Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province
-
摘要: 四川康定甲基卡超大型锂矿是我国最大的硬岩型锂矿床之一,矿区中南部呈岩株状出露的二云母花岗岩常被认为是成矿伟晶岩的"矿源岩",对其开展Li同位素地球化学研究,对探讨矿区稀有金属的来源与演化具有重要意义.研究工作基于详细的野外地质调查,采用MC-ICP-MS方法对岩体锂同位素组成开展了研究.研究结果显示,岩体Li含量介于192×10-6~470×10-6,均值为309×10-6,δ7Li值介于-1.56‰~+0.90‰,均值为-0.24‰,与平均上地壳值基本一致,具有高Li低δ7Li的特征.δ7Li与Li、Rb、Ga、SiO2及εNd(t)不存在明显的相关性,岩体锂同位素组成反映了其形成时的源区特征,未受岩浆结晶分异作用和蚀变作用的影响.岩体岩石地球化学、同位素地球化学资料表明,岩浆来源以三叠系西康群砂泥岩的部分熔融为主,可能有部分深源物质的加入.此外,岩体Li同位素的变化规律表明伟晶岩的成矿流体来源于二云母花岗岩.岩体Li含量与Li同位素组合不仅可用来划分锂矿床类型,而且对稀有金属找矿具有一定的指导意义.Abstract: Jiajika superlarge hard rock type lithium deposit is one of the most abundant lithium mineral resouces in China. The two-mica granite outcropped in the southern Jiajika orefield is generally regarded as source rocks of the ore-bearing pegmatites. Li isotopic composition is a useful tool to explore the origin and evolution of rare metal. Based on the detailed field work, the lithium isotopic composition of granite was tested by MC-ICP-MS in this study. The results show that the lithium content of the granite is from 192×10-6 to 470×10-6, and the mean value is 309×10-6; the value of δ7Li ranges from -1.56‰ to 0.90‰, and the mean value is -0.24‰, which is closed to the average value of upper crust. Jiajika two-mica granite apparently has higher content of lithium and lower value of δ7Li, and the δ7Li and Li, Rb, Ga, SiO2 and εNd(t) have no obvious correlation. Lithium isotopic composition of granite reflects its characteristics of source rock, and it has not been influenced by crystallization differentiation of magma and alteration. The geochemical and isotope geochemistry data indicate that the source of magma is mainly composed of partial melting of Triassic Xikang sand-mudstone, which may have been mixed with materials from deep source. In addition, variations of lithium content and Li isotopic composition show that the fluid of magma migrated from center to the north and south, and the metallogenic fluid of pegmatite is derived from Jiajika two-mica granite. The content of lithium and Li isotopic composition can not only be used to classify the types of lithium deposits, but also can facilitate the prospecting of rare metals.
-
Key words:
- two-mica granite /
- pegmatite /
- lithium isotope /
- Jiajika /
- deposit /
- petrology
-
图 1 甲基卡矿区地质简图
SPGZ.松潘-甘孜褶皱带;EKL.东昆仑构造带;STM.柴达木地块;YZ.扬子地块;JT.羌塘地块;GDS.冈底斯地块;QL.祁连构造带;①柴北缘蛇绿杂岩带;②昆中蛇绿杂岩带;③昆南-阿尼玛卿蛇绿杂岩带;④可可西里-金沙江缝合线;⑤班公湖-怒江蛇绿杂岩带;⑥龙门山断裂;⑦理塘蛇绿杂岩带;⑧若尔盖地块;T.上三叠统西康群地层;1.二云母花岗岩;2.微斜长石型伟晶岩;3.微斜长石钠长石型伟晶岩;4.钠长石型伟晶岩;5.钠长石锂辉石型伟晶岩;6.钠长石锂云母型伟晶岩;7.伟晶岩脉编号;8.新发现矿脉;9.类型分带线及编号;10.采样位置;Ⅰ.微斜长石伟晶岩带;Ⅱ.微斜长石-钠长石带;Ⅲ.钠长石带;Ⅳ.锂辉石带;Ⅴ.锂(白)云母带;据Li et al.(2013)
Fig. 1. Geological sketch of the Jiajika ore deposit
图 3 花岗岩和伟晶岩中锂同位素分布
