Application of Isotopic Thermochronology in Shale Gas Exploration and Development-Case from South China
-
摘要: 随着同位素热年代学理论体系、分析测试和模拟技术的不断完善,同位素热年代学已成为基础地质和常规油气勘探领域研究不可或缺的热点学科,但对于其在页岩气勘探开发地质评价领域中的系统应用还关注较少.通过对页岩气勘探开发综合评价体系及同位素热年代学相关理论分析,结合近年来华南地区多套页岩层系的勘探开发实践,指出同位素热年代学在页岩地层对比,页岩烃源评价中的生排烃史和构造热演化史、储集特征、保存条件评价中的核心指标(抬升剥蚀时间、剥蚀量的恢复及断裂活动期次)以及页岩可压性等多个方面的研究均可作为有效技术手段,研究表明同位素热年代学在页岩气勘探开发领域应用前景极为广阔.Abstract: In recent years, with the continuous improvement of isotopic thermochronologic theory system, the test and simulation technology, the isotopic thermochronology has become the hot subject of basic geological research and conventional oil and gas exploration field. However, the systematic application of the system in the field of geological evaluation for shale gas exploration and development is still less concerned. Therefore, based on the comprehensive evaluation system of shale gas exploration and development and the related theories of isotopic thermochronology, combined with the exploration and development practice of several shale strata in South China of recent years, this paper suggests that isotopic geochronology is the core index in shale stratigraphy correlation, hydrocarbon generation and expulsion history, tectonic thermal evolution history, reservoir characteristics, preservation condition evaluation in shale source evaluation (such as uplift and denudation time, recovery of denudation and active period of fracture) and compressible shale. These aspects can be used as effective technical method. It shows that the application of isotopic thermochronology can be widely applied to the field of shale gas exploration and development.
-
Key words:
- isotopic thermochronology /
- shale gas /
- exploration and development /
- South China /
- petroleum geology
-
图 1 华南地区典型页岩测年观察点及同位素年龄分布特征
a.华南早寒武世岩相古地理及五峰组—龙马溪组、牛蹄塘组同位素测年点位分布;b.涪陵页岩气田焦页A井五峰组—龙马溪组凝灰岩夹层U-Pb同位素等时线年龄;c.华南地区牛蹄塘组同位素测年对比;据王富良等(2016)修改
Fig. 1. Characteristics of typical shale observation points and isotopic age distribution in South China
图 4 湘鄂西—渝东地区地层磷灰石裂变径迹热史模拟分布
数据源自梅廉夫等(2010)
Fig. 4. Thermal history simulation distribution map of apatite fission track of the formation of West Hunan-Hubei-East Chongqing area
图 5 桑木场样品磷灰石裂变径迹热史模拟
数据源自邓宾等(2013)
Fig. 5. Thermal history simulation of apatite fission track of Sangmuchang
表 1 焦页A井龙马溪组页岩中凝灰岩夹层锆石U-Pb同位素分析结果
Table 1. The isotopic analysis results of zircon U-Pb of the Longmaxi Formation in Jiaoye A well
样品编号 U(%) Pb(μm) 238U/204Pb 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb JYA-4-01 8.6 33.2 17.0 39.8 16.0 19.39 JYA-4-02 7.7 31.8 15.8 39.6 15.9 19.33 JYA-4-03 8.1 31.4 16.8 39.7 15.9 19.34 JYA-4-04 8.1 32.4 16.3 39.7 16.0 19.36 JYA-4-05 8.8 32.6 17.7 39.7 16.0 19.37 JYA-2-02 34.0 33.2 70.4 39.4 16.1 23.06 JYA-3-01 13.3 20.8 43.2 39.7 16.1 21.22 JYA-3-02 13.5 21.3 42.8 39.6 16.0 21.24 表 2 焦页A井龙马溪组页岩中自生伊利石K-Ar同位素分析结果
Table 2. The K-Ar isotopic analysis results of authigenic illites of the Longmaxi Formation in Jiaoye A well
样品编号 样品称重
(g)钾含量
(%)40Ar/38Ar
(%)38Ar/36Ar
(%)放射成因氩
(mol/g)40K含量
(mol/g)40Ar放/40Ar
(%)40Ar放/40K
(%)年龄值
(Ma,1σ)JYA-01 0.013 5.62 6.43 1 794.78 1.96E-07 1.68E-07 96.67 0.012 190.85±2.16 JYA-02 0.014 6.16 6.99 2 301.88 2.12E-09 1.84E-07 97.34 0.012 188.7±1.95 -
