The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt: Evidence from Petrography and Geochemistry
-
摘要: 东昆仑造山带以广泛发育富含镁铁质包体的早-中三叠世花岗岩为主要特征,但目前尚缺乏对不同类型镁铁质包体系统的岩相学和矿物学研究.在本文中,我们选择了极具代表性的香加花岗岩体及其中包体为研究对象,从岩相学和矿物化学角度揭示了东昆仑地区壳幔岩浆相互作用的详细过程.研究表明包体发育眼球状石英、韵律环带斜长石和针状磷灰石等不平衡结构和快速结晶现象,指示存在岩浆混合作用,而似辉绿辉长结构包体代表了岩浆混合的基性端元.此外,长石的多阶段生长证明可能存在多次的岩浆混合过程.镁铁质包体相对寄主岩(Mg#值为0.39~0.56,Fe#值为0.44~0.62)具高Mg#和低Fe#特征.包体具有两类角闪石:一类结晶源自早期深部幔源岩浆(TiO2=2.1%~2.9%,SiO2=41.75%~44.49%),另一类则起源于浅部壳幔混合作用(TiO2=1.0%~1.8%,SiO2=42.49%~48.10%).部分黑云母具有高镁特征(MgO=9.78%~11.53%,Mg#=0.462~0.541),与幔源成因黑云母成分相当.斜长石的韵律环带及化学组成指示其岩浆混合成因.幔源基性岩浆在5×108 bar(约18 km)左右深度结晶并形成高钛角闪石,玄武质岩浆底侵上升,并发生壳幔岩浆混合作用,混合的岩浆上升至2.5×108 bar(约8 km)左右深度结晶形成低钛角闪石.以上证据指示,东昆仑地区在三叠纪时期可能经历了多期次的岩浆混合作用,地幔岩浆的注入在地壳深熔作用和地壳生长过程中扮演了重要角色.广泛的壳幔岩浆相互作用可能是三叠纪时期阿尼玛卿洋板片断离的重要响应.Abstract: The East Kunlun orogenic belt is characterized by widespread Early-Middle Triassic Epoch granitic rocks with a large proportion of mafic enclaves therein, however, there is still lack of petrography and mineralogy studies on the Mafic enclaves with different textures. In this paper, a systematic petrography and mineral chemistry study has been carried out for the representative Xiangjia granite pluton as well as the enclosed Mafic enclaves, which have clarified the processes of crust-mantle interaction in East Kunlun area. Studies on petrography have shown that the mafic enclaves have some disequilibrium textures and some phenomenon point to rapid crystallization, such as needle-like apatite, needle-like amphibole and augen-shaped quartz, all of which suggest the possible of magma mixing process, and the enclave with ophitic-gabbro texture likely to be the basic end-member. In addition, multi-stage growing of feldspar indicates there might be multi-mixing process. Whole rock geochemistry shows that the mafic enclaves have lower Mg# and higher Fe# values relative to their host rocks (Mg#:0.39-0.56, Fe#:0.44-0.62). Electron microprobe investigation shows that enclaves have two kinds of amphiboles, one kind in mafic enclaves (TiO2:2.1%-2.9%, SiO2:41.75%-44.49%) crystallized from mantle-derived basic magma in the early stage, while the other kind (TiO2:1.0%-1.8%, SiO2:42.49%-48.10%) probably crystallized from the mixed magma in the shallow crust level. Some biotites (MgO:9.78%-11.53%, Mg#:0.462-0.541) are similar to biotites crystallizing in the mantle-derived magma. The rhythmic zoning and geochemistry contents of Plagioclases show that they may have suffered the process of magma mixing. Calculated results by geobarameter indicate that the mantle-derived basic magma crystallized under 5×108 bar, i.e. about 18 km depth, producing the high-Ti amphiboles, and then mixed with the acid magma. The mixed magma emplaced to upper crust, maybe at 2.5×108 bar, i.e. about 8km depth, producing the Low-Ti amphiboles. All these features above show that the East Kunlun orogenic belt might have experienced crust-mantle interaction repeatly during the Triassic Epoch, and the injection of mantle magma played an important role in the crustal growth and crust anatexis. The wide crust-mantle interaction may be the response to the slab break-off of Animaqing Ocean during the Triassic Period.
