Sources of Ore-Forming Fluids from Tianbaoshan and Huize Pb-Zn Deposits in Yunnan-Sichuan-Guizhou Region, Southwest China: Evidence from Fluid Inclusions and He-Ar Isotopes
-
摘要: 为限定川滇黔地区大型铅锌矿床成矿流体来源,选择天宝山大型铅锌矿床和会泽超大型铅锌矿床中热液矿物进行流体包裹体及氦氩同位素研究.结果显示:(1)天宝山矿床为中低温、中等盐度流体成矿,成矿流体主要来源于盆地卤水;会泽矿床为中高温、中等盐度流体成矿,成矿流体也主要来源于盆地卤水,但具有不同性质流体混合特征;(2)两矿床硫化物3He/4He值范围介于0.02~0.32 Ra,证明成矿流体以地壳流体为主,但混有少量(< 5.3%)地幔成分,40Ar/36Ar值(345.0~1 698.8)表明成矿流体以饱和大气水为主;(3)综合两个矿床地质特征、流体包裹体及氦氩同位素研究认为天宝山矿床和会泽矿床的形成与右江盆地演化及峨眉山大火成岩省的岩浆活动有关.Abstract: In order to constrain the source of the ore-forming fluids in large Pb-Zn deposits in the Sichuan-Yunnan-Guizhou region, fluid inclusions and He-Ar isotopes have been analyzed in ore-forming fluids trapped in sulphide minerals from the large Tianbaoshan Pb-Zn deposit and the super large Huize Pb-Zn deposit. The results are summarized as follows:(1) Fluid inclusions in Tianbaoshan deposit have medium-low homogenization temperatures and medium salinities, and ore-forming fluids are mainly derived from basin brine, whereas fluid inclusions in Huize deposit represent high-medium homogenization temperatures and medium salinities, and ore-forming fluids are dominantly derived from basin brine, but with evidence for mixing of different fluids. (2) The values of 3He/4He in Tianbaoshan deposit and Huize deposit range from 0.02 to 0.32 Ra (where Ra is the atmospheric value; 3He/4He=1.4×10-6), indicating that the ore-forming fluids are dominated by continental crust fluids, where as a small but clear mantle helium contribution is present. And the measurements of 40Ar/36Ar ratio (345.0-1 698.8) indicate that the ore-forming fluids mainly consist of saturated atmospheric water. (3) Combined with geological features, fluid inclusion trapped in sulphide minerals and He-Ar isotopes, it is concluded that the ore-forming processes of Tianbaoshan deposit and Huize deposit are related to the evolution of Youjiang sedimentary basin and the magmatic activities of the Emeishan large igneous province.
-
图 1 川滇黔地区地质与主要铅锌矿床分布简图
Fig. 1. Simplified regional geological and distribution map of typical Pb-Zn deposits at the Sichuan-Yunnan-Guizhou region
图 3 天宝山铅锌矿床矿石主要组构的构造特征
a.块状铜铅锌矿石,主要矿物为黄铜矿、方铅矿、闪锌矿;b.块状铅锌矿石,矿物主要为闪锌矿、方铅矿、方解石;c.角砾状铅锌矿石,方铅矿、闪锌矿、方解石胶结硅化白云岩角砾;d.细脉状铅锌矿石,闪锌矿、方铅矿、方解石沿白云岩裂隙分布;e.黄铜矿(Ⅰ)被稍晚方铅矿(Ⅰ)、闪锌矿(Ⅰ)交代;f.晚阶段细脉状方铅矿(Ⅲ)沿裂隙穿插闪锌矿(Ⅱ);g.晚阶段细粒浅色闪锌矿(Ⅲ)穿插早期细粒闪锌矿(Ⅱ1)与粗粒闪锌矿(Ⅱ2);h.方解石(Ⅲ)胶结早期形成的闪锌矿角砾(Ⅱ)和围岩白云岩角砾(Dol);Ⅰ.方铅矿(Ⅰ)、闪锌矿(Ⅰ)交代黄铜矿(Ⅰ);j.黄铜矿(Ⅱ)、方铅矿(Ⅱ)呈固溶体赋存于闪锌矿(Ⅱ)中;k.稍晚形成的方铅矿(Ⅱ)交代稍早形成的闪锌矿(Ⅱ);l.晚阶段的方铅矿-黄铁矿-方解石(Ⅲ)细脉穿插较早的闪锌矿(Ⅱ);Cc.方解石;Ccp.黄铜矿;Dol.白云岩;Py.黄铁矿;Gn.方铅矿;Sph.闪锌矿;Ⅰ第一阶段;Ⅱ第二阶段;Ⅲ第三阶段).
Fig. 3. Typical ore structures from Tianbaoshan Pb-Zn deposit
图 4 会泽铅锌矿床地质图
上二叠统(P2)包括峨眉山玄武岩(P2β);下二叠统(P1)包括栖霞-茅口组(P1q+m)灰岩、白云质灰岩夹白云岩,梁山组(P1l)炭质页岩和石英砂岩;石炭系(C)包括马平组(C3m)角砾状灰岩,威宁组(C2w)鲕粒状灰岩,摆佐组(C1b)粗晶白云岩及灰岩及白云质灰岩,大唐组(C1d)隐晶灰岩及粒状灰岩;泥盆系(D)包括宰格组(D3zg)灰岩、硅质白云岩,海口组(D2h)粉砂岩和泥质页岩;寒武系()包括筇竹寺组(1q)泥质页岩夹砂质泥岩;Z震旦系(Z)包括灯影组(Z2d)硅质白云岩;据韩润生等(2000)修改
Fig. 4. Simplified geological map of the Huize Pb-Zn deposit
图 5 会泽铅锌矿床矿石组构特征
a.黄铁矿、闪锌矿、方解石依次由矿脉边缘向中心生长;b.块状矿石,由方铅矿、闪锌矿、方解石构成;c.橘红色闪锌矿与他形-半自形方铅矿共生,形成块状矿石;d.晚阶段方解石(Ⅲ)胶结早阶段黄铁矿、闪锌矿(Ⅰ)、方铅矿(Ⅰ)角砾形成角砾状矿石;e.Ⅰ阶段矿物生长顺序,由早到晚依次为黄铁矿(Ⅰ)、深棕色闪锌矿(Ⅰ)、方解石(Ⅰ);f.Ⅱ阶段的深棕色粗晶闪锌矿(Ⅱ)-方解石(Ⅱ)组合交代早阶段黄铁矿(Ⅰ);g.Ⅱ阶段深棕色闪锌矿(Ⅱ)、浅棕色闪锌矿(Ⅱ)、橘红色闪锌矿(Ⅱ)、浅黄色闪锌矿(Ⅱ)与方铅矿(Ⅱ)、方解石(Ⅱ)共生;h.Ⅱ阶段闪锌矿胶结早阶段黄铁矿(Ⅱ)角砾,而被晚阶段闪锌矿(Ⅲ)-方解石(Ⅲ)胶结;i.闪锌矿(Ⅰ)、方铅矿(Ⅰ)交代较早形成的黄铁矿(Ⅰ);j.黄铜矿(Ⅰ)固溶体出溶于闪锌矿(Ⅱ)晶体中;k.闪锌矿(Ⅱ)交代黄铁矿(Ⅱ)颗粒;l.黄铜矿(Ⅱ)出溶于闪锌矿(Ⅱ)中;Cc.方解石;Ccp.黄铜矿;Gn.方铅矿;Py.黄铁矿;Sph.闪锌矿
Fig. 5. Field photographs of different textures from Huize Pb-Zn deposit
图 8 天宝山矿床和会泽矿床流体包裹体均一温度、盐度直方图
a.天宝山矿床不同阶段热液矿物流体包裹体均一温度直方图;b.天宝山矿床不同阶段热液矿物流体包裹体盐度直方图;c.会泽矿床不同阶段热液矿物流体包裹体均一温度直方图;d.会泽矿床不同阶段热液矿物流体包裹体盐度直方图;TBS Sph Ⅱ.天宝山矿床Ⅱ阶段闪锌矿;TBS Sph Ⅲ.天宝山矿床Ⅲ阶段闪锌矿;TBS CcⅡ.天宝山矿床Ⅱ阶段方解石;TBS Cc Ⅲ.天宝山矿床Ⅲ阶段方解石;HZ Sph Ⅰ.会泽矿床Ⅰ阶段闪锌矿;HZ Sph Ⅱ.会泽矿床Ⅱ阶段闪锌矿;HZ Sph Ⅲ.会泽矿床Ⅲ阶段闪锌矿;HZ Cc Ⅰ.会泽矿床Ⅰ阶段方解石;HZ Cc Ⅱ.会泽矿床Ⅱ阶段方解石;HZ Cc Ⅲ.会泽矿床Ⅲ阶段方解石
Fig. 8. Histograms of microthermometric and salinity for each stage of Tianbaoshan and Huize deposits
图 9 天宝山铅锌矿床、会泽铅锌矿床流体包裹体成分K/Na vs. Ca/K(a),Na/Ca vs. Na/K(b),Na/K vs. Na/(Ca+Mg)(c)和Na/Ca vs. Na/Mg(d)图解
a.底图来源于Samson et al.(2008);b、d.底图来源于Hofstra et al.(2016);c.底图来源于谢树成和殷鸿福(1997).1数据来源于韩润生(2002);2数据来源于王小春(1992);Na/K、Na/Ca、Na/Mg、Na/(Ca+Mg)值为摩尔比值
Fig. 9. Plots of K/Na vs. Ca/K(a), Na/Ca vs. Na/K(b), Na/K vs. Na/(Ca+Mg)(c) and Na/Ca vs. Na/Mg(d) of inclusion-trapped fluids in the Tianbaoshan Pb-Zn deposit and Huize Pb-Zn deposit
图 10 天宝山矿床和会泽矿床硫化物3He/4He(Ra)-40Ar/36Ar(a)及3He-4He含量(b)
a图MVT铅锌矿床3He/4He(Ra)-40Ar/36Ar数据范围统计于美国(Illinois-Kentucky、Viburnum Trend、Tri-State)(Kendrick et al., 2002),摩洛哥(Touissit-Bou Beker)(Bouabdellah et al., 2015)、英国(Irish)(Davidheiser-Kroll et al., 2014)MVT铅锌矿床.40Ar/36Ar值地壳范围引自Stuart et al.(1995),地幔范围胡瑞忠(1997);3He/4He值范围引自Stuart et al.(1995)
Fig. 10. Plots of 3He/4He (Ra) vs.40Ar/36Ar (a) and 3He vs. 4He (b) of inclusion-trapped fluids from the Tianbaoshan deposit and Huize deposit
