Paleoclimatic Variations in Ningjinpo Area since Late Pleistocene as Indicated by n-Alkanes
-
摘要: 华北地区晚更新世以来气候变化研究具有重要的意义.选择宁晋泊地区开展河湖相沉积物的分子化石研究.结果表明,沉积物中正构烷烃碳数分布范围为C15~C33,高碳数奇碳优势明显,多以C29和C31为主峰的单峰分布,少量样品出现以C17为次主峰的双峰分布,表明有机质以陆生植物和大型水生植物为主.结合正构烷烃参数,分析了宁晋泊地区晚更新世以来的气候演变过程,展现了"83~68 ka气候较为温和,湖泊水位较低;68~30 ka气候暖湿,湖泊扩张;30~22 ka气候冷干,湖泊萎缩;22~10 ka气候好转,湖泊水位上升;全新世气候温和适度,湖泊水位略有降低"的特征.区域对比分析表明,末次冰期以来宁晋泊地区与延庆盆地等地的气候变化基本一致,具有冰期-间冰期旋回特征,说明其主要受太阳辐射的控制.Abstract: It is of importance to reconstruct the paleoclimatic variations since late Pleistocene in North China. In this paper, it selected Ningjinpo area to characterize the paleoclimatic oscillations with the aid of microbial lipids. Results indicate that the carbon number distributions of most samples ranged from C15 to C33, with the dominance of high carbon (C29 and C31 in particular) in most samples and some lower homologue as secondary peak (C17 for instance), suggesting the mixed origin from higher plants and aquatic organisms. According to the parameters derived from n-alkanes, alternative paleoclimatic conditions of the study area from warm climate with low lake level (83-68 ka), hot-wet period with lake expansion (68-30 ka), cold-dry duration with shrinking lake (30-22 ka), hot and wet climate with increasing lake level (22-10 ka), to moderate climate period (10-0 ka) were reconstructed since late Pleistocene. Regional comparison demonstrated the similar glacial-interglacial paleoclimatic patterns occurred in Ningjinpo area and Yanqing basin, potentially suggesting the principal control of solar radiation.
-
Key words:
- n-alkane /
- climatic implication /
- paleovegetation /
- paleoclimatic variation /
- Ningjinpo area /
- climate change
-
图 3 千户营剖面正构烷烃参数与延庆盆地、太阳辐射量变化及深海氧同位素对比
Fig. 3. Distribution of n-alkanes from Qianhuying profile in Ningjinpo area in comparison with results from Yanqing basin, summer solar radiation, and oxygen isotope record in the Sulu Sea
-
[1] Bianchi, T.S., Canuel, E.A., 2011.Chemical Biomarkers in Aquatic Ecosystems.Prenceton University Press, Princeton. [2] Cranwell, P.A., Eglinton, G., Robinson, N., 1987.Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments-Ⅱ.Organic Geochemistry, 11(6):513-527. https://doi.org/10.1016/0146-6380(87)90007-6 [3] Dodd, R.S., Poveda, M.M., 2003.Environmental Gradients and Population Divergence Contribute to Variation in Cuticular Wax Composition in Juniperus Communis.Biochemical Systematics and Ecology, 31(11):1257-1270.https://doi.org/10.1016/s0305-1978(03)00031-0 doi: 10.1016/S0305-1978(03)00031-0 [4] Eglinton, T.I., Eglinton, G., 2008.Molecular Proxies for Paleoclimatology.Earth and Planetary Science Letters, 275(1-2):1-16. https://doi.org/10.1016/j.epsl.2008.07.012 [5] Ficken, K.J., Li, B., Swain, D.L., et al., 2000.An n-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes.Organic Geochemistry, 31(7-8):745-749.https://doi.org/10.1016/s0146-6380(00)00081-4 doi: 10.1016/S0146-6380(00)00081-4 [6] Guenther, F., Aichner, B., Siegwolf, R., et al., 2013.A Synthesis of Hydrogen Isotope Variability and Its Hydrological Significance at the Qinghai-Tibetan Plateau.Quaternary International, 313-314:3-16.https://doi.org/10.1016/j.quaint.2013.07.013 http://www.sciencedirect.com/science/article/pii/S1040618213003960 [7] Guo, S.Q., Wang, S.M., Yang, L.J., , 2005.Climatic and Environmental Change in North China Plain during the Last Glacial Maximum.Geological Review, 51(4):423-427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200504009 [8] Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al., 2001.Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance.Science, 293(5535):1647-1651. https://doi.org/10.1126/science.1060143 [9] Lin, J.X., Zhang, J., Lin, F., et al., 1998.The Influence of the Expansion of the West Pacific Warm Pool on the Climate Change in the North China Plain.Acta Geoscientia Sinica, 19(4):353-356 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800055503 [10] Lin, X., Zhu, L.P., Wang, Y., et al., 2008.Environmental Changes Reflected by n-Alkanes of Lake Core in Nam Co on the Tibetan Plateau since 8.4 ka B.P..Science Bulletin, 53(19):3051-3057. https://doi.org/10.1007/s11434-008-0313-6 [11] Linsley, B.K., 1996.Oxygen-Isotope Record of Sea Level and Climate Variations in the Sulu Sea over the Past 150, 000 Years.Nature, 380(6571):234-237. https://doi.org/10.1038/380234a0 [12] Meyers, P.A., Ishiwatari, R., 1993.Lacustrine Organic Geochemistry-An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments.Organic Geochemistry, 20(7):867-900.https://doi.org/10.1016/0146-6380(93)90100-p doi: 10.1016/0146-6380(93)90100-P [13] Ouyang, X.G., Guo, F., Bu, H.M., 2015.Lipid Biomarkers and Pertinent Indices from Aquatic Environment Record Paleoclimate and Paleoenvironment Changes.Quaternary Science Reviews, 123:180-192. https://doi.org/10.1016/j.quascirev.2015.06.029 [14] Pu, Y., Wang, C.F., Meyers, P.A., 2017.Origins of Biomarker Aliphatic Hydrocarbons in Sediments of Alpine Lake Ximencuo, China.Palaeogeography, Palaeoclimatology, Palaeoecology, 475:106-114. doi: 10.1016/j.palaeo.2017.03.011 [15] Sachse, D., Radke, J., Gleixner, G., 2004.Hydrogen Isotope Ratios of Recent Lacustrine Sedimentary n-Alkanes Record Modern Climate Variability.Geochimica et Cosmochimica Acta, 68(23):4877-4889. https://doi.org/10.1016/j.gca.2004.06.004 [16] Seki, O., Nakatsuka, T., Shibata, H., et al., 2010.A Compound-Specific n-Alkane δ13C and δD Approach for Assessing Source and Delivery Processes of Terrestrial Organic Matter within a Forested Watershed in Northern Japan.Geochimica et Cosmochimica Acta, 74(2):599-613. https://doi.org/10.1016/j.gca.2009.10.025 [17] Shen, J.H., Xiao, G.Q., Wang, Z.X., et al., 2017.Distribution of n-Alkanes in Miocene Loess in Qinan, Western Chinese Loess Plateau, and Its Palaeoenvironmental Implications.Science China Earth Sciences, 60(5):921-928. https://doi.org/10.1007/s11430-016-9013-6 [18] Wang C.M., Guo S.Q., 2005.Age Dating of Lacustrine Deposits in the Ningjinbo Area, Shijiazhuang, North China Plain.Geological Bulletin of China, 24(7):655-659 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200507011 [19] Wang, Y.L., Fang, X.M., Bai, Y., et al., 2007.Distribution of Lipids in Modern Soils from Various Regions with Continuous Climate (Moisture-Heat) Change in China and Their Climate Significance.Science China:Earth Sciences, 50(4):600-612. https://doi.org/10.1007/s11430-007-2062-9 [20] Wang, S.P., Jia, G.D., Zhao, Y., et al., 