-
Key words:
- East Kunlun orogenic belt /
- mafic enclaves /
- granite /
- geochemistry /
- multi-mixing
-
图 2 野外相片显示包体与寄主岩之间的相互关系
a.包体多呈浑圆椭球状,长轴定向,说明形成过程中遭受应力作用;b.包体边界呈弯曲状,暗色矿物平行包体边界,说明寄主岩石与镁铁质岩浆为塑性状态下混合形成;c.次棱角状包体;d.包体与寄主岩边界呈迷雾状过渡关系,说明岩浆混合向均匀方向发展;e.介于寄主岩石与包体间的长石巨晶,说明包体中长石是从寄主岩中进入的;f.眼球状石英,说明石英是镁铁质岩浆注入长英质岩浆后,两者一起搅拌形成的
Fig. 2. Field photographs showing mutual geological relationships between the enclaves and their host granite
图 3 寄主岩及各类包体显微照片
a.斜长石韵律环带,说明动荡的结晶环境,正交5倍;b.钾长石增生边结构,包裹有早期暗色矿物,正交5倍;c.长石多层次包裹暗色矿物,说明长石的多阶段生长,单偏5倍;d.眼球状石英,单偏5倍;e.眼球状石英,镶边的暗色矿物均为中粗角闪石,单偏5倍;f.针状磷灰石,指示淬冷过火结晶,单偏20倍;g.针状角闪石, 指示淬冷过火结晶;h.长石中包裹有高Ti角闪石,角闪石具褐-绿多色性,单偏5倍;i.角闪石围绕黑云母生长,单偏5倍;j.黑云母解理弯曲,说明遭受应力作用,单偏5倍;k.黑云母环带结构,正交5倍;l.石英波状消光,说明遭受应力作用,正交10倍
Fig. 3. The microphotos of enclaves and their host granite
图 4 包体和寄主岩的TAS图解(a)和A/CNK-A/NK图解(b)
Fig. 4. Diagrams of TAS (a) and A/CNK vs. A/NK (b) for enclaves and their host granites
图 5 香加岩体及镁铁质包体主量元素哈克图解
在图 5中,笔者发现除K2O以外,寄主岩的Al2O3、CaO、MgO、P2O5、TiO2、FeO含量均与SiO2含量呈很好的负相关性,反映了岩浆的正常演化趋势,而包体中的Al2O3、CaO、TiO2、K2O与SiO2均没有呈现良好的相关性,与Debon(1991)的岩浆混合结论吻合
Fig. 5. Harker diagrams of major elements for mafic enclaves and their host granites
图 7 镁铁质包体及其寄主岩的FeO-MgO协变
据Didier and Barbarin(1991);虚线箭头代表两种岩浆的混合趋势;实线箭头代表混合前镁铁质岩浆的分异趋势;FeO*为全铁
Fig. 7. Covariant diagram for FeO-MgO of mafic enclaves and their host rocks
图 8 香加岩体角闪石分类图解
据Leake et al.(1997);M=Mg/(Mg+Fe2+);Si单位为apfu(O=23)
Fig. 8. Classification of the Hornblende in the Xiangjia pluton
图 9 钙质角闪石Si(a.p.f.u., O=23)-Ti(%)图解
Ⅰ.火山岩中的火成角闪石;Ⅱ.基性超基性岩中的火成角闪石;Ⅲ.变质岩中角闪石;Ⅳ.中酸性侵入岩中的火成角闪石;Ⅴ.退变的或交代成因的角闪石,据马昌前等(1994)
Fig. 9. Si(a.p.f.u., O=23)-Ti(%) diagram of Ca-amphiboles
图 12 云母Mg-(AlⅥ+Fe3++Ti)-(Fe2++Mn)分类
A.金云母;B.镁质黑云母;C.铁质黑云母;D.铁叶云母;E.铁白云母;F.白云母;原图据Foster(1960)
Fig. 12. Mg-(AlⅥ+Fe3++Ti)-(Fe2++Mn) Classification of micas
图 14 黑云母构造环境判别图解
A.非造山的碱性岩系;C.造山带的钙碱性岩系;P.过铝质岩系;据Abdel-Rahman(1994)
Fig. 14. Discrimination diagram of tectonic settings for biotite
图 18 黑云母Ti-Mg/(Mg+Fe)温度图解
Fig. 18. Ti-Mg/(Mg+Fe) geothermometry diagram of biotite
表 1 香加岩体寄主岩与包体的岩相学特征
Table 1. The petrographic characteristics of Xiangjia host granites and enclaves
样品号 岩石类型主要结构 野外颜色 主要矿物成分 副矿物组合 56-1 寄主岩/似斑状结构 灰白色、浅肉红色 碱性长石+斜长石+角闪石+黑云母+石英;基质中粗粒花岗结构,为条纹长石、微斜条纹长石;斑晶主要为钾长石:占30%,极度绢云母化,粒径一般为0.8 cm×1.2 cm,大者可以达到1.2 cm×2.5 cm,手标本上即可看到暗色矿物镶边;基质主要为斜长石30%,粒径多为1 mm,半自形-他形,发育聚片双晶,环带结构常见;石英多呈集合体状,波状消光不明显,粒径1~3 mm,含量不超过20%,呈他形充填于其他矿物中间.黑云母:片状、自形短柱状,多色性褐-深褐色,生长于斜长石的间隙或者跨越斜长石边界,粒径一般<1 mm,见简单双晶,含量约5%;角闪石:长柱状,多色性浅绿-墨绿,含量极少2%~3%,粒径一般为0.6 mm;绢云母:呈放射状,由长石蚀变而成,含量为2%. 磷灰石+锆石 56-10 混染带包体/不等粒结构 灰白色 长石斑晶已极度绢云母化,常见增生边结构,且包裹有柱状角闪石,见暗色矿物镶边;基质中常见比暗色矿物粒度还小的斜长石简单双晶,暗色矿物含量5%~10%,分为大小截然的两类,均以角闪石为主;角闪石:短柱状,发育简单双晶,见菱形截面,两组解理夹角呈56°,可见绿色(浅部)角闪石围绕深褐色(深部)角闪石生长一圈,含量2%~3%,晶形良好的角闪石环带发育,且具简单双晶;石英:呈他形充填在自形矿物中间,见石英波状消光. 磷灰石+锆石 56-5 闪长质包体/近辉绿辉长结构 暗黑色 基本不含矿物斑晶,主要矿物:碱性长石+角闪石;偶见石英大斑晶被暗色矿物环绕,经镜下观察,不含辉石和黑云母;碱性长石:自形柱状,两组近90°解理明显,风化严重,极度绢云化,其中含针状磷灰石;角闪石:针柱状,半自形状,菱形截面解理清晰,绿帘石化,绿泥石化,长柱状3~10 mm不等,长宽比为20:1~3:1,半自形1 mm左右. 针状磷灰石+锆石+磁铁矿 表 2 香加花岗质岩体及包体主量元素组成(%)
Table 2. Major elements compositions (%) of enclaves and their host granites from Xiangjia
样品号 0009-1 0346-1 0588-1 2085-1 09NM56-1 09NM56-5 09NM56-7 09NM56-10 岩石
类型似斑状二
长花岗岩似斑状二
长花岗岩似斑状二
长花岗岩似斑状二
长花岗岩似斑状二
长花岗岩镁铁质
包体镁铁质
包体镁铁质