图 11 世界MVT矿床与川滇黔地区会泽矿床、天宝山矿床热液矿物流体包裹体均一温度、盐度统计汇总
典型MVT矿床均一温度、盐度数据来自于闪锌矿流体包裹体;天宝山矿床、会泽矿床均一温度、盐度分别来自不同阶段的闪锌矿和方解石.典型MVT矿床数据引自Leach et al.(2005);HZ.会泽矿床;TBS.天宝山矿床;Sph.闪锌矿;Cc.方解石;Ⅰ、Ⅱ、Ⅲ.成矿阶段
Fig. 11. Summary of homogenization temperatures and salinity data for Tianbaoshan deposit, Huize deposit and selected MVT deposits based on fluid inclusion studies
表 1 天宝山矿床和会泽矿床各阶段流体包裹体显微测温数据
Table 1. Summary of fluid inclusion data in minerals from different stages of Tanbaoshan and Huize deposits
矿床 成矿阶段 测试矿物(数据个数n) 均一温度(℃) 冰点(℃) 盐度(% NaCl eqv) 分布范围 峰值区间 平均值 分布范围 主要区间 平均值 天宝山 Ⅱ 闪锌矿(n=59) 101.8~267.0 100~180 140.4 -14.4~-1.9 3.2~18.1 8~16 11.1 Ⅱ 方解石(n=31) 102.6~193.1 100~160 133.2 -16.6~-4.1 6.6~19.9 8~20 14.3 Ⅲ 闪锌矿(n=15) 98.4~162.2 100~160 129.7 -8.2~-2.2 3.7~11.9 8~12 8.3 Ⅲ 方解石(n=12) 95.6~158.3 100~140 119.2 -1.2~-6.4 2.1~9.7 4~10 6.7 会泽 Ⅰ 闪锌矿(n=33) 246.0~420.0 250~300,325~400 315.5 -12.1~-0.5 0.9~16.1 0~2,8~16 8.2 Ⅰ 方解石(n=37) 184.0~420.0 175~300,325~375 259.2 -3.6~-20.1 5.9~22.4 10~16,18~23 15.0 Ⅱ 闪锌矿(n=43) 167.8~400.0 175~325 255.7 -2.6~19.2 4.3~21.8 12~16,18~22 13.5 Ⅱ 方解石(n=49) 132.1~330.3 150~275 213.0 -0.3~-11.6 0.5~15.6 0~6,8~14 6.5 Ⅲ 闪锌矿(n=20) 160.5~231.6 160~225 182.5 -0.5~-3.7 0.9~6.0 0~4 2.7 Ⅲ 方解石(n=17) 152.0~217.0 150~200 178.1 -0.3~-2.3 0.5~3.9 - 2.2 表 2 天宝山铅锌矿床和会泽铅锌矿床矿物流体包裹体液相成分及离子比值
Table 2. Compositions and cationic ratios of fluid inclusions in minerals from the Tianbaoshan Pb-Zn deposit and Huize Pb-Zn deposit
矿床 样号 矿物 K+(106) Na+(106) Ca2+(106) Mg2+(106) K/Na Ca/K Na/K Na/Ca Na/Mg Na/(Ca+Mg) 天宝山 T-1 闪锌矿 1.39 19.98 22.32 15.72 0.07 16.06 24.45 1.56 1.34 0.72 T-2 闪锌矿 2.489 46.05 30.55 14.71 0.05 12.27 31.46 2.63 3.31 1.46 T-3 闪锌矿 2.764 57.49 35.61 13.15 0.05 12.88 35.37 2.81 4.62 1.75 T-4 方解石 0.755 2 8.242 19.8 2.11 0.09 26.22 18.56 0.73 4.13 0.62 TB0492 闪锌矿 2.6 10 83.4 28.3 0.26 32.08 6.54 0.21 0.37 0.13 会泽 H5S 闪锌矿 0.84 8.03 3.18 0.37 0.10 3.79 16.26 4.40 22.94 3.69 H2S 闪锌矿 1.46 0.92 7.75 0.73 1.59 5.31 1.07 0.21 1.33 0.18 A-4 闪锌矿 0.15 4.74 2.06 0.21 0.03 13.73 53.74 4.01 23.86 3.43 A-5 闪锌矿 0.04 5.40 2.11 0.21 0.01 52.75 229.59 4.46 27.19 3.83 H2C 方解石 Nd 0.30 39.29 2.42 - - - - 0.13 0.01 H5C 方解石 Nd 0.47 39.32 1.28 - - - - 0.39 0.02 B-4 方解石 Nd 0.86 18.3 1.22 - - - - 0.75 0.07 B-5 方解石 Nd 0.73 12.76 0.96 - - - - 0.80 0.09 1751/9/91 黄铁矿 0.87 0.25 0.65 0.25 3.48 0.75 0.49 0.67 1.06 0.41 MQ/9111 黄铁矿 0.181 3.66 51.74 8.15 0.05 285.86 34.39 0.12 0.47 0.10 MQ/9151 黄铁矿 0.73 3.07 1.39 0.51 0.24 1.90 7.15 3.85 6.36 2.40 1751/21 闪锌矿 0.81 8.90 26.8 2.06 0.09 33.09 18.69 0.58 4.57 0.51 28-21 闪锌矿 0.28 1.50 0.60 0.01 0.19 2.14 9.11 4.36 158.58 4.24 28-31 闪梓矿 0.75 4.27 6.32 0.73 0.18 8.43 9.68 1.18 6.18 0.99 HQ99/11 方解石 0.53 3.56 108.8 4.16 0.15 205.28 11.42 0.06 0.90 0.05 HQ109/41 方解石 1.31 7.21 81.5 4.39 0.18 62.21 9.36 0.15 1.74 0.14 HQ/841 方解石 1.23 7.14 81.44 4.70 0.17 66.21 9.87 0.15 1.61 0.14 1631/381 方解石 2.45 11.42 72.65 5.56 0.21 29.65 7.93 0.27 2.17 0.24 1751/21 方解石 1.57 9.30 74.52 4.70 0.17 47.46 10.07 0.22 2.09 0.20 注:Na/K、Na/Ca、Na/Mg、Na/(Ca+Mg)值为摩尔比值;K/Na、Ca/K值为质量百分比值.上标1数据来源于韩润生(2002);上标2数据来源于王小春(1992);测试工作在国土资源部中南矿产资源监督检测中心(武汉地质矿产研究所)完成. 表 3 天宝山铅锌矿床及会泽铅锌矿床硫化物矿物流体包裹体He-Ar同位素
Table 3. He-Ar isotopic compositions of fluid inclusions in sulphide minerals from the Tianbaoshan and Huize Pb-Zn deposit
矿床 样品名称 矿物 重量(g) 4He(10-7 ccSTP/g) 3He/4He(Ra) 40Ar(10-7 ccSTp/g) 40Ar*(10-7 ccSTp/g) 40Ar/36Ar 38Ar/36Ar 4He地幔(%) 天宝山 TBCP-1 黄铜矿 0.3 28.9 0.04±0.01 13.0 5.9 539.0±3.3 0.189±0.001 0.5 TBCP-2 黄铜矿 0.3 23.0 0.21±0.01 14.4 2.1 345.0±2.1 0.187±0.001 3.3 TBCP-3 黄铜矿 0.3 32.0 0.05±0.01 12.2 6.8 669.1±4.1 0.188±0.001 0.7 TBCP-4 黄铜矿 0.3 27.4 0.03±0.01 6.5 1.7 402.7±2.5 0.189±0.001 0.4 TBCP-5 黄铜矿 0.2 16.0 0.32±0.04 6.7 1.4 373.7±2.3 0.189±0.001 5.3 TBCP-6 黄铜矿 0.4 27.5 0.04±0.01 13.6 7.0 612.1±3.7 0.188±0.001 0.6 会泽 Hhe-1 黄铁矿 0.2 21.9 0.02±0.01 5.9 4.9 1 698.8±10.5 0.191±0.003 0.2 Hhe-2 黄铁矿 0.2 29.7 0.03±0.01 17.0 2.7 354.6±2.2 0.188±0.003 0.3 Hhe-3 黄铁矿 0.2 9.6 0.04±0.01 3.0 1.7 679.2±4.2 0.186±0.003 0.4 Hhe-4 黄铁矿 0.3 13.9 0.14±0.02 3.9 2.9 1 194.2±2.2 0.188±0.003 2.1 Hhe-5 黄铁矿 0.2 13.7 0.16±0.02 3.1 2.4 1 165.2±2.2 0.188±0.003 2.5 Hhe-6 黄铁矿 0.1 12.6 0.06±0.01 2.9 2.0 918.5±1.7 0.187±0.003 0.8 注:Ra为大气3He/4He=1.4×10-6;40Ar*为非大气氩40Ar,40Ar*=40Ar样-295.5×36Ar样;4He地幔值代表地幔氦份额,4He地幔(%)=100[(3He/4He)样品-(3He/4He)地壳]/[(3He/4He)地幔-(3He/4He)地壳],假设地幔R/Ra=6.00和地壳R/Ra=0.01(Anderson,2000).测试工作在中国科学院地质与地球物理研究所完成. 表 4 典型MVT铅锌矿床与川滇黔地区铅锌矿床主要特征
Table 4. Comparison of characteristics between typical MVT Pb-Zn deposits in the world and Pb-Zn deposits in Sichuan-Yunnan-Guizhou region