[1] Chen, X., Fan, J.X., Wang, W.H., et al., 2017.Stage-Progressive Distribution Pattern of the Lungmachi Black Graptolitic Shales from Guizhou to Chongqing, Central China.Science China:Earth Sciences, 47(6):720-732(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201706009&dbname=CJFD&dbcode=CJFQ [2] Condon, D., Zhu, M.Y., Bowring, S., et al., 2005.U-Pb Ages from the Neoproterozoic Doushantuo Formation, China.Science, 308(5718):95-98. https://doi.org/10.1126/science.1107765 [3] Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin.Earth Science, 42(7):1185-1194(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096 [4] Deng, B., Liu, S.G., Wang, G.Z., et al., 2013.Cenozoic Uplift and Exhumation in Southern Sichuan Basin-Evidence from Low-Temperature Thermochronology.Chinese Journal of Geophysics, 56(6):1958-1973(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201306019.htm [5] Fu, Y., Dong, L., Li, C., et al., 2016.New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation.Journal of Earth Science, 27(2):271-281. https://doi.org/10.1007/s12583-016-0606-7 [6] Guo, T.L., Liu, R.B., 2013.Implication from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage:Taking Longmaxi Formation in Well JY1 as an Example.Natural Gas Geoscience, 24(4):643-651(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201304000.htm [7] He, B., Xie, L.Z., Li, F.X., et al., 2017.Anisotropic Mechanism and Characteristics of Deformation and Failure of Longmaxi Shale.Scientia Sinica Physica, Mechanica & Astronomica, 47(11):107-118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JGXK201711012.htm [8] He, Z.L., Wang, X.W., Li, S.J., et al., 2011.Yanshan Movement and Its Influence on Petroleum Preservation in Middle-Upper Yangtze Region.Petroleum Geology & Experiment, 33(1):1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201101003.htm [9] Hu, Y.H., Sun, W.D., Ding, X., et al., 2009.Volcanic Event at the Ordovician-Silurian Boundary:The Message from K-Bentonite of Yangtze Block.Acta Petrologica Sinica, 25(12):3298-3308(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200912019.htm [10] Jenkins, R.J.F., Cooper, J.A., Compston, W., 2002.Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China.Journal of the Geological Society, 159(6):645-658. https://doi.org/10.1144/0016-764901-127 [11] Kendall, B., Creaser, R.A., Selby, D., 2006.Re-Os Geochronology of Postglacial Black Shales in Australia:Constraints on the Timing of "Sturtian" Glaciation.Geology, 34(9):729-732. https://doi.org/10.1130/g22775.1 [12] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017.Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block.Earth Science, 42(4):485-501(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.039 [13] Liu, P.J., Yin, C.Y., Gao, L.Z., et al., 2009.New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and Its Zircon SHRIMP U-Pb Age.Chinese Science Bulletin, 54(6):774-780(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200906023&dbname=CJFD&dbcode=CJFQ [14] Luo, H., He, R.L., Pan, L.K., et al., 2016.LA-ICP-MS Zircon U-Pb Age and Its Significance of Late Ordovician-Early Silurian Longmaxi Bentonite.Resources Environment & Engineering, 30(4):547-550(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK201604001.htm [15] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010.Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Track and Balanced Cross-Section.Earth Science, 35(2):161-174(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.017 [16] Reiners, P.W., Brandon, M.T., 2006.Using Thermochronology to Understand Orogenic Erosion.Annual Review of Earth and Planetary Sciences, 34(1):419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202 [17] Reiners, P.W., Ehlers, T.A., Zeitler, P.K., 2005.Past, Present, and Future of Thermochronology.Reviews in Mineralogy & Geochemistry, 58:1-18. https://doi.org/10.2138/rmg.2005.58.1 [18] Rooney, A.D., Selby, D., Lewan, M.D., et al., 2012.Evaluating Re-Os Systematics in Organic-Rich Sedimentary Rocks in Response to Petroleum Generation Using Hydrous Pyrolysis Experiments.Geochimica et Cosmochimica Acta, 77(1):275-291. https://doi.org/10.1016/j.gca.2011.11.006 [19] Selby, D., Creaser, R.A., 2005.Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes.Science, 308(5726):1293-1295. https://doi.org/10.1126/science.1111081 [20] Shen, C.B., Liu, Z.Y., Xiao, F., et al., 2015.Advancements of the Research on Re-Os Isotope System in Petroleum System.Advances in Earth Science, 30(2):187-195(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201502001.htm [21] Stockli, D.F., 2005.Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings.Reviews in Mineralogy and Geochemistry, 58(1):411-448. https://doi.org/10.2138/rmg.2005.58.16 [22] Sun, J., Bao, H.Y., 2018.Comprehensive Characterization of Shale Gas Reservoirs:A Case Study from Fuling Shale Gas Field.Petroleum Geology & Experiment, 40(1):1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201801002.htm [23] Wang, F.L., Fu, Y., Jiang, R., et al., 2016.Research Progress on Re-Os Isotopes Application in Dating and Paleoenviromental Interpretation during the Neoproterozoic to Early Cambrian Periods.Rock and Mineral Analysis, 35(5):530-541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201605011.htm [24] Wang, X.M., Zhong, D.L., Wang, Y., 2008.A Case of Application Using Apatite Fission Track to Restrict Time of Brittle Fault Movement.Progress in Geophysics, 23(5):1444-1455(in Chinese with English abstract). http://www.oalib.com/paper/1700860 [25] Wang, X.Q., Shi, X.Y., Jiang, G.Q., et al., 2012.New U-Pb Age from the Basal Niutitang Formation in South China:Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition.Journal of Asian Earth Sciences, 48(8):1-8. https://doi.org/10.1016/j.jseaes.2011.12.023 [26] Wang, Y.F., Zhai, G.Y., Bao, S.J., et al., 2017.Evaluation of Sinian Doushantuo Formation Shale Gas Content and Fracturing Property of Eyangye1 Well in Hubei Province.China Mining Magazine, 26(6):166-172(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201706032.htm [27] Waples, D.W., 2000.The Kinetics of In-Reservoir Oil Destruction and Gas Formation:Constraints from Experimental and Empirical Data, and from Thermodynamics.Organic Geochemistry, 31(6):553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 [28] Xie, S.K., Wang, Z.J., Wang, J., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of the Bentonites from the Uppermost Part of the Ordovician Wufeng Formation in the Haoping Section, Taoyuan, Hunan.Sedimentary Geology and Tethyan Geology, 32(4):65-69(in Chinese with English abstract). [29] Xu, L.G., Lehmann, B., Mao, J.W., et al., 2011.Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China:A Reassessment.Economic Geology, 106(3):511-522. https://doi.org/10.2113/econgeo.106.3.511 [30] Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007.Comparison of Reductive Accumulation of Re and Os in Seawater Sediment Systems.Geochimica et Cosmochimica Acta, 71(14):3458-3475. https://doi.org/10.1016/j.gca.2007.05.003 [31] Zhu, B., Becker, H., Jiang, S.Y., et al., 2013.Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China.Precambrian Research, 225:67-76. https://doi.org/10.1016/j.precamres.2012.02.002 [32] Zou, C.N., Yang, Z., Dai, J.X., et al., 2015.The Characteristics and Significance of Conventional and Unconventional Sinian-Silurian Gas Systems in the Sichuan Basin, Central China.Marine and Petroleum Geology, 64:386-402. https://doi.org/10.1016/j.marpetgeo.2015.03.005 [33] 陈旭, 樊隽轩, 王文卉, 等, 2017.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式.中国科学:地球科学, 47(6):720-732. http://mall.cnki.net/magazine/Article/JDXK201706005.htm [34] 戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及主控因素.地球科学, 42(7):1185-1194. https://doi.org/10.3799/dqkx.2017.096 [35] 邓宾, 刘树根, 王国芝, 等, 2013.四川盆地南部地区新生代隆升剥露研究——低温热年代学证据.地球物理学报, 56(6):1958-1973. doi: 10.6038/cjg20130618 [36] 郭彤楼, 刘若冰, 2013.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例.天然气地球科学, 24(4):643-651. http://mall.cnki.net/magazine/Article/TDKX201304000.htm [37] 何柏, 谢凌志, 李凤霞, 等, 2017.龙马溪页岩各向异性变形破坏特征及其机理研究.中国科学:物理学, 力学和天文学, 47(11):107-118. http://cdmd.cnki.com.cn/Article/CDMD-10615-1015605979.htm [38] 何治亮, 汪新伟, 李双建, 等, 2011.中上扬子地区燕山运动及其对油气保存的影响.石油实验地质, 33(1):1-11. doi: 10.11781/sysydz201101001 [39] 胡艳华, 孙卫东, 丁兴, 等, 2009.奥陶纪-志留纪边界附近火山活动记录:来自华南周缘钾质斑脱岩的信息.岩石学报, 25(12):3298-3308. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200912019.htm [40] 孔令耀, 毛新武, 陈超, 等, 2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义.地球科学, 42(4):485-501. http://www.earth-science.net/WebPage/Article.aspx?id=3563 [41] 刘鹏举, 尹崇玉, 高林志, 等, 2009.湖北宜昌樟村坪埃迪卡拉系陡山沱组微体化石新材料及锆石SHRIMP U-Pb年龄.科学通报, 54(6):774-780. http://www.oalib.com/paper/1683839 [42] 罗华, 何仁亮, 潘龙克, 等, 2016.湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义.资源环境与工程, 30(4):547-550. http://www.cqvip.com/QK/82916A/201604 [43] 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2):161-174. https://doi.org/10.3799/dqkx.2010.017 [44] 沈传波, 刘泽阳, 肖凡, 等, 2015.石油系统Re-Os同位素体系封闭性研究进展.地球科学进展, 30(2):187-195. doi: 10.11867/j.issn.1001-8166.2015.02.0187 [45] 孙健, 包汉勇, 2018.页岩气储层综合表征技术研究进展——以涪陵页岩气田为例.石油实验地质, 40(1):1-12. doi: 10.11781/sysydz201801001 [46] 王富良, 付勇, 江冉, 等, 2016.Re-Os同位素在晚新元古代至早寒武世测年及古环境演绎中的应用进展.岩矿测试, 35(5):530-541. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401007.htm [47] 王先美, 钟大赉, 王毅, 2008.利用磷灰石裂变径迹约束脆性断裂活动的时限.地球物理学进展, 23(5):1444-1455. http://www.cqvip.com/qk/98047X/200805/28772845.html [48] 王玉芳, 翟刚毅, 包书景, 等, 2017.鄂阳页1井陡山沱组页岩储层含气性及可压性评价.中国矿业, 26(6):166-172. http://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201504010.htm [49] 谢尚克, 汪正江, 王剑, 等, 2012.湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄.沉积与特提斯地质, 32(4):65-69. http://mall.cnki.net/magazine/Article/DIZI200806013.htm