花岗岩未分中花岗岩数据转苏嫒娜等(2010a);安徽荆山淡色花岗岩(S型)数据来自Sun et al.(2016);拉克兰河褶皱带S型花岗岩和I型花岗岩数据来自Teng et al.(2004);大陆下地壳数据来自Teng et al.(2008);中国东北A型花岗岩和和世界花岗岩δ7Li来自Teng et al.(2009);澳大利亚东部新英格兰岩基花岗岩、S型花岗岩、I型花岗岩数据引自Tomascak(2004);加拿大地盾花岗岩数据引自Tomascak(2004);苏格兰斯凯岛花岗岩数据来自Pistiner and Henderson(2003);加利福尼亚金斯山花岗岩-伟晶岩和南达科他州哈尼峰花岗-伟晶岩数据引自Tomascak(2004);四川甲基卡钠长锂辉石伟晶岩数据来自项目组未发表数据;四川甲基卡新三号脉含矿伟晶岩和不含矿伟晶岩数据来自刘丽君等(2017a);南达科他州布拉克山哈尼峰花岗岩和伟晶岩数据来自Teng et al.(2006);加拿大小纳汉尼伟晶岩群数据来自Barnes et al.(2012)
Fig. 3. Li isotopic compositions of different granites and pegmatites
图 7 岩体t-(87Sr/86Sr)i(a)和εNd(t)-(87Sr/86Sr)i(b)图解
华北上地壳和下地壳范围引自Jahnetal.(1999);扬子上地壳和下地壳范围引自 Chenetal.(2001);图例同上图
Fig. 7. Diagram of t-(87Sr/86Sr)i (a) and εNd(t)-(87Sr/86Sr)i (b) for two-mica granites
图 8 花岗岩和伟晶岩δ7Li-Li和δ7Li-lgLi的关系
1.甲基卡二云母花岗岩(S型);2.甲基卡钠长锂辉石伟晶岩;3.甲基卡伟晶岩脉围岩;4.中国东北A型花岗岩;5.荆山淡色花岗岩(S型);6.甲基卡ZK1101含矿伟晶岩;7.布拉克山哈尼峰花岗岩;8.厄尔士山花岗岩;9.加拿大小纳汉尼伟晶岩群;Ⅰ.甲基卡钠长锂辉石伟晶岩(项目组未发表数据);Ⅱ.加拿大小纳汉尼伟晶岩群(Barnes et al., 2012);Ⅲ.甲基卡伟晶岩脉围岩(刘丽君等,2017a);Ⅳ.甲基卡二云母花岗岩(本文自测数据);Ⅴ.厄尔士山花岗岩(Romer et al., 2014);Ⅵ.荆山淡色花岗岩(Sun et al., 2016);Ⅶ.布拉克山哈尼峰花岗岩(Teng et al., 2006);Ⅷ.中国东北A型花岗岩(Teng et al., 2009);a和b图例一致
Fig. 8. Plots of δ7Li versus Li and δ7Li versus lgLi diagram for granite and pegmatite
表 1 甲基卡二云母花岗岩主量、微量、稀土元素和Li同位素测试结果
Table 1. Major, trace, rare earth elements and Li isotope compositions of Jiajika two-mica granite
样号 J6 J7 J8 J9 J10 J11 J12 J13 J14 主量元素(%) SiO2 74.55 73.92 73.66 74.47 74.02 73.65 73.03 74.16 74.64 TiO2 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.05 Al2O3 14.90 15.10 14.89 14.82 14.7 14.76 14.78 14.70 14.95 Fe2O3 0.18 0.07 0.10 0.03 0.07 0.13 0.12 0.11 0.20 FeO 0.62 0.64 0.79 0.75 0.82 0.69 0.74 0.67 0.54 MnO 0.02 0.02 0.04 0.03 0.04 0.02 0.03 0.03 0.04 MgO 0.19 0.20 0.17 0.21 0.18 0.23 0.20 0.24 0.16 CaO 0.60 0.80 0.60 0.71 0.59 0.63 0.66 0.71 0.54 Na2O 3.41 3.46 3.63 3.19 3.30 3.22 3.21 3.31 3.45 K2O 5.00 5.07 4.65 5.05 4.83 4.88 4.90 4.76 4.84 P2O5 0.16 0.24 0.13 0.17 0.20 0.20 0.23 0.22 0.19 H2O+ 0.79 0.67 0.87 1.00 1.11 0.74 1.08 0.96 0.90 CO2 0.13 0.28 0.19 0.19 0.27 0.26 0.26 0.19 0.30 Total 100.61 100.53 99.77 100.68 100.19 99.46 99.3 100.13 100.8 微量元素(10-6) Li 264.00 327.00 470.00 298.00 340.00 192.00 301.00 266.00 320.00 Be 14.00 10.00 10.00 8.00 30.00 6.00 12.00 8.00 8.00 Ga 17.80 17.20 19.10 15.50 17.50 15.95 15.70 17.70 17.70 Rb 313.00 354.00 475.00 308.00 388.00 299.00 334.00 320.00 315.00 Sr 33.50 31.50 21.40 29.30 28.90 33.75 25.80 33.80 32.10 Cs 47.10 51.70 136.00 44.80 70.15 32.65 61.30 56.00 35.40 Ba 57.70 53.40 37.30 63.40 48.30 62.80 44.60 56.00 58.40 Pb 43.80 41.40 37.20 43.20 40.30 45.15 40.90 44.30 40.50 Th 3.60 3.17 2.75 3.86 3.04 3.34 3.42 3.99 3.52 U 3.72 3.13 2.48 3.36 2.99 4.01 3.10 3.02 8.73 Nb 14.70 14.00 26.60 16.40 19.55 7.76 16.50 15.80 19.20 Ta 4.27 3.09 10.70 3.50 6.11 1.65 3.60 3.58 4.22 Zr 29.10 29.30 24.90 32.50 28.00 29.60 31.00 32.40 29.40 Hf 1.52 1.49 1.44 1.70 1.47 1.44 1.62 1.65 1.58 W 375.00 380.00 6.00 433.00 196.00 219.00 409.00 381.00 325.00 Sc 2.45 2.16 2.43 2.28 2.45 