典型MVT铅锌矿床 川滇黔地区铅锌矿床 资料来源 总体特征 典型矿床 成因 后生 后生 TBSD:后生;HZD:后生 1~6,本文 成矿背景 造山带内侧600 km内的前陆盆地边缘为主,少数在前陆逆冲带中,极少数产于伸展环境 与古特提斯洋闭合过程中右江盆地演化有关 TBSD、HZD:与古特提斯洋闭合过程中右江盆地演化及峨眉山大火成岩省岩浆活动有关 1~3,6,8,21~22 赋矿围岩 台地碳酸盐岩,主要为白云岩 台地碳酸盐岩,主要为白云岩 TBSD:白云岩HZD:白云岩 1~4,本文 控矿构造 溶蚀坍塌角砾岩,断层和裂隙,岩性转化界面 张性断裂,逆冲断裂,褶皱-顺层活动带 TBSD:张性断裂HZD:逆冲断裂 1~4,9 主要矿物 闪锌矿、方铅矿、黄铁矿、白铁矿、(黄铜矿)、白云石、方解石、(重晶石)、(萤石) 闪锌矿、方铅矿、黄铁矿、(黄铜矿)、白云石、方解石、(重晶石)、(萤石) TBSD:闪锌矿、方铅矿、黄铜矿、方解石、白云石HZD:闪锌矿、方铅矿、黄铁矿、方解石、白云石 1~4,10~12,本文 围岩蚀变 围岩溶解,角砾岩化,碳酸盐化+硅化±粘土化±有机质化±长石化 碳酸盐化+硅化±粘土化±有机质化 TBSD:碳酸盐化+硅化±黄铁矿化HZD:碳酸盐化+黄铁矿化+硅化±粘土化 1~4,10~12 成矿时代 泥盆纪-三叠纪,白垩纪-第三纪 晚三叠世-早侏罗世 TBSD:无年代学数据,推断为晚三叠世-早侏罗世HZD:晚三叠世 2,8~10 与岩浆活动关系 存在争议 争议较大 TBSD:提供部分流体;可能提供热源HZD:提供部分流体;可能提供热源 1~8,10,16~18,本文 成矿温度及盐度 成矿温度介于50~250 ℃,以90~150 ℃为主,Irish型温度为70~280 ℃;盐度主要区间介于(10~30)% NaCl eqv,Irish型盐度(4~28)% NaCl eqv 140~360 ℃;(4.2~13.5)% NaCl eqv TBSD:95.6~267 ℃,2.1~19.9% NaCl eqvHZD:132.1~420 ℃,0.5~22.4% NaCl eqv 1~3,13~15,24,本文 成矿流体来源 盆地卤水为主,少量地幔流体 争议较大 TBSD:盆地卤水为主,少量地幔流体HZD:盆地卤水为主,少量地幔流体,存在其他性质流体 1~3,23~24,本文 He-Ar同位素 3He/4He:地壳为主,少量的地幔流体加入;40Ar/39Ar:大气降水为主,有少量的剩余氩 — TBSD、HZD:3He/4He:地壳为主,少量的地幔流体加入;40Ar/39Ar:大气降水为主,有少量的剩余氩 16~18,本文 物质来源 Pb:地壳;S:地壳;Zn:未知 Pb:地壳;S:地壳;Zn:未知 TBSD:地壳HZD:地壳 1~4,10~11 矿床规模 具有群聚性,单个为中小型,矿区可达大型-超大型 具有群聚性,单个多为中小型或矿化体,少量为(超)大型,矿区规模不等 TBSD:大型HZD:超大型 1~4,19~20 注:TBSD为天宝山矿床,HZD为会泽矿床.1. Leach et al.(1993) ;2.Leach et al.(2001) ;3.Leach et al.(2005) ;4.柳贺昌和林文达(1999);5.王奖臻等(2002);6.张长青(2008);7.吴越(2013);8.Zhang et al.(2015) ;9.张志斌等(2006);10.黄智龙(2004b);11.孙海瑞等(2016);12.王小春(1992);13.Zhu et al.(2016) ;14.喻磊(2014);15.韩润生等(2012);16.Kendrick et al.(2002) ;17.Bouabdellah et al.(2015) ;18.Davidheiser-Kroll et al.(2014) ;19.Li et al(2007a) ;20.Zhou et al.(2013a) ;21.Liu et al.(2017) ;22.Hu et al.(2017) ;23.叶霖等(2016);24.念红良等(2017). -
[1] Anderson, D.L., 2000.The Statistics and Distribution of Helium in the Mantle.International Geology Review, 42(4):289-311. https://doi.org/10.1080/00206810009465084 [2] Bouabdellah, M., Niedermann, S., Velasco, F., 2015.The Touissit-Bou Beker Mississippi Valley-Type District of Northeastern Morocco:Relationships to the Messinian Salinity Crisis, Late Neogene-Quaternary Alkaline Magmatism, and Buoyancy-Driven Fluid Convection.Economic Geology, 110(6):1455-1484. https://doi.org/10.2113/econgeo.110.6.1455 [3] Cai, J.X., Zhang, K.J., 2009.A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic.Tectonophysics, 467(1-4):35-43. https://doi.org/10.1016/j.tecto.2008.12.003 [4] Chen, J., 1993.Genesis and Metallogenic Pattern of the Qilinchang Pb-Zn Deposit.Geological Exploration for Non-Ferrous Metals, 2(2):85-91, 99(in Chinese with English abstract). doi: 10.1007%2Fs11430-013-4668-4 [5] Chen, S.J.1986.Research on the Genesis of Lead-Zinc Ore-Deposits in Western Guizhou and Northeastern Yunnan.Geology of Guizhou, 3(3):211-222(in Chinese with English abstract). doi: 10.1007%2Fs00126-011-0386-z [6] Chen, Y.J., Ni, P., Fan, H.R., et al., 2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica, 23(9):2085-2108(in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GDKL200711002057.htm [7] Davidheiser-Kroll, B., Stuart, F.M., Boyce, A.J., 2014.Mantle Heat Drives Hydrothermal Fluids Responsible for Carbonate-Hosted Base Metal Deposits:Evidence from 3He/4He of Ore Fluids in the Irish Pb-Zn Ore District.Mineralium Deposita, 49(5):547-553. https://doi.org/10.1007/s00126-014-0516-5 [8] Du, Y.S., Huang, H., Yang, J.H., et al., 2013.The Basin Translation from Late Paleozoic to Triassic of the Youjiang Basin and Its Tectonic Signification.Geological Review, 59(1):1-11(in Chinese with English abstract). doi: 10.1007%2Fs11430-012-4496-y [9] Gao, S., Yang, J., Zhou, L., et al., 2011.Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses.American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 [10] Garven, G., 1986.The Role of Regional Fluid Flow in the Genesis of the Pine Point Deposit, Western Canada Sedimentary Basin; Reply.Economic Geology, 81(4):1015-1020. https://doi.org/10.2113/gsecongeo.81.4.1015 [11] Garven, G., Ge, S., Person, M.A., et al., 1993.Genesis of Stratabound Ore Deposits in the Midcontinent Basins of North America; 1, the Role of Regional Groundwater Flow.American Journal of Science, 293(6):497-568. https://doi.org/10.2475/ajs.293.6.497 [12] Gu, X.X., Zhang, Y.M., Li, B.H., et al., 2011.Hydrocarbon-and Ore-Bearing Basinal Fluids:A Possible Link between Gold Mineralization and Hydrocarbon Accumulation in the Youjiang Basin, South China.Mineralium Deposita, 47(6):663-682. https://doi.org/10.1007/s00126-011-0388-x [13] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197 [14] Han, R. S., 2002. Characteristics of Geology, Geochemistry and Prognosis of Concealed Ores in Huize Super-Large Pb-Zn-Ag Ore Deposits, Yunnan Province of China(Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang(in Chinese). [15] Han, R.S., Hu, Y.Z., Wang, X.K., et al., 2012.Mineralization Model of Rich Ge-Ag-Bearing Pb-Zn Polymetallic Deposit Concentrated District in Northeastern Yunnan, China.Acta Geologica Sinica, 86(2):280-294(in Chinese with English abstract). doi: 10.1007%2Fs11631-014-0668-0 [16] Han, R.S., Li, B., Ni, P., et al., 2016.Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Pb-Zn-(Ge-Ag) Deposit, Yunnan Province.Journal of Jilin University (Earth Science Edition), 46(1):91-104(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0169136817302809 [17] Han, R.S., Liu, C.Q., Huang, Z.L., et al., 2000.Characteristics of Ore-Controlling Structures and REE Composition of Fault Rocks in Huize Lead-Zinc Deposit, Yunnan.Journal of Mineralogy and Petrology, 20(4):11-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200004002.htm [18] He, H.Y., Zhu, R.X., Saxton, J., 2011.Noble Gas Isotopes in Corundum and Peridotite Xenoliths from the Eastern North China Craton:Implication for Comprehensive Refertilization of Lithospheric Mantle.Physics of the Earth and Planetary Interiors, 189(3-4):185-191. https://doi.org/10.1016/j.pepi.2011.09.001 [19] Hofstra, A.H., Meighan, C.J., Song, X.Y., et al., 2016.Mineral Thermometry and Fluid Inclusion Studies of the Pea Ridge Iron Oxide-Apatite-Rare Earth Element Deposit, Mesoproterozoic St.Francois Mountains Terrane, Southeast Missouri, USA.Economic Geology, 111(8):1985-2016. https://doi.org/10.2113/econgeo.111.8.1985 [20] Hu, R.Z., 1997.He-Ar Isotopic Geochemical Characteristics in Ore-Forming Fluids.Bulletin of Mineralogy, Petrology and Geochemistry, 16(2):52-56(in Chinese). doi: 10.1007/3-540-27946-6_197 [21] Hu, R.Z., Bi, X.W., Turner, G., et al., 1999.He and Ar Isotope Geochemistry of Ore-Forming Fluids for the Ailaoshan Gold Mineralization Belt.Science in China(Series D), 29(4):321-330(in Chinese). doi: 10.1007%2Fs11434-011-4952-7 [22] Hu, R.Z., Fu, S.L., Huang, Y., et al., 2017.The Giant South China Mesozoic Low-Temperature Metallogenic Domain:Reviews and a New Geodynamic Model.Journal of Asian Earth Sciences, 137:9-34. https://doi.org/10.1016/j.jseaes.2016.10.016 [23] Huang, Z.L., Chen, J., Han, R.S., et al., 2004a.Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China:Discussion on the Relationship between the Emeishan Flood Basalts and Lead-Zinc Mineralization.Geological Publishing House, Beijing(in Chinese). [24] Huang, Z.L., Li, W.B., Zhang, Z.L., et al., 2004b.Several Problems Involved in Genetic Studies on Huize Superlarge Pb-Zn Deposit, Yunnan Province.Acta Mineralogica Sinica, 24(2):105-111(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200402002.htm [25] Huang, Z.L., Li, W.B., Chen, J., et al., 2003.Carbon and Oxygen Isotope Constraints on Mantle Fluid Involvement in the Mineralization of the Huize Super-Large Pb-Zn Deposits, Yunnan Province, China.Journal of Geochemical Exploration, 78-79:637-642. https://doi.org/10.1016/s0375-6742(03)00149-3 [26] Huang, Z.L., Li, X.B., Zhou, M.F., et al., 2010.REE and C-O Isotopic Geochemistry of Calcites from the World-Class Huize Pb-Zn Deposits, Yunnan, China:Implications for the Ore Genesis.Acta Geologica Sinica-English Edition, 84(3):597-613. https://doi.org/10.1111/j.1755-6724.2010.00144.x [27] Jean-Baptiste, P., FouquET, Y., 1996.Abundance and Isotopic Composition of Helium in Hydrothermal Sulfides from the East Pacific Rise at 13°N.Geochimica et Cosmochimica Acta, 60(1):87-93. https://doi.org/10.1016/0016-7037(95)00357-6 [28] Jin, Z.G., Huang, Z.L., 2008.Study on Controlling-Ore Factors of Pb-Zn Deposits and Porspecting Model in the Area of Southwestern Guizhou.Acta Mineralogica Sinica, 28(4):467-472(in Chinese with English abstract). doi: 10.1007/s11631-010-0460-8 [29] Kelley, S., Turner, G., Butterfield, A.W., et al., 1986.The Source and Significance of Argon Isotopes in Fluid Inclusions from Areas of Mineralization.Earth and Planetary Science Letters, 79(3-4):303-318. https://doi.org/10.1016/0012-821x(86)90187-1 [30] Kendrick, M.A., Burgess, R., Leach, D., et al., 2002.Hydrothermal Fluid Origins in Mississippi Valley-Type Ore Districts:Combined Noble Gas(He, Ar, Kr) and Halogen(Cl, Br, I) Analysis of Fluid Inclusions from the Illinois-Kentucky Fluorspar District, Viburnum Trend, and Tri-State Districts, Midcontinent United States.Economic Geology, 97(3):453-469. https://doi.org/10.2113/gsecongeo.97.3.453 [31] Leach, D.L., Bradley, D., Lewchuk, M.T., et al., 2001.Mississippi Valley-Type Lead-Zinc Deposits through Geological Time:Implications from Recent Age-Dating Research.Mineralium Deposita, 36(8):711-740. https://doi.org/10.1007/s001260100208 [32] Leach, D.L., Rowan, E.L., Shelton, K.L., et al., 1993.Fluid-Inclusion Studies of Regionally Extensive Epigenetic Dolomites, Bonneterre Dolomite(Cambrian), Southeast Missouri:Evidence of Multiple Fluids during Dolomitization and Lead-Zinc Mineralization:Alternative Interpretation and Reply.Geological Society of America Bulletin, 105(7):968-978.https://doi.org/10.1130/0016-7606(1993)105<0968:fisore>2.3.co;2 doi: 10.1130/0016-7606(1993)105<0968:fisore>2.3.co;2 [33] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005.Sediment-Hosted Lead-Zinc Deposits:A Global Perspective.Economic Geology, 100:561-607. http://eprints.utas.edu.au/6268/ [34] Li, H.M., Zhang, C.Q., 2012.The Genetic Relationship between the H2S-Bearing Gas in Sichuan Basin and Lead-Zinc-Copper Deposits around the Basin.Geological Review, 58(3):495-510(in Chinese with English abstract). doi: 10.1007%2Fs00126-011-0388-x [35] Li, W.B., Huang, Z.L., Yin, M.D., 2007a.Dating of the Giant Huize Pb-Zn Ore Field of Yunnan Province, Southwest China:Constraints from the Sm-Nd System in Hydrothermal Calcite.Resource Geology, 57(1):90-97. https://doi.org/10.1111/j.1751-3928.2006.00007.x [36] Li, W.B., Huang, Z.L., Yin, M.D., 2007b.Isotope Geochemistry of the Huize Pb-Zn Ore Field, Yunnan Province, Southwestern China:Implication for the Sources of Ore Fluid and Metals.Geochemical Journal, 41(1):65-81. https://doi.org/10.2343/geochemj.41.65 [37] Li, Z.Q., Wang, J.Z., Ni, S.J., et al., 2002.Na-Cl-Br Systematics of Mineralizing Fluid in Mississippi Valley-Type Deposits from Southwest China.Journal of Mineralogy and Petrology, 22(4):38-41(in Chinese with English abstract). doi: 10.1007%2FBF02840410 [38] Lippolt, H.J., Weigel, E., 1988.4He Diffusion in 40Ar-Retentive Minerals.Geochimica et Cosmochimica Acta, 52(6):1449-1458. https://doi.org/10.1016/0016-7037(88)90215-3 [39] Liu, H.C., Lin, W.D., 1999.Study on the Law of Pb-Zn-Ag Ore Deposit in Northeast Yunnan, China.Yunnan University Press, Kunming(in Chinese). [40] Liu, H. Y., 2005. Geochronological Study of Alkaline Rocks in Panxi, SW China and Its Geological Implications(Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract). [41] Liu, W.H., Zhang, J., Wang, J., 2017.Sulfur Isotope Analysis of Carbonate-Hosted Pb-Zn Deposits in Northwestern Guizhou Province, Southwest China:Implications for the Source of Reduced Sulfur.Journal of Geochemical Exploration, 181:31-44. https://doi.org/org/10.1016/j.gexplo.2017.06.023 [42] Liu, Y., 2015. Study of the Nature of Ore-Forming Fluids and Metallogenic Model of the Carlin-Type Gold Deposits in the Youjiang Basin, China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [43] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Science Press, Beijing, 202-229(in Chinese). [44] Luo, H.Z., 1983.A Regressive Corelation between Volatility and Reflectance of Vitrinite in the Coal Beds in Upper Permian Formations in Dian-Qian-Gui Region and a Discussion on Their Degree of Metamorphism.Petroleum Exploration and Development, 10(6):43-50(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0375674217304880#! [45] Marty, B., Jambon, A., Sano, Y., 1989.Helium Isotopes and CO2 in Volcanic Gases of Japan.Chemical Geology, 76(1-2):25-40. https://doi.org/10.1016/0009-2541(89)90125-3 [46] Matsuda, J., Matsumoto, T., Sumino, H., et al., 2002.The 3He/4He Ratio of the New Internal He Standard of Japan(HESJ).Geochemical Journal, 36(2):191-195. https://doi.org/10.2343/geochemj.36.191 [47] McDougall, I., Harrison, T.M., 1988.Geochronology and Thermochronology by the 40Ar/39Ar Method.Oxford University Press, Oxford. [48] Moreira, M., Madureira, P., 2005.Cosmogenic Helium and Neon in 11 Myr Old Ultramafic Xenoliths:Consequences for Mantle Signatures in Old Samples.Geochemistry, Geophysics, Geosystems, 6(8):Q08006. https://doi.org/10.1029/2005gc000939 [49] Nian, H.L., Cui, Y.L., Li, Z.L., et al., 2017.Features of Sphalerite-Hosted Fluid Inclusions of Fule Lead-Zinc Mining Area and Outskirts in Luoping Area, Eastern Yunnan Province, China.Acta Mineralogica Sinica, 37(4):469-474(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X17303350 [50] Norman, D.I., Musgrave, J.A., 1994.N2-Ar-He Compositions in Fluid Inclusions:Indicators of Fluid Source.Geochimica et Cosmochimica Acta, 58(3):1119-1131. https://doi.org/10.1016/0016-7037(94)90576-2 [51] Pettke, T., Oberli, F., Audétat, A., et al., 2012.Recent Developments in Element Concentration and Isotope Ratio Analysis of Individual Fluid Inclusions by Laser Ablation Single and Multiple Collector ICP-MS.Ore Geology Reviews, 44:10-38. https://doi.org/10.1016/j.oregeorev.2011.11.001 [52] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14.https://doi.org/10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0011:feogcc>2.3.co;2 [53] Samson, I.M., Williams-Jones, A.E., Ault, K.M., et al., 2008.Source of Fluids Forming Distal Pb-Zn-Ag Skarns:Evidence from Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis of Fluid Inclusions from El Mochito, Honduras.Geology, 36(12):947. https://doi.org/10.1130/g25214a.1 [54] Shu, L.S., Faure, M., Wang, B., et al., 2008.Late Palaeozoic-Early Mesozoic Geological Features of South China:Response to the Indosinian Collision Events in Southeast Asia.Comptes Rendus Geoscience, 340(2-3):151-165. https://doi.org/10.1016/j.crte.2007.10.010 [55] Stuart, F.M., Burnard, P.G., Taylor, R.P., et al., 1995.Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids:He-Ar Isotopes in Fluid Inclusions from Dae Hwa W-Mo Mineralisation, South Korea.Geochimica et Cosmochimica Acta, 59(22):4663-4673. https://doi.org/10.1016/0016-7037(95)00300-2 [56] Stuart, F.M., Turner, G., Duckworth, R.C., et al., 1994.Helium Isotopes as Tracers of Trapped Hydrothermal Fluids in Ocean-Floor Sulfides.Geology, 22(9):823.https://doi.org/10.1130/0091-7613(1994)022<0823:hiatot>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0823:hiatot>2.3.co;2 [57] Su, F., Xiao, Y., He, H.Y., et al., 2014 He and Ar Isotope Geochemistry of Pyroxene Megacrysts and Mantle Xenoliths in Cenozoic Basalt from the Changle-Linqu Area in Western Shandong.Chinese Science Bulletin, 59(4):396-411. https://doi.org/10.1007/s11434-013-0027-2 [58] Sun, H.R., Zhou, J.X., Huang, Z.L., et al., 2016.The Genetic Relationship between Cu-and Zn-Dominant Mineralization in the Tianbaoshan Deposit, Southwest China.Acta Petrologica Sinica, 32(11):3407-3417(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161113 [59] Suo, S.T., Bi, X.M., Zhao, W.X., et al., 1998.Very Low Grade Metamorphism and Its Geodynamical Significance of Triassic Strata within the Youjiang River Basin.Scientia Geologica Sinica, 33(4):395-405(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX804.001.htm [60] Turner, G., Burnard, P., Ford, J.L., et al., 1993.Tracing Fluid Sources and Interactions.Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 344(1670):127-140. https://doi.org/10.1098/rsta.1993.0081 [61] Turner, G., Wang, S.S., 1992.Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar.Earth and Planetary Science Letters, 110(1-4):193-211. https://doi.org/10.1016/0012-821x(92)90048-z [62] Wang, J.Z., Li, C.Y., Li, Z.Q., et al., 2002.The Comparison of Mississippi Valley-Type Lead-Zinc Deposits in Southwest of China and in Mid-Continent of United States.Bulletin of Mineralogy, Petrology and Geochemistry, 21(2):127-132(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200202011.htm [63] Wang, R., Zhang, C.Q., Wu, Y., et al., 2012.Relationship between Diabase Dikes and Pb-Zn Mineralization in the Tianbaoshan Deposit, Southwestern China:Constraints of the Zircon U-Pb Isotopic Dating.Mineral Deposits, 31(Suppl.):449-450(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912014003563 [64] Wang, X.C., 1992.Genesis Analysis of the Tianbaoshan Pb-Zn Deposit.Journal of Chengdu College of Geology, 19(3):10-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG199203001.htm [65] Wang, X.C., Zhang, Z.R., Zheng, M.H., et al., 2000.Metallogenic Mechanism of the Tianbaoshan Pb-Zn Deposit, Sichuan.Chinese Journal of Geochemistry, 19(2):121-133. https://doi.org/10.1007/bf03166867 [66] Wang, Z.J., Wang, A.R., 1985.Genesis Study on Ancient Karst Cave Sedimentary of Tianbaoshan and Daliangzi Deposits, Sichuan Province.Geology and Exploration, 21(10):8-15(in Chinese with English abstract). doi: 10.1007%2F978-94-007-4444-8_4 [67] Wu, Y., 2013. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provences, Southwest China(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [68] Wu, Y., Zhang, C.Q., Mao, J.W., et al., 2013.The Genetic Relationship between Hydrocarbon Systems and Mississippi Valley-Type Pb-Zn Deposits along the SW Margin of Sichuan Basin, China.International Geology Review, 55(8):941-957. https://doi.org/10.1080/00206814.2012.753177 [69] Xie, J.R., 1963.Introduction of the Chinese Ore Deposits.Science Press, Beijing(in Chinese). [70] Xie, S.C., Yin, H.F., 1997.Organism-Organic Matter-Fluid Metallogenetic System:Examplified by Pb-Zn-Ag-Mn Polymetallic Deposit of Qixiashan in Nanjing.China University of Geosciences Press, Wuhan, 78(in Chinese with English abstract). [71] Xiong, S.F., He, M.C., Yao, S.Z., et al., 2014.Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range:Implications for Ore Genesis.Earth Science, 39(7):820-836(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.077 [72] Xiong, S.F., Yao, S.Z., Gong, Y.J., et al., 2016.Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China.Earth Science, 41(1):105-120(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.008 [73] Xu, Y.G., Chung, S.L., Shao, H., et al., 2010.Silicic Magmas from the Emeishan Large Igneous Province, Southwest China:Petrogenesis and Their Link with the End-Guadalupian Biological Crisis.Lithos, 119(1-2):47-60. https://doi.org/10.1016/j.lithos.2010.04.013 [74] Xu, Y.G., He, B., Chung, S.L., et al., 2004.Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province.Geology, 32(10):917. https://doi.org/10.1130/g20602.1 [75] Xu, Y.G., He, B., Luo, Z.X., et al., 2013.Study on Mantle Plumue and Large Igneous Province in China:An Overview and Perspectives.Bulletin of Mineralogy, Petrology and Geochemistry, 32(1):25-39(in Chinese with English abstract). doi: 10.1007/s11430-015-5094-6 [76] Xu, Y.K., Huang, Z.L., Zhu, D., et al., 2014.Origin of Hydrothermal Deposits Related to the Emeishan Magmatism.Ore Geology Reviews, 63:1-8. https://doi.org/10.1016/j.oregeorev.2014.04.010 [77] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block(South China).Tectonophysics, 361(3-4):239-254. https://doi.org/10.1016/s0040-1951(02)00646-7 [78] Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2012.Detrital Record of Indosinian Mountain Building in SW China:Provenance of the Middle Triassic Turbidites in the Youjiang Basin.Tectonophysics, 574-575:105-117. https://doi.org/10.1016/j.tecto.2012.08.027 [79] Ye, L., Li, Z.L., Hu, Y.S., et al., 2016.Trace Elements in Sulfide from the Tianbaoshan Pb-Zn Deposit, Sichuan Province, China:A LA-ICPMS Study.Acta Petrologica Sinica, 32(11):3377-3393(in Chinese with English abstract). http://jglobal.jst.go.jp/en/public/20090422/201702236987020467 [80] Yu, L., 2014. Brief Study on the Fluid Inclusion Characteristics and Its Genetic Significance of Tianbaoshan Pb-Zn Deposit in Huili County, Sichuan Province(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [81] Zhai, D.G., Liu, J.J., Ripley, E.M., et al., 2015.Geochronological and He-Ar-S Isotopic Constraints on the Origin of the Sandaowanzi Gold-Telluride Deposit, Northeastern China.Lithos, 212-215:338-352. https://doi.org/10.1016/j.lithos.2014.11.017 [82] Zhang, C. Q., 2008. The Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Provinces, China(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [83] Zhang, C.Q., Wu, Y., Hou, L., et al., 2015.Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan-Yunnan-Guizhou Pb-Zn Triangle, Southwest China:Implications from Age-Dating Studies in the Past Decade and the Sm-Nd Age of Jinshachang Deposit.Journal of Asian Earth Sciences, 103:103-114. https://doi.org/10.1016/j.jseaes.2014.08.013 [84] Zhang, W.J., 1984.A Preliminary Discussion on the Sedimentary Origin and Metallogenic Rule of Pb-Zn Deposits in Northeastern Yunnan.Geology and Prospecting, (7):11-16(in Chinese). http://html.rhhz.net/JLDXXBDQKXB/html/20170307.htm [85] Zhang, Y., 2016. Fluid Mixing Metallogenic Mechanism of Huize Super-Large Lead-Zinc Deposits in Northeast of Yunnan Poly-Metallic Mineralization Domain(Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract). [86] Zhang, Y., Han, R.S., Wei, P.T., et al., 2017.Fluid Inclusion Features and Physicochemical Conditions of the Kuangshanchang Pb-Zn Deposit, Huize, Yunnan Province.Journal of Jilin University(Earth Science Edition), 47(3):719-733(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT504.000.htm [87] Zhang, Z.B., Li, C.Y., Tu, G.Z., et al., 2006.Geotectonic Evolution Background and Ore-Forming Process of Pb-Zn Deposits in Chuan-Dian-Qian Area of Southwest China.Geotectonica et Metallogenia, 30(3):343-354(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200603009.htm [88] Zhang, Z.L., Huang, Z.L., Rao, B., et al., 2005.Concentration Mechanism of Ore-Forming Fluid in Huize Lead-Zinc Deposits, Yunnan Province.Earth Science, 30(4):443-450(in Chinese with English abstract). http://www.earth-science.net/WebPage/Article.aspx?id=1399 [89] Zheng, M.H., Wang, X.C., 1991.Ore Genesis of the Daliangzi Pb-Zn Deposit in Sichuan, China.Economic Geology, 86(4):831-846. https://doi.org/10.2113/gsecongeo.86.4.831 [90] Zhou, C.X., Wei, C.S., Guo, J.Y., et al., 2001.The Source of Metals in the Qilinchang Pb-Zn Deposit, Northeastern Yunnan, China:Pb-Sr Isotope Constraints.Economic Geology, 96(3):583-598. https://doi.org/10.2113/gsecongeo.96.3.583 [91] Zhou, J.X., Gao, J.G., Chen, D., et al., 2013b.Ore Genesis of the Tianbaoshan Carbonate-Hosted Pb-Zn Deposit, Southwest China:Geologic and Isotopic(C-H-O-S-Pb) Evidence.International Geology Review, 55(10):1300-1310. https://doi.org/10.1080/00206814.2013.782973 [92] Zhou, J.X., Huang, Z.L., Zhou, M.F., et al., 2013a.Constraints of C-O-S-Pb Isotope Compositions and Rb-Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb-Zn Deposit, SW China.Ore Geology Reviews, 53:77-92. https://doi.org/10.1016/j.oregeorev.2013.01.001 [93] Zhu, C.W., Wen, H.J., Zhang, Y.X., et al., 2016.Cadmium and Sulfur Isotopic Compositions of the Tianbaoshan Pb-Zn-Cd Deposit, Sichuan Province, China.Ore Geology Reviews, 76:152-162. https://doi.org/10.1016/j.oregeorev.2016.01.010 [94] Zhuang, X.G., 1995.The Paleogeothermal Field of Northwestern Guangxi:Characteristics and Its Role in the Formation of Micro-Disseminated Gold Deposits.Mineral Deposits, 14(1):82-89(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0375674217304880#! [95] 陈进, 1993.麒麟厂铅锌硫化矿矿床成因及成矿模式探讨.