Apatite Fission Track Constrains on Denudation since Late Cretaceous in Central Uplift, South Yellow Sea Basin
-
摘要: 南黄海中部隆起自印支期以来经历显著的构造隆升及剥蚀过程.基于大陆架科学钻探CSDP-2井的钻井岩心,应用磷灰石裂变径迹技术研究了南黄海中部隆起晚白垩世以来的剥蚀过程及响应特征.所获得的8个磷灰石样品的裂变径迹年龄显示出两个年龄组,除单个样品为38±3 Ma外,其余样品都集中在(52±4)~(65±5)Ma范围内,基本反映了同一期构造热事件年龄,并且均远小于样品所处的二叠纪年龄,表明样品完全退火并记录了晚白垩世以来的热历史.样品热史模拟结果表明,基于泥岩镜质体反射率计算的最高古地温处于样品退火带温区范围内,各样品从晚白垩世早期(约100 Ma)以来经历持续的降温过程,在约80~75 Ma开始进入部分退火带.南黄海中部隆起第一期快速冷却降温过程出现在晚白垩世末期,并持续至古新世早期,随后进入古近纪表现为持续相对缓慢的降温过程,降温幅度约30 ℃,渐新世末期到中新世早期存在另一期快速冷却过程.热史模拟结果较好地指示了南黄海中部隆起晚白垩世以来的地层剥蚀响应特征.Abstract: Significant tectonic uplift and denudation occurred in central uplift of the South Yellow Sea basin (SYSB) since Late Cretaceous. Based on the drilling cores of CSDP-2 well which is supported and carried out by the Continental Scientific Drilling Project (CSDP) of China Geological Survey (CGS), the denudation and related characteristics of thermal history since Late Cretaceous in central uplift of SYSB were analyzed by apatite fission track (AFT) technique. The eight AFT ages obtained show two age groups, with one at (38±3) Ma, and the others ranging from (52±4) Ma to (65±5) Ma which all are much younger than the age of Permian where all samples locate, indicating that the samples were completely annealed and recorded the thermal history since Late Cretaceous. Modeling results of thermal history show that the peak paleo-geotemperature calculated by testing data of vitrinite reflectance (Ro) is within the range of the temperature interval of annealing zone of AFT. All samples suffered continuous cooling processes from the early stage of Late Cretaceous (ca.100 Ma) and started to enter into partial annealing zone (PAZ) at about 80-75 Ma. The first rapid cooling process began at the end of Late Cretaceous, and continued to the Early Paleocene, then was followed by a stage of slow cooling process during Paleogene. Some samples show the other rapid cooling process which is weaker than the first that occurred from the Late Oligocene to Early Miocene. The AFT ages and modeling results of thermal history significantly show the denudation and related characteristics since Late Cretaceous in central uplift of SYSB.
-
图 2 南黄海中部隆起典型地震剖面及CSDP-2井钻探揭示地层
剖面位置见图 1
Fig. 2. Seismic profile through CSDP-2 well in the central uplift of South Yellow Sea and the stratigraphic framework revealed by the CSDP-2 well
表 1 磷灰石裂变径迹测试结果
Table 1. Analytical results of apatite fission track
原样号 垂深(m) 颗粒数 ρs(105/cm2)(Ns) ρi(105/cm2)(Ni) ρd(105/cm2)(Nd) P(χ2)(%) 中心年龄t(Ma)(±1σ) L(μm)(N) CSDP-2-1 1 305.8 35 3.808(752) 19.095(3 771) 14.587(7 124) 89.4 59(±4) 12.9±1.7(101) CSDP-2-2 1 306.6 35 1.711(394) 13.091(3 015) 14.168(7 124) 96.6 38(±3) 12.8±2.1(99) CSDP-2-3 1 311.7 35 4.224(546) 21.978(2 841) 13.541(7 124) 82.2 52(±4) 13.2±1.7(103) CSDP-2-4 1 342.6 35 3.716(721) 18.248(3 541) 12.676(7 124) 27.8 52(±4) 13.0±1.9(111) CSDP-2-5 1 358.8 36 5.442(306) 20.897(1 175) 12.075(7 124) 80.2 65(±5) 12.5±1.9(53) CSDP-2-6 1 379.9 34 2.927(261) 15.018(1339) 16.472(7 124) 84.1 64(±6) 12.7±1.6(96) CSDP-2-7 1 431.2 35 4.347(682) 25.063(3 932) 15.843(7 124) 94.3 56(±3) 12.5±1.9(103) CSDP-2-8 1 437.6 35 4.327(618) 21.333(3 047) 15.424(7 124) 83.4 64(±4) 12.9±1.4(102) 注:ρs为自发径迹密度;ρi为诱发径迹密度;ρd为标准径迹密度;Ns为自发径迹数;Ni为诱发径迹数;Nd为标准径迹数;N为径迹长度数. -