包体SiO2 72.95 69.73 68.95 74.01 69.48 53.8 55.64 59.95 TiO2 0.28 0.37 0.48 0.21 0.44 0.72 1.05 0.76 Al2O3 13.57 14.43 14.38 13.10 14.78 15.79 18.2 17.24 FeO 1.63 2.53 2.12 1.10 1.85 5.95 4.80 3.85 Fe2O3 0.77 0.91 1.07 0.62 1.14 2.11 1.92 1.47 MnO 0.06 0.06 0.06 0.03 0.06 0.26 0.15 0.13 MgO 0.75 0.92 1.47 0.38 1.31 5.52 3.27 2.81 CaO 1.94 2.71 3.21 1.20 3.13 6.29 5.27 5.67 Na2O 3.21 3.41 3.45 3.12 3.53 4.27 4.26 3.88 K2O 3.97 3.25 3.32 5.19 3.09 2.34 2.97 2.11 P2O5 0.08 0.09 0.14 0.04 0.12 0.33 0.32 0.23 LOI 0.60 1.04 0.44 0.68 H2O+ 0.46 1.29 1.10 0.71 0.78 1.70 1.73 1.45 CO2 0.13 0.09 0.09 0.11 0.06 0.68 0.13 0.17 Total 99.80 99.79 99.84 99.82 99.77 99.76 99.71 99.72 K2O+Na2O 7.18 6.66 6.77 8.31 6.62 6.61 7.23 5.99 FeO* 2.02 2.99 2.66 1.41 2.42 7.01 5.76 4.59 R1 2 718 2 570 2 492 2 556 2 559 1 283 1 290 1 958 R2 511 619 698 404 690 1 257 1 083 1 084 A/CNK 1.04 1.03 0.95 1.01 1.00 0.75 0.92 0.91 A/NK 1.42 1.58 1.55 1.22 1.62 1.65 1.78 1.99 Mg# 45.06 39.33 55.28 38.11 55.79 62.32 54.84 56.54 Fe# 0.55 0.61 0.45 0.62 0.44 0.38 0.45 0.43 FeO*/MgO 2.69 3.24 1.81 3.71 1.85 1.27 1.76 1.63 注:空格代表缺少相关数据;其中0009-1、0346-1、0588-1、2085-1号样品数据殷鸿福等(2003);FeO*表示全铁含量;Mg#=MgO/(MgO+FeO*);Fe#=FeO*/(MgO+FeO*). 表 3 香加岩体中角闪石电子探针分析(%)及晶体化学式计算结果
Table 3. Electronic probe analysis and crystal chemical formula of Hornblend in Xiangjia Rock (%)
样品 包体56-5 包体56-10 包体56-10 包体56-4 包体56-8 寄主岩56-1 探针点号 5 6 7 8 37 38 40 41 42 43 44 45 46 47 48 63 64 78 79 80 81 82 83 84 96 97 98 SiO2 47.03 47.38 48.10 47.17 47.12 47.07 47.02 42.30 41.84 41.75 41.99 45.40 42.19 44.49 44.17 42.49 43.04 44.91 47.22 46.70 44.68 46.54 44.92 48.52 45.66 45.61 44.38 TiO2 1.26 1.16 1.13 1.23 1.13 1.25 1.22 2.10 2.68 2.73 2.72 1.28 2.90 2.77 2.69 1.79 1.64 1.55 1.22 1.27 1.36 1.40 1.31 1.00 1.49 1.44 1.46 Al2O3 8.24 7.61 7.16 7.55 7.76 8.01 7.43 9.70 9.98 10.25 9.86 7.46 10.09 10.14 9.62 9.79 9.04 8.92 7.01 7.36 7.64 7.69 7.50 5.82 8.46 8.34 8.00 FeO* 16.16 16.23 15.92 16.63 16.80 16.98 16.77 19.88 19.54 19.30 19.44 18.08 17.39 15.00 16.46 20.63 19.87 18.52 17.34 17.37 18.13 16.88 18.49 16.69 17.46 17.30 18.41 MnO 0.56 0.63 0.53 0.54 0.54 0.56 0.51 0.55 0.56 0.53 0.49 0.54 0.38 0.37 0.53 0.57 0.60 0.57 0.57 0.62 0.52 0.51 0.61 0.72 0.59 0.51 0.52 MgO 11.65 11.89 12.15 11.45 11.58 11.26 11.76 9.57 9.46 9.28 9.43 11.27 10.67 11.78 10.73 9.25 9.93 10.18 11.74 11.39 11.57 11.67 11.26 12.37 10.84 11.19 11.29 CaO 11.07 11.01 11.29 11.38 11.16 10.96 11.40 11.49 11.31 11.51 11.59 11.78 11.30 10.88 11.21 11.64 11.68 11.20 11.34 11.39 11.71 11.25 11.68 11.27 11.18 11.40 11.89 Na2O 1.47 1.49 1.25 1.33 1.27 1.32 1.27 1.80 1.83 1.87 1.79 1.35 2.00 1.91 1.71 1.59 1.48 1.45 1.17 1.32 1.47 1.48 1.47 1.06 1.44 1.51 1.56 K2O 0.70 0.62 0.65 0.75 0.70 0.75 0.77 0.96 0.96 0.92 0.93 0.71 0.92 0.92 0.94 1.21 1.04 0.94 0.71 0.70 0.80 0.81 0.73 0.58 0.95 0.91 0.81 Cr2O3 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0.01 0 0.01 0 0 0 0 0 0 Total 98.15 98.02 98.18 98.03 98.05 98.15 98.14 98.35 98.17 98.17 98.22 97.87 97.84 98.26 98.05 98.96 98.3 98.24 98.33 98.11 97.89 98.23 97.99 98.05 98.07 98.21 98.31 Si 6.87 6.92 7.01 6.94 6.89 6.88 6.89 6.34 6.29 6.29 6.32 6.74 6.3 6.5 6.54 6.36 6.44 6.65 6.91 6.87 6.63 6.83 6.67 7.08 6.74 6.73 6.59 Ti 0.14 0.13 0.12 0.14 0.12 0.14 0.13 0.24 0.3 0.31 0.31 0.14 0.33 0.30 0.30 0.20 0.18 0.17 0.13 0.14 0.15 0.15 0.15 0.11 0.17 0.16 0.16 Al 1.42 1.31 1.23 1.31 1.34 1.38 1.28 1.72 1.77 1.82 1.75 1.31 1.78 1.75 1.68 1.73 1.59 1.56 1.21 1.28 1.34 1.33 1.31 1.00 1.47 1.45 1.40 Fe* 1.98 1.98 