2.41 1.78 2.68 2.80 Sn 19.10 20.50 37.50 24.20 30.35 14.95 25.20 19.50 20.70 稀土元素(10-6) La 6.40 6.03 4.52 7.64 5.70 6.62 5.94 7.10 6.39 Ce 13.00 12.00 8.96 15.60 11.25 13.35 13.50 14.50 13.00 Pr 1.43 1.35 0.97 1.68 1.25 1.50 1.31 1.62 1.37 Nd 4.88 4.70 3.28 5.81 4.33 5.18 4.63 5.74 4.83 Sm 1.53 1.46 1.09 1.66 1.34 1.62 1.39 1.76 1.42 Eu 0.29 0.25 0.17 0.30 0.23 0.30 0.25 0.32 0.28 Gd 1.51 1.43 1.09 1.66 1.33 1.62 1.28 1.73 1.46 Tb 0.26 0.25 0.22 0.27 0.25 0.30 0.22 0.28 0.27 Dy 1.09 1.11 1.03 1.27 1.13 1.31 0.88 1.20 1.26 Ho 0.13 0.13 0.13 0.14 0.14 0.16 0.09 0.15 0.17 Er 0.21 0.25 0.29 0.25 0.28 0.30 0.16 0.27 0.33 Tm 0.03 0.03 0.04 0.03 0.03 0.04 0.02 0.03 0.04 Yb 0.17 0.18 0.18 0.19 0.20 0.21 0.12 0.18 0.25 Lu 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.03 0.04 Y 3.49 3.88 3.96 3.79 4.11 4.44 2.61 3.89 4.85 Li同位素(%) δ7Li±2 δ -1.21±0.03 +0.29±0.02 +0.52±0.03 -1.56±0.03 +0.90±0.02 +0.00±0.02 -0.07±0.02 -1.31±0.02 +0.07±0.02 表 2 甲基卡二云母花岗岩全岩Sr-Nd同位素测试结果
Table 2. Whole-rock Sr-Nd isotopic compositions of Jiajika two-mica granite
样号 年龄(Ma) Rb(10-6) Sr(10-6) Rb/Sr 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm(10-6) Nd(10-6) Sm/Nd 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)t εNd(t) J9 223 182.9 3.1 58.5 19.250 4 0.771 71 0.710 66 0.41 1.45 0.28 0.170 0 0.512 17 0.511 92 -8.41 J10 223 233.6 3.5 67.6 21.257 6 0.777 39 0.709 97 0.37 1.29 0.28 0.172 1 0.512 08 0.511 82 -10.29 J11 223 0.57 2.06 0.28 0.168 0 0.511 98 0.511 74 -11.94 J13 223 0.37 1.26 0.29 0.175 6 0.512 00 0.511 75 -11.83 J14 223 0.16 0.65 0.24 0.145 5 0.512 13 0.511 91 -8.52 注:223 Ma据郝雪峰等(2015);由于全岩Rb含量较高,Sr明显亏损,Rb/Sr比较高,放射性87Sr/86Sr不能准确扣除,导致送出的5件Sr同位素样品仅成功2件. -
[1] Barnes, E.M., Weis, D., Groat, L.A., 2012.Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada.Lithos, 132-133:21-36. https://doi.org/10.1016/j.lithos.2011.11.014 [2] Bryant, C.J., Chappell, B.W., Bennett, V.C., et al., 2004.Lithium Isotopic Compositions of the New England Batholith:Correlations with Inferred Source Rock Compositions.Transactions of the Royal Society of Edinburgh:Earth Sciences, 95(1-2):199-214. https://doi.org/10.1017/s0263593300001012 [3] Chan, L.H., Edmond, J, M., Thompson, G., et al., 1992.Lithium Isotopic Composition of Submarine Basalts:Implications for the Lithium Cycle in the Oceans.Earth and Planetary Science Letters, 108(1-3):151-160. https://doi.org/10.1016/0012-821x(92)90067-6 [4] Chen, J.F., Yan, J., Xie, Z., et al., 2001.Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China:Constraints on Sources.Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):719-731. https://doi.org/10.1016/s1464-1895(01)00122-3 [5] Fu, X.F., Hou, L.W., Wang, D.H., et al., 2014.Achievements in the Investigation and Evaluation of Spodumene Resources at Jiajika in Sichuan, China.Geological Survey of China, 1(3):37-43(in Chinese with English abstract). http://www.doc88.com/p-9973557939037.html [6] Fu, X.F., Yuan, L.P., Wang, D.H., et al., 2015.Mineralization Characteristics and Prospecting Model of Newly Discovered X03 Rare Metal Vein in Jiajika Orefield, Sichuan.Mineral Deposits, 34(6):1172-1186(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506007 [7] Gao, Y.Y., Li, X.H., Griffin, W.L., et al., 2015.Extreme Lithium Isotopic Fractionation in Three Zircon Standards(Plešovice, Qinghu and Temora).Scientific Reports, 5:1-11. https://doi.org/10.1038/srep16878 [8] Halama, R., McDonough, W.F., Rudnick, R.L., et al., 2007.The Li Isotopic Composition of Oldoinyo Lengai:Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis.Earth and Planetary Science Letters, 254(1-2):77-89. https://doi.org/10.1016/j.epsl.2006.11.022 [9] Halama, R., McDonough, W.F., Rudnick, R.L., et al., 2008.Tracking the Lithium Isotopic Evolution of the Mantle Using Carbonatites.Earth and Planetary Science Letters, 265(3-4):726-742. https://doi.org/10.1016/j.epsl.2007.11.007 [10] Hao, X.F., Fu, X.F., Liang, B., et al., 2015.Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance.Mineral Deposits, 34(6):1199-1208(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506009 [11] Huh, Y., Chan, L.H., Edmond, J.M., 2001.Lithium Isotopes as a Probe of Weathering Processes:Orinoco River.Earth and Planetary Science Letters, 194(1-2):189-199. https://doi.org/10.1016/s0012-821x(01)00523-4 [12] Huh, Y., Chan, L.H., Zhang, L.B., et al., 1998.Lithium and Its Isotopes in Major World Rivers:Implications for Weathering and the Oceanic Budget.Geochimica et Cosmochimica Acta, 62(12):2039-2051. https://doi.org/10.1016/s0016-7037(98)00126-4 [13] Jahn, B.M., Wuab, F., Loc, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1-2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 [14] Jeffcoate, A.B., Elliott, T., Thomas, A., et al., 2004.Precise/Small Sample Size Determinations of Lithium Isotopic Compositions of Geological Reference Materials and Modern Seawater by MC-ICP-MS.Geostandards and Geoanalytical Research, 28(1):161-172. https://doi.org/10.1111/j.1751-908x.2004.tb01053.x [15] Li, J.K., Wang, D.H., Chen, Y.C., 2013.The Ore-Forming Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province:Evidence from Isotope Dating.Acta Geologica Sinica(English Edition), 87(1):91-101. https://doi.org/10.1111/1755-6724.12033 [16] Li, J.K., Wang, D.H., Liu, S.B., ,et al., 2008.SRXRF Microprobe Study of Fluid Inclusions for Pegmatite Deposits in Western Sichuan Province.Geotectonica et Metallogenia, 32(3):332-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201105007.htm [17] Li, J.K., Wang, D.H., Zhang, D.H., et al., 2006a.The Source of Ore-Forming Fluid in Jiajika Pegmatite Type Lithium Polymetallic Deposit, Sichuan Province.Acta Petrologoca et Mineralogica, 25(1):45-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200601005.htm [18] Li, J.K., Wang, D.H., Zhang, D.H., et al., 2006b.The Discovery of Silicate Daughter Mineral-Bearing Inclusions in the Jiajika Pegmatite Deposit, Western Sichuan, and Its Significance.Mineral Deposits, 25(Suppl.):131-134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201105002.htm [19] Li, S. H., 2015. Ore-Forming Mechanisms and Prospecting Models of Typical Granite Type Rare Metal Deposits in South China(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [20] Liang, B., Fu, X.F., Tang, Y., et al., 2016.Granite Geochemical Characteristics in Jiajika Rare Metal Deposit, Western Sichuan.Journal of Guilin University of Technology, 36(1):42-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200506001.htm [21] Liu, L.J., Fu, X.F., Wang, D.H., et al., 2015.Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposits.Mineral Deposits, 34(6):1187-1198(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0301926892901214 [22] Liu, L.J., Wang, D.H., Dai, H.Z., et al., 2017a.Geochemical Characteristics of REE and Its Implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan.Earth Science, 42(10):1674-1683(in Chinese with English abstract). http://www.earth-science.net/WebPage/Article.aspx?id=3669 [23] Liu, L.J., Wang, D.H., Hou, K.J., et al., 2017b.Application of Lithium Isotope to Jiajika New No.3 Pegmatite Lithium Polymetllic Vein in Sichuan.Earth Science Frontiers, 24(5):168-171(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/B9780128014172000013 [24] Magna, T., Janoušek, V., Kohút, M., et al., 2010.Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites.Chemical Geology, 274(1-2):94-107. https://doi.org/10.13039/501100001824 [25] Magna, T., Wiechert, U.H., Halliday, A.N., 2004.Low-Blank Isotope Ratio Measurement of Small Samples of Lithium Using Multiple-Collector ICPMS.International Journal of Mass Spectrometry, 239(1):67-76. https://doi.org/10.1016/j.ijms.2004.09.008 [26] Marschall, H.R., Pogge von Strandmann, P.A.E., Seitz, H.M., et al., 2007.The Lithium Isotopic Composition of Orogenic Eclogites and Deep Subducted Slabs.Earth and Planetary Science Letters, 262(3-4):563-580. https://doi.org/10.1016/j.epsl.2007.08.005 [27] Pan, M., Tang, Y., Xiao, R.Q., et al., 2016.The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District.Acta Geologica Sichuan, 36(3):422-425(in Chinese with English abstract). http://www.doc88.com/p-9973557939037.html [28] Pistiner, J.S., Henderson, G.M., 2003.Lithium-Isotope Fractionation during Continental Weathering Processes.Earth and Planetary Science Letters, 214(1-2):327-339. https://doi.org/10.1016/s0012-821x(03)00348-0 [29] Qin, Y.L., Hao, X.F., Xu, Y.F., et al., 2015.Metallogenic Regularity and Prospecting Criteria of Granite Type Rare Metal Deposits in Jiajika Area, Sichuan Province.Geological Survey of China, 2(7):35-39(in Chinese with