Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method
-
摘要: 致密油气储层作为非常规油气储层的重要类型,具有孔隙尺度小,微观非均质性强等显著特征.目前在大幅提高资源动用率方面仍面临重大理论挑战,探索潜力广阔.本研究利用“伞式解构”方法定量解析了中国鄂尔多斯盆地陆相致密砂岩储层孔隙和矿物的微观各向异性特征.实例研究显示,八向伞式切片微观孔喉发育存在显著的微观各向异性,各向填隙物发育特征差异明显,随着取样角度的变化,呈现连续非稳态分布.八向伞式切片分形维数是孔隙率、渗透率和孔喉发育概率的良好表征.研究可为揭示致密储层储渗机理及“甜点”分布规律,指导致密油气有效开发提供重要的理论支撑与实践依据.Abstract: As an important type of unconventional reservoirs, tight oil and gas reservoirs are characterized by small pore scale and obvious micro-heterogeneity. The exploration potential is vast despite the major theoretical challenges in greatly improving the recovery rate of resources. In this study, the micro anisotropic characteristics of pores and minerals in continental tight sandstone reservoirs in Ordos basin, China, are quantitatively analyzed by means of "umbrella deconstruction". The case study shows that there is a significant micro anisotropy in the micro pore-throat development in eight directions, and the development characteristics of the anisotropic filler are obviously different. With the change of sampling angle, the micro pores show continuously unsteady distribution. The fractal dimension could characterize the porosity, permeability and pore-throat development probability. The study can provide important theoretical support and practical basis for revealing the mechanism of tight reservoir permeability, "sweet spot" distribution and guiding the effective development of tight oil and gas.
-
Key words:
- umbrella deconstruction /
- micro-anisotropy /
- tight reservoir /
- characterization /
- pore /
- petroleum geology
-
图 2 “伞式解构”技术原理示意
Fig. 2. Schematic diagram of "umbrella deconstruction" technology
-
[1] Alyafei, N., Mckay, T. J., Solling, T. I., 2016. Characterization of Petrophysical Properties Using Pore-Network and Lattice-Boltzmann Modelling:Choice of Method and Image Sub-Volume Size. Journal of Petroleum Science and Engineering, 145:256-265. https://doi.org/10.1016/j.petrol.2016.05.021 [2] Arand, F., Hesser, J., 2017. Accurate and Efficient Maximal Ball Algorithm for Pore Network Extraction. Computers & Geosciences, 101:28-37. https://doi.org/10.1016/j.cageo.2017.01.004 [3] Berrezueta, E., Kovacs, T., 2017. Application of Optical Image Analysis to the Assessment of Pore Space Evolution after CO2 Injection in Sandstones. A Case Study. Journal of Petroleum Science and Engineering, 159:679-690. https://doi.org/10.1016/j.petrol.2017.08.039 [4] Dong, H., 2007. Micro-CT Imaging and Pore Network Extraction. Imperial College, London. [5] Du, S. H., 2019a. Prediction of Permeability and Its Anisotropy of Tight Oil Reservoir via Precise Pore-Throat Tortuosity Characterization and "Umbrella Deconstruction" Method. Journal of Petroleum Science and Engineering, 178:1018-1028. https://doi.org/10.1016/j.petrol.2019.03.009 [6] Du, S. H., Shi, G. X., Yue, X. J., et al., 2019b. Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin, China. Acta Geologica Sinica (English Edition), 93(2):373-385. https://doi.org/10.1111/1755-6724.13768 [7] Du, S. H., Shi, Y. M., Zheng, X. J., et al., 2019c. Using "Umbrella Deconstruction & Energy Dispersive Spectrometer (UD-EDS)" Technique to Quantify the Anisotropic Elements Distribution of "Chang 7" Shale and Its Significance. Energy, in Press. https://doi.org/10.1016/j.energy.2019.116443 [8] Du, S. H., Xu, F., Taskyn, A., et al., 2019d. Anisotropy Characteristics of Element Composition in Upper Triassic "Chang 8" Shale in Jiyuan District of Ordos Basin, China:Microscopic Evidence for the Existence of Predominant Fracture Zone. Fuel, 253:685-690. https://doi.org/10.1016/j.fuel.2019.05.031 [9] Du, S. H., Pang, S., Shi, Y. M., 2018a. A New and More Precise Experiment Method for Characterizing the Mineralogical Heterogeneity of Unconventional Hydrocarbon Reservoirs. Fuel, 232:666-671. https://doi.org/10.1016/j.fuel.2018.06.012 [10] Du, S. H., Pang, S., Shi, Y. M., 2018b. Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering both the Resolution and Representativeness. Journal of Petroleum Science and Engineering, 169:388-392. https://doi.org/10.1016/j.petrol.2018.05.058 [11] Gundogar, A. S., Ross, C. M., Akin, S., et al., 2016. Multiscale Pore Structure Characterization of Middle East Carbonates. Journal of Petroleum Science and Engineering, 146:570-583. https://doi.org/10.1016/j.petrol.2016.07.018 [12] Hajnos, M., Lipiec, J., Świeboda, R., et al., 2006. Complete Characterization of Pore Size Distribution of Tilled and Orchard Soil Using Water Retention Curve, Mercury Porosimetry, Nitrogen Adsorption, and Water Desorption Methods. Geoderma, 135:307-314. https://doi.org/10.1016/j.geoderma.2006.01.010 [13] Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution:A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8:1-13. https://doi.org/10.1016/j.juogr.2014.06.002 [14] Huang, W. B., Lu, S. F., Hersi, O. S., et al., 2017. Reservoir Spaces in Tight Sandstones:Classification, Fractal Characters, and Heterogeneity. Journal of Natural Gas Science and Engineering, 46:80-92. https://doi.org/10.1016/j.jngse.2017.07.006 [15] Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geology Theory. Petroleum Exploration and Development, 44(1):1-10. https://doi.org/10.1016/s1876-3804(17)30002-2 [16] Kate, J. M., Gokhale, C. S., 2006. A Simple Method to Estimate Complete Pore Size Distribution of Rocks. Engineering Geology, 84(1-2):48-69. https://doi.org/10.1016/j.enggeo.2005.11.009 [17] Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158:78-89. https://doi.org/10.1016/j.coal.2016.03.003 [18] Krakowska, P., Puskarczyk, E., Jędrychowski, M., et al., 2018. Innovative Characterization of Tight Sandstones from Paleozoic Basins in Poland Using X-Ray Computed Tomography Supported by Nuclear Magnetic Resonance and Mercury Porosimetry. Journal of Petroleum Science and Engineering, 166:389-405. https://doi.org/10.1016/j.petrol.2018.03.052 [19] Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177:436-457. https://doi.org/10.1016/j.earscirev.2017.12.003 [20] Markussen, Ø., Dypvik, H., Hammer, E., et al., 2019. 3D Characterization of Porosity and Authigenic Cementation in Triassic Conglomerates/Arenites in the Edvard Grieg Field Using 3D Micro-CT Imaging. Marine and Petroleum Geology, 99:265-281. https://doi.org/10.1016/j.marpetgeo.2018.10.015 [21] Munawar, M. J., Lin, C. Y., Cnudde, V., et al., 2018. Petrographic Characterization to Build an Accurate Rock Model Using Micro-CT:Case Study on Low-Permeable to Tight Turbidite Sandstone from Eocene Shahejie Formation. Micron, 109:22-33. https://doi.org/10.1016/j.micron.2018.02.010 [22] Rabbani, A., Jamshidi, S., Salehi, S., 2014. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images. Journal of Petroleum Science and Engineering, 123:164-171. https://doi.org/10.1016/j.petrol.2014.08.020 [23] Silin, D. B., Jin, G., Patzek, T. W., 2003. Robust Determination of Pore Space Morphology in Sedimentary Rocks. Proceedings of SPE Annual Technical Conference and Exhibition, Denver. [24] Wang, P. F., Jiang, Z. X., Ji, W. M., et al., 2016. Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries. Marine and Petroleum Geology, 72:122-138. https://doi.org/10.1016/j.marpetgeo.2016.01.020 [25] Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103:12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003 [26] Xiao, D. S., Lu, S. F., Lu, Z. Y., et al., 2016. Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones. Petroleum Exploration and Development, 43(6):1049-1059. https://doi.org/10.1016/s1876-3804(16)30122-7 [27] Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2018. Characterizations of Full-Scale Pore Size Distribution, Porosity and Permeability of Coals:A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. International Journal of Coal Geology, 196:148-158. https://doi.org/10.1016/j.coal.2018.07.008