1.94 2.04 2.05 2.08 2.06 2.49 2.45 2.43 2.45 2.25 2.17 1.83 2.04 2.58 2.49 2.30 2.12 2.14 2.25 2.07 2.30 2.04 2.16 2.13 2.29 Fe3+ 0.57 0.62 0.51 0.44 0.64 0.63 0.57 0.72 0.70 0.55 0.56 0.65 0.60 0.52 0.4 0.74 0.78 0.64 0.69 0.6 0.79 0.59 0.77 0.7 0.58 0.56 0.72 Fe2+ 1.41 1.36 1.43 1.60 1.41 1.44 1.48 1.77 1.76 1.88 1.88 1.60 1.57 1.31 1.64 1.84 1.71 1.66 1.43 1.53 1.46 1.48 1.53 1.34 1.58 1.57 1.57 Mn 0.07 0.08 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.05 0.05 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.06 0.08 0.09 0.07 0.06 0.07 Mg 2.54 2.59 2.64 2.51 2.52 2.45 2.57 2.14 2.12 2.08 2.12 2.50 2.38 2.57 2.37 2.06 2.21 2.25 2.56 2.5 2.56 2.55 2.49 2.69 2.39 2.46 2.5 Ca 1.73 1.72 1.76 1.79 1.75 1.72 1.79 1.85 1.82 1.86 1.87 1.87 1.81 1.70 1.78 1.87 1.87 1.78 1.78 1.79 1.86 1.77 1.86 1.76 1.77 1.80 1.89 Na 0.41 0.42 0.35 0.38 0.36 0.37 0.36 0.52 0.53 0.55 0.52 0.39 0.58 0.54 0.49 0.46 0.43 0.42 0.33 0.38 0.42 0.42 0.42 0.3 0.41 0.43 0.45 K 0.13 0.11 0.12 0.14 0.13 0.14 0.14 0.18 0.18 0.18 0.18 0.13 0.18 0.17 0.18 0.23 0.20 0.18 0.13 0.13 0.15 0.15 0.14 0.11 0.18 0.17 0.15 Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sum-cat 15.28 15.26 15.24 15.31 15.24 15.23 15.3 15.55 15.54 15.58 15.57 15.4 15.56 15.42 15.45 15.56 15.5 15.37 15.24 15.3 15.44 15.34 15.42 15.17 15.36 15.41 15.49 Mg# 0.64 0.66 0.65 0.61 0.64 0.63 0.63 0.55 0.55 0.53 0.53 0.61 0.6 0.66 0.59 0.53 0.56 0.58 0.64 0.62 0.64 0.63 0.62 0.67 0.6 0.61 0.61 M 0.44 0.43 0.42 0.45 0.45 0.46 0.44 0.54 0.54 0.54 0.54 0.47 0.48 0.42 0.46 0.56 0.53 0.51 0.45 0.46 0.47 0.45 0.48 0.43 0.47 0.46 0.48 注:Fe*= Fe3++Fe2+;Mg#=Mg/(Fe2++Mg);M=Fe*/(Fe*+Mg). 表 4 高Ti与低Ti角闪石特征对比
Table 4. Feature comparison of high-Ti and low-Ti amphiboles
角闪石类型 高Ti 低Ti 多色性 褐-黄绿 绿-淡黄 位置 核部 边部 成分 SiO2含量较低;AlⅣ含量较高 SiO2含量较高;AlⅣ含量较低 形态 他形-半自形 半自形-自形 包裹物 仅有少量磁铁矿,锆石包裹体 有黑云母、锆石、磷灰石等包裹体 形成环境 高温高压,氧逸度较高 高温高压,氧逸度较低 形成源区 幔源 壳幔混合 表 5 香加岩体中黑云母主量元素(%)及晶体化学式计算结果
Table 5. Major elements (%) and crystal chemical formula of biotites in Xiangjia Rock
样品号 包体56-10 包体56-10 包体56-4 寄主岩56-1 产状 包裹于石英颗粒中 自形颗粒 自形颗粒 包裹于长石颗粒中 探针点号 13 14 15 16 17 18 19 20 59 60 61 85 86 87 88 94 95 SiO2 35.97 35.47 35.97 35.46 34.55 35.53 35.71 35.31 36.78 37.89 37.69 37.74 36.53 36.81 36.56 36.03 36.90 TiO2 4.71 4.86 4.89 5.01 4.75 4.65 4.70 4.68 4.11 4.22 3.93 4.33 4.23 4.32 4.30 4.89 4.73 Al2O3 14.23 14.35 14.18 14.22 13.77 14.61 14.03 14.24 13.64 13.96 13.91 13.77 13.84 13.88 13.90 13.82 13.66 FeO* 22.93 23.26 23.13 22.97 23.03 22.98 23.45 23.32 22.35 20.28 20.58 20.25 22.80 22.57 22.62 22.28 20.06 MnO 0.33 0.36 0.34 0.34 0.32 0.37 0.37 0.37 0.34 0.35 0.33 0.44 0.42 0.45 0.40 0.34 0.36 MgO 10.35 10.25 10.11 9.97 9.78 10.28 10.29 10.01 10.96 11.41 11.53 11.42 10.84 11.04 10.93 10.35 10.94 CaO 0 0 0 0.04 0.02 0.05 0 0 0.03 0.02 0.07 0.01 0 0.01 0.01 0 0 Na2O 0.12 0.08 0.11 0.08 0.10 0.16 0.14 0.17 0.12 0.07 0.09 0.10 0.17 0.10 0.09 0.12 0.18 K2O 9.02 8.97 8.92 8.61 8.79 8.66 8.96 8.87 9.4 9.33 8.80 9.18 9.29 9.23 9.33 9.18 8.98 FeO 20.03 20.41 20.1 19.86 20.29 20.03 20.66 20.53 19.69 17.25 17.49 17.21 20.17 19.79 19.94 19.38 17.01 Fe2O3 3.22 3.17 3.37 3.46 3.05 3.27 3.10 3.10 2.95 3.37 3.44 3.38 2.92 3.09 2.98 3.22 3.39 Total 97.66 97.58 97.66 96.69 95.10 97.28 97.64 96.96 97.72 97.54 96.93 97.23 98.11 98.4 98.15 97.02 95.82 SiⅣ 2.71 2.68 2.71 2.69 2.69 2.68 2.70 2.69 2.76 2.81 2.81 