English abstract). http://www.doc88.com/p-9973557939037.html [30] Qiu, L., Rudnick, R.L., McDonough, W.F., et al., 2009.Li and δ7Li in Mudrocks from the British Caledonides:Metamorphism and Source Influences.Geochimica et Cosmochimica Acta, 73(24):7325-7340. https://doi.org/10.1016/j.gca.2009.08.017 [31] Richter, F.M., Dauphas, N., Teng, F.Z., 2009.Non-Traditional Fractionation of Non-Traditional Isotopes:Evaporation, Chemical Diffusion and Soret Diffusion.Chemical Geology, 258(1-2):92-103. https://doi.org/10.1016/j.chemgeo.2008.06.011 [32] Richter, F., Watson, B., Chaussidon, M., et al., 2014.Lithium Isotope Fractionation by Diffusion in Minerals.Part 1:Pyroxenes.Geochimica et Cosmochimica Acta, 126(2):352-370. https://doi.org/10.1016/j.gca.2013.11.008 [33] Romer, R.L., Meixner, A., Förster, H.J., 2014.Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131(4):98-114. https://doi.org/10.1016/j.gca.2014.01.018 [34] Rudnick, R.L., Tomascak, P.B., Njo, H.B., et al., 2004.Extreme Lithium Isotopic Fractionation during Continental Weathering Revealed in Saprolites from South Carolina.Chemical Geology, 212(1-2):45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008 [35] Su, A.N., Li, Z.Z., Tian, S.H., et al., 2010a.Lithium Isotope:Analytical Methods and Its Application to Carbonatite in Continental Rift Environment.Mineral Deposits, 29(5):827-842(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201005007.htm [36] Su, A.N., Li, Z.Z., Tian, S.H., et al., 2010b.High-Precision Measurement of Lithium Isotope Using MC-ICP-MS.Mineral Deposits, 29(Suppl.):835-836(in Chinese with English abstract). http://pubs.rsc.org/en/content/articlelanding/2015/ja/c5ja00060b#! [37] Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016.Lithium Isotope Fractionation during Incongruent Melting:Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China.Chemical Geology, 439:71-82. https://doi.org/10.13039/501100001809 [38] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [39] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [40] Tang, Y., 2016. Characteristic and Prospecting Significance of Granite in the Jiajika Rare Metal Mining Area of the West Sichuan(Dissertation). Southwest University of Science and Technology, Chengdu (in Chinese with English abstract). [41] Tang, Y.J., Zhang, H.F., Ying, J.F., 2009.Discussion on Fractionation Mechanism of Lithium Isotopes.Earth Science, 34(1):43-55(in Chinese with English abstract). http://www.earth-science.net/WebPage/Article.aspx?id=1786 [42] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004.Lithium Isotopic Composition and Concentration of the Upper Continental Crust.Geochimica et Cosmochimica Acta, 68(20):4167-4178. https://doi.org/10.1016/j.gca.2004.03.031 [43] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2006.Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota.American Mineralogist, 91(10):1488-1498. https://doi.org/10.2138/am.2006.2083 [44] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2007.Limited Lithium Isotopic Fractionation during Progressive Metamorphic Dehydration in Metapelites:A Case Study from the Onawa Contact Aureole, Maine.Chemical Geology, 239(1-2):1-12. https://doi.org/10.1016/j.chemgeo.2006.12.003 [45] Teng, F.Z., Roberta, L., Rudnick, et al., 2008.Lithium Isotopic Composition and Concentration of the Deep Continental Crust.Chemical Geology, 255:47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009 [46] Teng, F.Z., Rudnick, R.L., McDonough, W.F., et al., 2009.Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves:Further Constraints on the Li Isotopic Composition of the Continental Crust.Chemical Geology, 262(3):370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009 [47] Tian, S.H., Hou, Z.Q., Su, A.N., et al., 2012.Separation and Precise Measurement of Lithium Isotopes in Three Reference Materials Using Multi Collector-Inductively Coupled Plasma Mass Spectrometry.Acta Geologica Sinica(English Edition), 86(5):1297-1305. https://doi.org/10.1111/j.1755-6724.2012.00749.x [48] Tomascak, P.B., 2004.Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences.Reviews in Mineralogy and Geochemistry, 55(1):153-195. https://doi.org/10.2138/gsrmg.55.1.153 [49] Wang, D.H., Fu, X.F., 2013.The Breakthrough of Lithium Prospecting in the Periphery of Jiajika Mining Area, Sichuan.Rock and Mineral Analysis, 32(6):987(in Chinese). http://www.doc88.com/p-9973557939037.html [50] Wang, D, H., Li, J, K., Fu, X, F., 2005.40Ar/39Ar Dating for the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan and Its Significance.Geochimica, 34(6):541-547(in Chinese with English abstract). https://es.scribd.com/document/342746138/Data-Sess07 [51] Wang, D.H., Liu, L.J., Dai, H.Z., et al., 2017.Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits.Earth Science, 42(12):2243-2257(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.142 [52] Zack, T., Tomascak, P.B., Rudnick, R.L., et al., 2003.Extremely Light Li in Orogenic Eclogites:The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust.Earth and Planetary Science Letters, 208(3-4):279-290. https://doi.org/10.1016/s0012-821x(03)00035-9 [53] Zhao, Y., Hou, K.J., Tian, S.H., et al., 2015.Study on Measurements of Lithium Isotopic Compositins for Common Standard Reference Materials Using Multi-Collector Inductively Coupled Plasma-Mass Spectrometry.Rock and Mineral Analysis, 34(1):28-39(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0009254199000224 [54] Zhao, Y.X., Zhao, G.M., Zeng, Y.F., 2015.Geological Features and Genetic Model for the Granitic Pegmatite Type(Jiajika Type) Li Deposits in West Sichuan-By the Example of the Jiajika Li Deposit.Acta Geologica Sichuan, 35(3):391-395(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_scdzxb201503018 [55] 付小方, 侯立玮, 王登红, 等, 2014.