有色金属矿产与勘探, 2(2):85-90, 99. http://www.cqvip.com/QK/96128A/199302/1223196.html [96] 陈士杰, 1986.黔西滇东北铅锌矿成因探讨.贵州地质, 3(3):211-222. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200104018.htm [97] 陈衍景, 倪培, 范宏瑞, 等, 2007.不同类型热液金矿系统的流体包裹体特征.岩石学报, 23(9):2085-2108. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200709204 [98] 杜远生, 黄虎, 杨江海, 等, 2013.晚古生代-中三叠世右江盆地的格局和转换.地质论评, 59(1):1-11. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201301002.htm [99] 韩润生, 2002. 会泽超大型银铅锌矿床地质地球化学及隐伏矿定位预测(博士学位论文). 贵阳: 中国科学院地球化学研究所. [100] 韩润生, 胡煜昭, 王学琨, 等, 2012.滇东北富锗银铅锌多金属矿集区矿床模型.地质学报, 86(2):280-294. http://www.oalib.com/paper/4875605 [101] 韩润生, 李波, 倪培, 等, 2016.闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例.吉林大学学报(地球科学版), 46(1):91-104. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201601009.htm [102] 韩润生, 刘丛强, 黄智龙, 等, 2000.云南会泽铅锌矿床构造控矿及断裂构造岩稀土元素组成特征.矿物岩石, 20(4):11-18. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200004002.htm [103] 胡瑞忠, 1997.成矿流体氦、氩同位素地球化学.矿物岩石地球化学通报, 16(2):52-56. http://www.cqvip.com/QK/84215X/199702/4001081888.html [104] 胡瑞忠, 毕献武, Turner, G., 等, 1999.哀牢山金矿带金成矿流体He和Ar同位素地球化学.中国科学(D辑), 29(4):321-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd199904005 [105] 黄智龙, 陈进, 韩润生, 等, 2004a.云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿关系.北京:地质出版社. [106] 黄智龙, 李文博, 张振亮, 等, 2004b.云南会泽超大型铅锌矿床成因研究中的几个问题.矿物学报, 24(2):105-111. http://www.cqvip.com/qk/95783X/200402/9972389.html [107] 金中国, 黄智龙, 2008.黔西北铅锌矿床控矿因素及找矿模式.矿物学报, 28(4):467-472. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200804020 [108] 李厚民, 张长青, 2012.四川盆地富硫天然气与盆地周缘铅锌铜矿的成因联系.地质论评, 58(3):495-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201203010 [109] 李泽琴, 王奖臻, 倪师军, 等, 2002.川滇密西西比河谷型铅锌矿床成矿流体来源研究:流体Na-Cl-Br体系的证据.矿物岩石, 22(4):38-41. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200210001022.htm [110] 柳贺昌, 林文达, 1999.滇东北铅锌银成矿规律研究.昆明:云南大学出版社. [111] 刘红英, 2005. 攀西地区碱性岩的年代学研究及其地质意义(博士学位论文). 广州: 中国科学院广州地球化学研究所. [112] 刘寅, 2015. 右江盆地卡林型金矿成矿流体性质与成矿模式研究(博士学位论文). 南京: 南京大学. [113] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社, 202-229. [114] 罗槐章, 1983.滇黔桂地区煤的挥发份与镜质体反射率的回归关系及上二叠统有机变质程度与其成因探讨.石油勘探与开发, 10(6):43-50. http://www.cnki.com.cn/Article/CJFDTotal-MZYK2014S1007.htm [115] 念红良, 崔银亮, 李珍立, 等, 2017.滇东富乐铅锌矿区及外围闪锌矿流体包裹体特征.矿物学报, 37(4):469-474. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012295.htm [116] 孙海瑞, 周家喜, 黄智龙, 等, 2016.四川会理天宝山矿床深部新发现铜矿与铅锌矿的成因关系探讨.岩石学报, 32(11):3407-3417. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201611013 [117] 索书田, 毕先梅, 赵文霞, 等, 1998.右江盆地三叠纪岩层极低变质作用及地球动力学意义.地质科学, 33(4):395-405. http://cdmd.cnki.com.cn/Article/CDMD-10491-1012460884.htm [118] 王奖臻, 李朝阳, 李泽琴, 等, 2002.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比.矿物岩石地球化学通报, 21(2):127-132. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwysdqhxtb200202011 [119] 王瑞, 张长青, 吴越, 等, 2012.四川天宝山铅锌矿辉绿岩脉形成时代与成矿关系探讨.矿床地质, 31(增刊):449-450. http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_7895246 [120] 王小春, 1992.天宝山铅锌矿床成因分析.成都地质学院学报, 19(3):10-20. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199203001.htm [121] 王则江, 汪岸儒, 1985.四川天宝山、大梁子铅锌矿床古岩溶洞穴沉积成因研究.地质与勘探, 21(10):8-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkt198510002&dbname=CJFD&dbcode=CJFQ [122] 吴越, 2013. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制(博士学位论文). 北京: 中国地质大学. [123] 谢家荣, 1963.论矿床的分类.北京:科学出版社. [124] 谢树成, 殷鸿福, 1997.生物-有机质-流体成矿系统:以南京栖霞山铅锌银锰多金属矿床为例.武汉:中国地质大学出版社, 78. http://cdmd.cnki.com.cn/Article/CDMD-10284-1012376559.htm [125] 熊索菲, 何谋惷, 姚书振, 等, 2014.大兴安岭岔路口斑岩钼矿床流体成分及成矿意义.地球科学, 39(7):820-836. https://doi.org/10.3799/dqkx.2014.077 [126] 熊索菲, 姚书振, 宫勇军, 等, 2016.四川乌斯河铅锌矿床成矿流体特征及TSR作用初探.地球科学, 41(1):105-120. https://doi.org/10.3799/dqkx.2016.008 [127] 徐义刚, 何斌, 罗震宇, 等, 2013.我国大火成岩省和地幔柱研究进展与展望.矿物岩石地球化学通报, 32(1):25-39. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htm [128] 叶霖, 李珍立, 胡宇思, 等, 2016.四川天宝山铅锌矿床硫化物微量元素组成:LA-ICPMS研究.岩石学报, 32(11):3377-3393. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201611011&dbname=CJFD&dbcode=CJFQ [129] 喻磊, 2014. 四川会理天宝山铅锌矿床流体包裹体特征及其成因意义(硕士学位论文). 成都: 成都理工大学. [130] 张长青, 2008. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型(博士学位论文). 北京: 中国地质科学院. [131] 张位及, 1984.试论滇东北铅锌矿床的沉积成因和成矿规律.地质与勘探, (7):11-16. http://www.cnki.com.cn/Article/CJFDTotal-KCYD200703028.htm [132] 张艳, 2016. 滇东北矿集区会泽超大型铅锌矿床流体混合成矿机制(博士学位论文). 昆明: 昆明理工大学. [133] 张艳, 韩润生, 魏平堂, 等, 2017.云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件.吉林大学学报(地球科学版), 47(3):719-733. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200002009.htm [134] 张振亮, 黄智龙, 饶冰, 等, 2005.会泽铅锌矿床成矿流体浓缩机制.地球科学, 30(4):443-450. http://www.earth-science.net/WebPage/Article.aspx?id=1399 [135] 张志斌, 李朝阳, 涂光炽, 等, 2006.川、滇、黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用.大地构造与成矿学, 30(3):343-354. http://www.doc88.com/p-1367102624605.html [136] 庄新国, 1995.桂西北地区古地热场特征及其在微细粒浸染型金矿床形成中的作用.矿床地质, 14(1):82-88. http://www.cqvip.com/QK/93610X/199501/1822062.html