2.81 2.74 2.74 2.74 2.73 2.79 AlⅣ 1.26 1.28 1.26 1.27 1.26 1.30 1.25 1.28 1.21 1.19 1.19 1.19 1.22 1.22 1.23 1.23 1.21 TiⅣ 0.03 0.04 0.03 0.04 0.05 0.02 0.05 0.04 0.03 0 0 0 0.04 0.04 0.03 0.04 0 AlⅥ 0 0 0 0 0 0 0 0 0 0.03 0.03 0.01 0 0 0 0 0 TiⅥ 0.24 0.23 0.24 0.24 0.22 0.25 0.22 0.23 0.20 0.24 0.22 0.24 0.20 0.21 0.21 0.24 0.27 Fe2+ 1.26 1.29 1.27 1.26 1.32 1.27 1.31 1.31 1.24 1.07 1.09 1.07 1.27 1.23 1.25 1.23 1.07 Fe3+ 0.18 0.18 0.19 0.2 0.18 0.19 0.18 0.18 0.17 0.19 0.19 0.19 0.16 0.17 0.17 0.18 0.19 Mn2+ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 Mg 1.16 1.15 1.13 1.13 1.13 1.16 1.16 1.14 1.23 1.26 1.28 1.27 1.21 1.23 1.22 1.17 1.23 Na 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.03 K 0.87 0.86 0.86 0.83 0.87 0.83 0.86 0.86 0.90 0.88 0.84 0.87 0.89 0.88 0.89 0.89 0.87 TOTAL 7.75 7.75 7.73 7.71 7.76 7.74 7.76 7.76 7.78 7.70 7.69 7.70 7.78 7.76 7.77 7.74 7.69 Mg# 0.48 0.47 0.47 0.47 0.46 0.48 0.47 0.46 0.50 0.54 0.54 0.54 0.49 0.50 0.49 0.49 0.53 注:表中列出的黑云母的主量元素电子探针分析结果;黑云母的Fe2+和Fe3+值采用林文蔚和彭丽君(1994)的计算方法获得,并以22个氧原子为单位计算黑云母的阳离子数及相关原子数;FeO*代表全铁. 表 6 香加岩体中长石电子探针主量元素(%)和晶体参数分析
Table 6. Major elements (%) and crystal chemical formula of feldspar in Xiangjia rock
样品号 包体56-10 包体56-6 包体56-5 寄主岩56-1 点号 27 28 31 32 33 34 54 55 56 57 58 9 10 11 12 99 100 SiO2 57.58 57.98 60.25 60.41 61.17 62.62 59.02 59.95 44.84 58.68 60.58 61.55 63.65 60.51 60.24 60.81 60.63 TiO2 0.02 0.03 0.03 0.04 0.03 0.03 0.05 0.04 0.05 0.02 0 0.03 0.04 0.01 0.05 0.02 0 Al2O3 26.87 26.15 25.16 25.03 24.43 23.35 25.43 25.38 23.25 25.99 24.89 24.04 22.44 24.54 24.96 24.42 24.39 FeO 0.1 0.1 0.15 0.14 0.16 0.1 0.14 0.15 0.48 0.08 0.09 0.13 0.24 0.11 0.11 0.16 0.14 MnO 0 0 0 0 0 0 0 0 0.01 0 0 0.00 0.00 0.00 0.00 0 0 MgO 0.01 0.03 0.02 0.01 0.01 0.03 0.03 0.04 0.18 0.02 0.01 0.04 0.03 0.02 0.03 0.01 0.02 CaO 9.15 8.54 7.13 7.04 6.37 5.35 7.99 7.52 23.76 8.27 6.92 6.20 4.60 6.85 7.04 6.52 6.37 Na2O 5.92 6.31 7.08 6.87 7.43 8.08 6.42 6.63 0.25 6.37 7.09 7.53 8.58 7.11 7.00 7.5 7.42 K2O 0.23 0.27 0.27 0.28 0.35 0.32 0.28 0.28 0.61 0.19 0.25 0.34 0.34 0.30 0.31 0.28 0.32 Cr2O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 99.87 99.42 100.09 99.82 99.94 99.88 99.37 99.99 93.42 99.62 99.84 99.86 99.92 99.44 99.72 99.7 99.31 Ab 53 56 63 63 66 72 58 60 2 58 64 67 76 64 63 66 67 An 45 42 35 36 31 26 40 38 95 41 35 31 22 34 35 32 31.56 Or 1 2 2 2 2 2 2 2 3 1 1 2 2 2 2 2 2 -
[1] Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Chen, B., Liu, C.Q., Tian, W., 2006.Magma-Mixing between Mantle-And Crustal-Derived Melts in the Process of Mesozoic Magnmtism, Taihangshan:Constraints from Petrology and Geochemistry.Earth Science Frontiers, 13(2):140-147 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=dad05b7aa7725b730126866fb0ce92a8&encoded=0&v=paper_preview&mkt=zh-cn [3] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2016.Genesis of Magma Mixing and Mingling of Xiangjiananshan Granite Batholith in the Eastern Section of East Kunlun Orogen:Evidence from Mafic Microgranular Enclaves (MMEs).Earth Science Frontiers, 23(4):226-240 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.2016.04.019 [4] Chen, G.Y., Sun, D.S., Zhou, X.R., et al., 1993.Genetic Mineralogy and Gold Mineralization of Guojialing Granodiorites from Eastern Shandong, China.China University of Geoscience Press, Beijing (in Chinese). [5] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007.Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China.Science in China (Series D), 37(7):873-893 (in Chinese). [6] Coltorti, M., Bonadiman, C., Faccini, B., et al., 2007.Amphiboles from Suprasubduction and Intraplate Lithospheric Mantle.Lithos, 99(1/2):68-84. https://doi.org/10.1016/j.lithos.2007.05.009 [7] Cui, J.W., Zheng, Y.Y., Sun, X., et al., 2016.Origin of Granodiorite and Mafic Microgranular Enlave in Saizhisi, Qinghai Province:Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints.Earth Science, 41(7):1156-1170 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.515 [8] Debon, F., 1991. Comparative Major Element Chemistry in Various "Microgranular Enclave-Plutonic Host" Pairs. In: Didier, J., Barbarin, B., eds., Enclaves and Granite Petrology. Elsevier, Amsterdam, 293-312. [9] Didier, J., Barbarin, B., 1991.Enclaves and Granite Petrology.Elsevier, Amsterdam, 1-625. http://cn.bing.com/academic/profile?id=307c27884694e06c30313962796ef1c5&encoded=0&v=paper_preview&mkt=zh-cn [10] Ding, X.S., 1988.Typomorphic Features and Its Geological Significance in Various Types of Granite and Their Micas in Central and Southern Tibet.Journal of Geological Institute of the Chinese Academy of Geological Sciences, (1):33-55 (in Chinese with English abstract). [11] Dodge, F.C.W., Kistler, R.W., 1990.Some Additional Observations on Inclusions in the Granitic Rocks of the Sierra Nevada.Journal of Geophysical Research, 95(B11):17841. https://doi.org/10.1029/jb095ib11p17841 [12] Foster, M.D., 1960.Interpretation of the Composition of Trioctahedral Micas.U.S.Geololgy, 354:11-49. https://pubs.usgs.gov/pp/0354b/report.pdf [13] Henry, D.J., 2005.The Ti-Saturation Surface for Low-To-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2/3):316-328. https://doi.org/10.2138/am.2005.1498 [14] Hu, Y., Niu, Y.L., Li, J.Y., et al., 2016.Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau.Lithos, 245:205-222. https://doi.org/10.13039/501100001809 [15] Jiang, C.F., Yang, J.S., Feng, B.G., et al., 1992.Kunlun Opening and Closing Structure.Geology Publishing House, Beijing, 59-78 (in Chinese). [16] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623 [17] Li, S.R., Sun, L., Zhang, H.F., 2006.Magma Mixing Genesis of the Qushui Collisional Granitoids, Tibet, China:Evidences from Genetic Mineralogy.Acta Petrologica Sinica, 22(4):884-894 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2006.04.012 [18] Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data.Journal of Changchun University of Science and Technology, 24(2):155-162 (in Chinese with English abstract). doi: 10.1111/maps.12073 [19] Liu, B., Ma, C.Q., Liu, Y.Y., et al., 2010.Mineral Chemistry of Biotites from the Tongshankou Cu-Mo Deposit:Implications for Petrogenesis and Mineralization.Acta Petrologica et Mineralogica, 29(2):151-165 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2010.02.004 [20] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004.Crustal-Mantle Magma Mingling in the East Kunlun:Evidences from Zircon SHRIMP Chronology.Chinese Science Bulletin, 49(6):596-602 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2002.11.009 [21] Liu, C.D., Zhang, W.Q., Mo, X.X., et al., 2002.Features and Origin of Mafic Microgranular Enclaves in the Yuegelu Granite in the Eastern Kunlun.Geolocical Bulletin of China, 21(11):739-744 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5e8bceda2961413647f013ec81b88206&encoded=0&v=paper_preview&mkt=zh-cn [22] Long, X.P., Jin, W., Ge, W.C., et al., 2006.Zircon U-Pb Geochronology and Geological Implications of the Granitoids in Jinshuikou, East Kunlun, NW China.Geochemica, 35(4):367-376 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0379-1726.2006.04.004 [23] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014.Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun.Acta Petrologica Sinica, 30(11):3229-3241 (in Chinese with English abstract). https://www.researchgate.net/publication/312469854_Zircon_LA-ICP-MS_U-Pb_dating_petrogenesis_and_tectonic_implications_of_the_Late_Triassic_granites_from_the_Xiangride_area_East_Kunlun [24] Luo, Z.H., Ke, S., Cao Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Regional Geology of China, 21(6):292-297 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2002.06.003 [25] Ma, C.Q., She, Z.B., Zhang, J.Y., et al., 2006.Crustal Roots, Orogenic Heat and Magmatism.Earth Science Frontiers, 13(2):130-139 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1005-2321.2006.02.011 [26] Ma, C.Q., Wang, R.J., Qiu, J.X., 1992.Enclaves as Indicators of the Origin of Granitoid Magma and Repeater Magma Mingling:An Example from the Zhoukoudian Intrusion, Beijing.Geological Review, 38(2):109-119 (in Chinese with English abstract). [27] Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015.Intensity and Cyclicity of Orogenic Magmatism:An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau.Acta Petrologica Sinica, 31(12):3555-3568 (in Chinese with English abstract). [28] Ma, C.Q., Yang, K.G., Tang, Z.H., et al., 1994.Granitoids Magma Dynamics-Theoretical Method and Examples of Granitoids in Eastern Hubei Province.China University of Geosciences Press, Wuhan, 48-53 (in Chinese). [29] Ma, T.Q., Wu, G.Y., Jia, B.H., et al., 2005.Middle-Late Jurassic Granite Magma-Mixing in the Middle Segment of the Nanling Mountains, South China:Evidence from Mafic Microgranular Enclaves.Regional Geology of China, 24(6):506-512 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2005.06.005 [30] Martin, R.F., 2007.Amphiboles in the Igneous Environment.Reviews in Mineralogy and Geochemistry, 67(1):323-358. https://doi.org/10.2138/rmg.2007.67.9 [31] Middlemost, E.A.K., 1994.Naming Materials in the Magma/igneous Rock System.Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [32] Perugini, D., Poli, G., Valentini, L., 2005.Strange Attractors in Plagioclase Oscillatory Zoning:Petrological Implications.Contributions to Mineralogy and Petrology, 149(4):482-497. https://doi.org/10.1007/s00410-005-0667-6 [33] Pietranik, A., Koepke, J., Puziewicz, J., 2006.Crystallization and Resorption in Plutonic Plagioclase:Implications on the Evolution of Granodiorite Magma (Gęsiniec Granodiorite, Strzelin Crystalline Massif, SW Poland).Lithos, 86(3/4):260-280. https://doi.org/10.1016/j.lithos.2005.05.008 [34] Schmidt, M.W., 1992.Amphibole Composition in Tonalite as a Function of Pressure:An Experimental Calibration of the Al-In-Hornblende Barometer.Contributions to Mineralogy and Petrology, 110(2/3):304-310. https://doi.org/10.1007/bf00310745 [35] Stone, D., 2000.