2010.Plant Wax n-Alkanes Record of the Holocene Paleoclimatic Changes from a Core Sediment of Hurleg Lake in the Qaidam Basin.Quaternary Sciences, 30(6):1097-1104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201006004 [21] Wu, C., 1992.Evolution of Natural Environment in North China Plain since 40 000 Years.China Science and Technology Press, Beijing, 105-134 (in Chinese). [22] Xie, S.C., Nott, C.J., Avsejs, L.A., et al., 2004.Molecular and Isotopic Stratigraphy in an Ombrotrophic Mire for Paleoclimate Reconstruction.Geochimica et Cosmochimica Acta, 68(13):2849-2862. doi: 10.1016/j.gca.2003.08.025 [23] Yamada, K., Ishiwatari, R., 1999.Carbon Isotopic Compositions of Long-Chain n-Alkanes in the Japan Sea Sediments:Implications for Paleoenvironmental Changes over the Past 85 kyr.Organic Geochemistry, 30(5):367-377.https://doi.org/10.1016/s0146-6380(99)00012-1 doi: 10.1016/S0146-6380(99)00012-1 [24] Yang, G.F., Wu, F.D., Chen, Z.H., et al., 2015.n-Alkane Distribution and Their Palaeoenvironmental Implications in Fluvial-Lacustrine Sediments in Dengkou, Inner Mongolia.Earth Science, 40(2):327-333 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201502013 [25] Zhang, H.J., Yang, G.F., Chen, Z.H., et al., 2018.Distribution of n-Alkanes Iindicative of Paleoclimatic Change in Paleolake of Yanqing, Beijing.Earth Science, 43(11):4120-4127 (in Chinese with English abstract). [26] Zhang, H.J., Yang, G.F., Chen, Z.H., et al., 2017.Paleoclimatic Evolution Inferred from Organic Carbon Isotope of Lacustrine Sediments in the Yanqing Basin of Beijing since Late Pleistocene.Journal of Arid Land Resources and Environment, 31(12):92-97 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201712015 [27] Zhao, Y.S., 1987.Palaeoclimate Variability of the North China Plain for the Last 120 000 Years.Geographical Research, 6(4):54-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ198704005.htm [28] Zhou, W.J., Zheng, Y.H., Meyers, P.A., et al., 2010.Postglacial Climate-Change Record in Biomarker Lipid Compositions of the Hani Peat Sequence, Northeastern China.Earth and Planetary Science Letters, 294(1-2):37-46. https://doi.org/10.1016/j.epsl.2010.02.035 [29] 郭盛乔, 王苏民, 杨丽娟, 等, 2005.末次盛冰期华北平原古气候古环境演化.地质论评, 51(4):423-427. doi: 10.3321/j.issn:0371-5736.2005.04.009 [30] 林景星, 张静, 林防, 等, 1998.西太平洋暖池扩张对华北平原气候变化的影响——华北平原4万年以来升温事件的新证据.地球学报, 19(4):353-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800055503 [31] 王成敏, 郭盛乔, 2005.华北平原石家庄东南部宁晋泊地区湖相地层的年龄测定.地质通报, 24(7):655-659. doi: 10.3969/j.issn.1671-2552.2005.07.011 [32] 王素萍, 贾国东, 赵艳, 等, 2010.柴达木盆地克鲁克湖全新世气候变化的正构烷烃分子记录.第四纪研究, 30(6):1097-1104. doi: 10.3969/j.issn.1001-7410.2010.06.04 [33] 吴忱, 1992.华北平原四万年以来自然环境演变.北京:中国科学技术出版社, 105-134. [34] 杨桂芳, 武法东, 陈正洪, 等, 2015.内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义.地球科学, 40(2):327-333. http://earth-science.net/WebPage/Article.aspx?id=3056 [35] 张慧娟, 杨桂芳, 陈正洪, 等, 2017.北京延庆盆地晚更新世以来的古气候演化:有机碳同位素记录.干旱区资源与环境, 31(12):92-97. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201712015 [36] 张慧娟, 杨桂芳, 陈正洪, 等, 2018.北京延庆古湖正构烷烃分布特征及古气候意义.地球科学, 43(11):4120-4127. http://earth-science.net/WebPage/Article.aspx?id=4036 [37] 赵英时, 1987.华北平原十二万年以来的古气候变化.地理研究, 6(4):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000243729