四川甘孜甲基卡锂辉石矿矿产调查评价成果.中国地质调查, 1(3):37-43. http://www.cqvip.com/QK/72008X/201403/664109427.html [56] 付小方, 袁蔺平, 王登红, 等, 2015.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型.矿床地质, 34(6):1172-1186. doi: 10.16111/j.0258-7106.2015.06.006.html [57] 郝雪峰, 付小方, 梁斌, 等, 2015.川西甲基卡花岗岩和新三号矿脉的形成时代及意义.矿床地质, 34(6):1199-1208. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506009 [58] 李建康, 王登红, 刘善宝, 等, 2008.川西伟晶岩型矿床中流体包裹体的SRXRF分析.大地构造与成矿学, 32(3):332-337. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803011.htm [59] 李建康, 王登红, 张德会, 等, 2006a.四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究.岩石矿物学杂志, 25(1):45-52. http://www.oalib.com/paper/4339286 [60] 李建康, 王登红, 张德会, 等, 2006b.川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义.矿床地质, 25(增刊):131-134. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200611003036.htm [61] 李胜虎, 2015. 华南典型花岗岩型稀有金属矿床的成矿机制与找矿模式研究(博士学位论文). 北京: 中国地质大学. [62] 梁斌, 付小方, 唐屹, 等, 2016.川西甲基卡稀有金属矿区花岗岩岩石地球化学特征.桂林理工大学学报, 36(1):42-49. http://www.cnki.com.cn/Article/CJFDTotal-GLGX201601007.htm [63] 刘丽君, 付小方, 王登红, 等, 2015.甲基卡式稀有金属矿床的地质特征与成矿规律.矿床地质, 34(6):1187-1198. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kcdz201506008 [64] 刘丽君, 王登红, 代鸿章, 等, 2017a.四川甲基卡新三号超大型锂矿脉稀土元素地球化学.地球科学, 42(10):1673-1683. http://www.earth-science.net/WebPage/Article.aspx?id=3669 [65] 刘丽君, 王登红, 侯可军, 等, 2017b.锂同位素在四川甲基卡新三号矿脉研究中的应用.地学前缘, 24(5):167-171. http://www.cqvip.com/QK/94035X/200303/7778222.html [66] 潘蒙, 唐屹, 肖瑞卿, 等, 2016.甲基卡新3号超大型锂矿脉找矿方法.四川地质学报, 36(3):422-425. http://www.cnki.com.cn/Article/CJFDTotal-GLGX201601008.htm [67] 秦宇龙, 郝雪峰, 徐云峰, 等, 2015.四川甲基卡地区花岗岩型稀有金属矿找矿规律及标志.中国地质调查, 2(7):35-39. http://www.cqvip.com/QK/72008X/201507/667175374.html [68] 苏嫒娜, 李真真, 田世洪, 等, 2010a.锂同位素分析方法及其在大陆裂谷环境碳酸岩研究中的应用.矿床地质, 29(5):827-842. http://www.cqvip.com/qk/93610X/201005/35784762.html [69] 苏嫒娜, 李真真, 田世洪, 等, 2010b.MC-ICP-MS高精度测定Li同位素分析方法.矿床地质, 29(增刊):835-836. http://mall.cnki.net/magazine/Article/DXQY201102034.htm [70] 唐屹, 2016. 川西甲基卡稀有金属矿区花岗岩特征及找矿意义(硕士学位论文). 成都: 西南科技大学. [71] 汤艳杰, 张宏福, 英基丰, 2009.锂同位素分馏机制讨论.地球科学, 34(1):43-55. http://www.earth-science.net/WebPage/Article.aspx?id=1786 [72] 王登红, 付小方, 2013.四川甲基卡外围锂矿找矿取得突破.岩矿测试, 32(6):987. http://www.cqvip.com/QK/95716X/201306/47760257.html [73] 王登红, 李建康, 付小方, 2005.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义.地球化学, 34(6):541-547. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200506001.htm [74] 王登红, 刘丽君, 代鸿章, 等, 2017.试论国内外大型超大型锂辉石矿床的特殊性与找矿方向.地球科学, 42(12):2243-2257. https://doi.org/10.3799/dqkx.2017.142 [75] 赵悦, 侯可军, 田世洪, 等, 2015.常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究.岩矿测试, 34(1):28-39. http://mall.cnki.net/magazine/Article/YKCS201501008.htm [76] 赵玉祥, 赵光明, 曾毅夫, 2015.川西甲基卡式锂矿地质特征及成矿模式——以甲基卡锂矿床为例.四川地质学报, 35(3):391-395. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_scdzxb201503018