://doi.org/10.13039/501100004613
      [30] Renne, P.R., Ernesto, M., Pacca, I.G., et al., 1992.The Age of Parana Flood Volcanism, Rifting of Gondwanaland, and the Jurassic-Cretaceous Boundary.Science, 258(5084):975-979. https://doi.org/10.1126/science.258.5084.975
      [31] Selley, D., Broughton, D., Scott, R., et al., 2005.A New Look at the Geology of the Zambia Copperbelt.Society of Economic Geologists, 100:965-1000. http://www.mendeley.com/research/new-look-geology-zambian-copperbelt/
      [32] Smith, C.B., Clark, T.C., Barton, E.S., et al., 1994.Emplacement Ages of Kimberlite Occurrences in the Prieska Region, Southwest Border of the Kaapvaal Craton, South Africa.Chemical Geology, 113(1-2):149-169. https://doi.org/10.1016/0009-2541(94)90010-8
      [33] Stewart, K., Turner, S., Kelley, S., et al., 1996.3-D, 40Ar-39Ar Geochronology in the Paraná Continental Flood Basalt Province.Earth and Planetary Science Letters, 143(1-4):95-109. https://doi.org/10.1016/0012-821x(96)00132-x
      [34] Torrealday, H.I., Hitzman, M.W., Stein, H.J., et al., 2000.Re-Os and U-Pb Dating of the Vein-Hosted Mineralization at the Kansanshi Copper Deposit, Northern Zambia.Economic Geology, 95(5):1165-1170. https://doi.org/10.2113/gsecongeo.95.5.1165
      [35] Veevers, J.J., 2004.Gondwanaland from 650-500 Ma Assembly through 320 Ma Merger in Pangea to 185-100 Ma Breakup:Supercontinental Tectonics via Stratigraphy and Radiometric Dating.Earth-Science Reviews, 68(1-2):1-132. https://doi.org/10.1016/j.earscirev.2004.05.002
      [36] Wang, J., Sun, F.Y., Li, B.L., et al., 2016.Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia.Earth Science, 41(5):792-808 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.067
      [37] Watkins, R.T., McDougall, I., Le Roex, A.P., 1994.K-Ar Ages of the Brandberg and Okenyenya Igneous Complexes, North-Western Namibia.Geologische Rundschau, 83(2):348-356. https://doi.org/10.1007/bf00210550
      [38] Yamada, R., Tagami, T., Nishimura, S., et al., 1995.Annealing Kinetics of Fission Tracks in Zircon:An Experimental Study.Chemical Geology, 122(1-4):249-258. https://doi.org/10.1016/0009-2541(95)00006-8
      [39] Yuan, W.M., Bao, Z.K., Dong, J.Q., et al., 2007.Fission Track Thermochronology Application to Mineralization Ages of Hydrothermal Deposits in Kelang Basin, Northern Xinjiang, China.World Sci-Tech R & D, 29(2):8-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJKF200702001.htm
      [40] Zhang, D.H., Xiao, B., Zhang, C., 2013.Geological Features and Exploration Prospects of the Sediment-Hosted Stratiform Copper-Cobalt Deposits in Zambia.Geology and Exploration, 49(3):577-588 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201303024.htm
      [41] Zhao, W.J., Yuan, W.M., Liu, H.T., et al., 2013.Apatite Fission Track Analysis on the Tectonic Activities and Paleotopography in Southern Altai Region, Xinjiang, China.Atomic Energy Science and Technology, 47(8):1458-1467(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YZJS201308035.htm
      [42] Zhou, Y.H., Jiang, S.Q., 2010.Situation of Copper-Cobalt Mine Development in Congo (DRC).Geology and Exploration, 46(3):525-530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201003020.htm
      [43] 陈廷愚, 2005.地球旋转膨胀与冈瓦纳古陆裂解.地球学报, 26(3):195-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200503001
      [44] 孔令耀, 毛新武, 陈超, 等, 2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义.地球科学, 42(4):485-501. http://www.earth-science.net/WebPage/Article.aspx?id=3563
      [45] 任军平, 王杰, 刘晓阳, 等, 2013.非洲中南部卢弗里安弧Cu-Co矿床研究进展.地质科技情报, 32(5):135-145. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410068007.htm
      [46] 王键, 孙丰月, 李碧乐, 等, 2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学, 41(5):792-808. https://doi.org/10.3799/dqkx.2016.067
      [47] 袁万明, 保增宽, 董金泉, 等, 2007.新疆阿尔泰克朗盆地热液成矿时代的裂变径迹分析.世界科技研究与发展, 29(2):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz200702002
      [48] 张东红, 肖波, 张璨, 2013.赞比亚沉积型铜(钴)矿地质及未来矿业展望.地质与勘探, 49(3):577-588. http://www.oalib.com/paper/4357028
      [49] 赵文菊, 袁万明, 刘海涛, 等, 2013.从裂变径迹分析新疆阿尔泰南部地区构造活动与古地形的变化.原子能科学技术, 47(8):1458-1467. doi: 10.7538/yzk.2013.47.08.1458
      [50] 周应华, 江少卿, 2010.刚果(金)铜钴矿业开发形势.地质与勘探, 46(3):525-530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201003020
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  6098
    • HTML全文浏览量:  1749
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-28
    • 刊出日期:  2018-06-15

    目录

      /

      返回文章
      返回