[1] Bellemans, F., de Corte, F., van den Haute, P., 1995.Composition of SRM and CN U-Doped Glasses:Significance for Their Use as Thermal Neutron Fluence Monitors in Fission Track Dating.Radiation Measurements, 24(2):153-160.doi: 10.1016/1350-4487(94)00100-f [2] Burnham, A.K., Sweeney, J.J., 1989.A Chemical Kinetic Model of Vitrinite Maturation and Reflectance.Geochimica et Cosmochimica Acta, 53(10):2649-2657.doi: 10.1016/0016-7037(89)90136-1 [3] Cai, L.X., Wang, J., Guo, X.W., et al., 2017.Characteristics of Sedimentary Facies and Source Rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea:A Case Study of CSDP-2 Coring Well.Journal of Jilin University (Earth Science Edition), 47(4):1030-1046 (in Chinese with English abstract). [4] Donelick, R.A., Ketcham, R.A., Carlson, W.D., 1999.Variability of Apatite Fission-Track Annealing Kinetics; Ⅱ, Crystallographic Orientation Effects.American Mineralogist, 84(9):1224-1234.doi: 10.2138/am-1999-0902 [5] Donelick, R.A., O'Sullivan, P.B., Ketcham, R.A., 2005.Apatite Fission-Track Analysis.Reviews in Mineralogy and Geochemistry, 58(1):49-94.doi: 10.2138/rmg.2005.58.3 [6] Galbraith, R.F., 1981.On Statistical Models for Fission Track Counts:Reply.Journal of the International Association for Mathematical Geology, 13(6):485-488.doi: 10.1007/bf01034500 [7] Gleadow, A.J.W., Duddy, I.R., Green, P.F., et al., 1986.Confined Fission Track Lengths in Apatite:A Diagnostic Tool for Thermal History Analysis.Contributions to Mineralogy and Petrology, 94(4):405-415.doi: 10.1007/bf00376334 [8] Green, P.F., 1981.A New Look at Statistics in Fission-Track Dating.Nuclear Tracks, 5(1-2):77-86.doi: 10.1016/0191-278x(81)90029-9 [9] Green, P.F., 1986.On the Thermo-Tectonic Evolution of Northern England:Evidence from Fission Track Analysis.Geological Magazine, 123(5):493-506.doi: 10.1017/s0016756800035081 [10] Guo, X.W., Zhu, X.Q., Mu, L., et al., 2017.Discovery of Permian-Triassic Ammonoids in the Central Uplift of the South Yellow Sea and Its Geological Implications.Marine Geology & Quaternary Geology, 37(3):121-128 (in Chinese with English abstract). [11] Hou, F.H., Zhang, Z.X., Zhang, X.H., et al., 2008.Geologic Evolution and Tectonic Styles in the South Yellow Sea Basin.Marine Geology & Quaternary Geology, 28(5):61-68 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4cfd36421ae3b19424165bba46cc1a80&encoded=0&v=paper_preview&mkt=zh-cn [12] Hu, S.B., Wang, J.Y., Zhang, R.Y., 1999.Estimation of the Amount of Uplift and Erosion across an Unconformity Using Vitrinite Reflectance Data.Petroleum Exploration and Development, 26(4):42-45 (in Chinese with English abstract). [13] Hurford, A.J., Green, P.F., 1982.A Users' Guide to Fission Track Dating Calibration.Earth and Planetary Science Letters, 59(2):343-354.doi: 10.1016/0012-821x(82)90136-4 [14] Ketcham, R.A., 2005a.Forward and Inverse Modeling of Low-Temperature Thermochronometry Data.Reviews in Mineralogy and Geochemistry, 58(1):275-314.doi: 10.2138/rmg.2005.58.11 [15] Ketcham, R.A., 2005b.The Role of Crystallographic Angle in Characterizing and Modeling Apatite Fission-Track Length Data.Radiation Measurements, 39(6):595-601.doi: 10.1016/j.radmeas.2004.07.008 [16] Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999.Variability of Apatite Fission-Track Annealing Kinetics Ⅲ:Extrapolation to Geological Time Scales.American Mineralogist, 84(9):1235-1255.doi: 10.2138/am-1999-0903 [17] Li, G.W., Tian, Y.T., Kohn, B.P., et al., 2015.Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications.Tectonophysics, 643:80-93.doi: 10.1016/j.tecto.2014.12.014 [18] Lisker, F., Ventura, B., Glasmacher, U.A., 2009.Apatite Thermochronology in Modern Geology.Geological Society, London, Special Publications, 324(1):1-23.doi: 10.1144/sp324.1 [19] Ouyang, K., Zhang, X.H., Li, G., 2009.Characteristics of Stratigraphic Distribution in the Middle Uplift of South Yellow Sea.Marine Geology & Quaternary Geology, 29(1):59-66 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=28a21fc22d0d3953d5e443a94e6efb70&encoded=0&v=paper_preview&mkt=zh-cn [20] Pang, Y.M., 2017.Tectonic Thermal Evolution History of the Central Uplift of the South Yellow Sea Basin from CSDP-2 Drilling Well (Dissertation).Institute of Oceanology of the Chinese Academy of Sciences, Qingdao, 36-44 (in Chinese with English abstract). [21] Pang, Y.M., Zhang, X.H., Guo, X.W., et al., 2017.Mesozoic and Cenozoic Tectono-Thermal Evolution in the Northern South Yellow Sea Basin.Chinese Journal of Geophysics, 60(8):3177-3190 (in Chinese with English abstract). [22] Shen, C.B., Mei, L.F., Xu, S.H., 2009.Fission Track Dating of Mesozoic Sandstones and Its Tectonic Significance in the Eastern Sichuan Basin, China.Radiation Measurements, 44(9-10):945-949.doi: 10.1016/j.radmeas.2009.10.001 [23] Xiao, G.L., Cai, L.X., Guo, X.W., et al., 2017.Detailed Assessment of Meso-Paleozoic Hydrocarbon Source Rocks:Implications from Well CSDP-2 on the Central Uplift of the South Yellow Sea Basin.Marine Geology Frontiers, 33(12):24-36 (in Chinese with English abstract). [24] Xu, X., Yao, Y.J., Feng, Z.Q., et al., 2011.Geophysical Cognition of Tectonic Evolution in the Northern South Yellow Sea.Progress in Geophysics, 26(4):1266-1278 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5c58bd7a52a1c3211f6b9c4dd4bf7bb1&encoded=0&v=paper_preview&mkt=zh-cn [25] Yang, C.Q., Dong, H.P., Li, G., 2014.Formation and Tectonic Evolution of the Central Uplift of the South Yellow Sea Basin.Marine Geology Frontiers, 30(7):17-21 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fd7eea535df23e87724cbb8eea5c1ab3&encoded=0&v=paper_preview&mkt=zh-cn [26] Yang, S.C., Hu, S.B., Cai, D.S., et al., 2003.Geothermal Field and Thermo-Tectonic Evolution in Southern South Yellow Sea Basin.Chinese Science Bulletin, 48(14):1564-1569 (in Chinese). doi: 10.1360/03wd0024 [27] Yao, Y.J., Xia, B., Feng, Z.Q., et al., 2005.Tectonic Evolution of the South Yellow Sea since the Paleozoic.Petroleum Geology & Experiment, 27(2):124-128 (in Chinese with English abstract). [28] Yi, S., Yi, S., Batten, D.J., et al., 2003.Cretaceous and Cenozoic Non-Marine Deposits of the Northern South Yellow Sea Basin, Offshore Western Korea:Palynostratigraphy and Palaeoenvironments.Palaeogeography, Palaeoclimatology, Palaeoecology, 191(1):15-44.doi: 10.1016/s0031-0182(02)00637-5 [29] Yuan, W.M., Carter, A., Dong, J.Q., et al., 2006.Mesozoic-Tertiary Exhumation History of the Altai Mountains, Northern Xinjiang, China:New Constraints from Apatite Fission Track Data.Tectonophysics, 412(3-4):183-193.doi: 10.1016/j.tecto.2005.09.007 [30] Yuan, W.M., Yang, Z.Q., Zhang, Z.C., et al., 2011.The Uplifting and Denudation of Main Huangshan Mountains, Anhui Province, China.Science China:Earth Sciences, 41(10):1435-1443 (in Chinese). http://cn.bing.com/academic/profile?id=a60ac40ec962f29c3f849e5106259e49&encoded=0&v=paper_preview&mkt=zh-cn [31] Zhang, X.H., Yang, J.Y., Li, G., et al., 2014.Basement Structure and Distribution of Mesozoic-Paleozoic Marine Strata in the South Yellow Sea Basin.Chinese Journal of Geophysics, 57(12):4041-4051 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b82f22abbc7c9e29f787249285e3cc96&encoded=0&v=paper_preview&mkt=zh-cn [32] Zhang, X.H., Zhang, Z.X., Lan, X.H., et al., 2013.Regional Geology in South Yellow Sea.Ocean Press, Beijing, 394-404 (in Chinese). [33] Zheng, D.W., Zhang, P.Z., Wan, J.L., et al., 2006.Rapid Exhumation at~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology:Implications for Growth of the Northeastern Tibetan Plateau Margin.Earth and Planetary Science Letters, 248(1-2):198-208.doi: 10.1016/j.epsl.2006.05.023 [34] Zhu, C.Q., Qiu, N.S., Cao, H.Y., et al., 2016.Paleogeothermal Reconstruction and Thermal Evolution Modeling of Source Rocks in the Puguang Gas Field, Northeastern Sichuan Basin.Journal of Earth Science, 27(5):796-806. doi: 10.1007/s12583-016-0909-8 [35] 蔡来星, 王蛟, 郭兴伟, 等, 2017.南黄海中部隆起中-古生界沉积相及烃源岩特征——以CSDP-2井为例.吉林大学学报(地球科学版), 47(4):1030-1406. http://www.cqvip.com/QK/98440A/201410/663087358.html [36] 郭兴伟, 朱晓青, 牟林, 等, 2017.南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义.海洋地质与第四纪地质, 37(3):121-128. http://cdmd.cnki.com.cn/Article/CDMD-10359-2005011892.htm [37] 侯方辉, 张志珣, 张训华, 等, 2008.南黄海盆地地质演化及构造样式地震解释.海洋地质与第四纪地质, 28(5):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200805009 [38] 胡圣标, 汪集旸, 张容燕, 1999.利用镜质体反射率数据估算地层剥蚀厚度.石油勘探与开发, 26(4):42-45. http://www.cqvip.com/QK/90664X/1999004/3790268.html [39] 欧阳凯, 张训华, 李刚, 2009.南黄海中部隆起地层分布特征.海洋地质与第四纪地质, 29(1):59-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200901014.htm [40] 庞玉茂, 2017.基于CSDP-2井的南黄海中部隆起构造热演化史研究(博士学位论文).青岛:中国科学院海洋研究所, 36-44. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201712004.htm [41] 庞玉茂, 张训华, 郭兴伟, 等, 2017.南黄海北部盆地中、新生代构造热演化史模拟研究.地球物理学报, 60(8):3177-3190. doi: 10.6038/cjg20170824 [42] 肖国林, 蔡来星, 郭兴伟, 等, 2017.南黄海中部隆起CSDP-2井中-古生界烃源岩精细评价.海洋地质前沿, 33(12):24-36. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201712004.htm [43] 徐行, 姚永坚, 冯志强, 等, 2011.南黄海北部构造演化的地球物理认识.地球物理学进展, 26(4):1266-1278. http://manu39.magtech.com.cn/Geoprog/CN/abstract/abstract8125.shtml [44] 杨长清, 董贺平, 李刚, 2014.南黄海盆地中部隆起的形成与演化.海洋地质前沿, 30(7):17-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201407003 [45] 杨树春, 胡圣标, 蔡东升, 等, 2003.南黄海南部盆地地温场特征及热-构造演化.科学通报, 48(14):1564-1569. doi: 10.3321/j.issn:0023-074X.2003.14.017 [46] 姚永坚, 夏斌, 冯志强, 等, 2005.南黄海古生代以来构造演化.石油实验地质, 27(2):124-128. doi: 10.11781/sysydz200502124 [47] 袁万明, 杨志强, 张招崇, 等, 2011.安徽省黄山山体的隆升与剥露.中国科学:地球科学, 41(10):1435-1443. http://mall.cnki.net/magazine/Article/JDXK201110006.htm [48] 张训华, 杨金玉, 李刚, 等, 2014.南黄海盆地基底及海相中、古生界地层分布特征.地球物理学报, 57(12):4041-4051. doi: 10.6038/cjg20141216 [49] 张训华, 张志珣, 蓝先洪, 等, 2013.南黄海区域地质.北京:海洋出版社, 394-404.