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada.The Canadian Mineralogist, 38(2):455-470. https://doi.org/10.2113/gscanmin.38.2.455 [36] Tsuchiyama, A., 1985.Dissolution Kinetics of Plagioclase in the Melt of the System Diopside-Albite-Anorthite, and Origin of Dusty Plagioclase in Andesites.Contributions to Mineralogy and Petrology, 89(1):1-16. https://doi.org/10.1007/bf01177585 [37] Wyllie, P.J., Cox, K.G., Biggar, G.M., 1962.The Habit of Apatite in Synthetic Systems and Igneous Rocks.Journal of Petrology, 3(2):238-243. https://doi.org/10.1093/petrology/3.2.238 [38] Xiao, Q.H., Deng, F.J., Ma, C.Q., et al., 2002.Research Thinking and Methods of Granite.Geology Publishing House, Beijing, 53-63 (in Chinese). [39] Xie, L., Wang, D.Z., Wang, R.C., et al., 2004.Complex Zoning Texture in Plagioclases from the Quartz Diorite Enclave in the Putuo Granitic Complex, Zhejiang Province:Record of Magma Mixing.Acta Petrologica Sinica, 20(6):96-107.(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2004.06.009 [40] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.LA-ICP-MS Zircon U-Pb Dating, elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=210679cb581f1568633adfb64733452f&encoded=0&v=paper_preview&mkt=zh-cn [41] Yin, H. F., Zhang, K. X., Chen, N. S., Regional Geological Survey Report (1: 250 000 Geological Mapping of the Donggi Conag Hu Area). China University of Geosciences Press, Wuhan (in Chinese). [42] Zeng, R.Y., Lai, J.Q., Zhang, L.J., et al., 2016.Petrogenesis of Mafic Microgranular Enclaves:Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan.Earth Science, 41(9):1461-1478 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.512 [43] Zhou, X.R., Ren, J., 1994.Mesozoic Granitoids in the Middle and Lower Reaches of Changjiang River.Geology Publishing House, Beijing, 119 (in Chinese). [44] Zhou, X.R., Wang, F.Z., 1987.Physical Chemistry of Rocks.Henan Science and Technology Press, Zhengzhou, 191-197 (in Chinese). [45] Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB198803007.htm [46] Zhu, Y.H., Zhang, K.X., Chen, N.S., et al., 1999.Determination of Different Ophiolitic Belts in Eastern Kunlun Orogenic Zone and Their Tectonic Significance.Earth Science, 24(2):134-138 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.1999.02.006 [47] 陈斌, 刘超群, 田伟, 2006.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据.地学前缘, 13(2):140-147. http://www.cqvip.com/QK/98600X/200602/21391287.html [48] 陈光远, 孙岱生, 周珣若, 等, 1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.北京:中国地质大学出版社. [49] 陈国超, 裴先治, 李瑞保, 等, 2016.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质同粒包体的证据.地学前缘, 23(4):226-240. [50] 陈卫锋, 陈培荣, 黄宏业, 等, 2007.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学(D辑), 37(7):873-893. http://www.cqvip.com/QK/98491X/200707/25024317.html [51] 崔加伟, 郑有业, 孙祥, 等, 2016.青海省赛支寺花岗闪长岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约.地球科学, 41(7):1156-1170. http://earth-science.net/WebPage/Article.aspx?id=3325 [52] 丁孝石, 1988.西藏中南部各类花岗岩中云母标型特征及其地质意义.中国地质科学院矿床地质研究所所刊, (1):33-55. http://xueshu.baidu.com/s?wd=paperuri%3A%281f054050269d26e55d8059753180c57e%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fcpfd.cnki.com.cn%2FArticle%2FCPFDTOTAL-ZGDJ198800009005.htm&ie=utf-8&sc_us=3323701510214064588 [53] 姜春发, 杨经绥, 冯秉贵, 等, 1992.昆仑开合构造.北京:地质出版社, 59-78. [54] 李胜荣, 孙丽, 张华锋, 2006.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据.岩石学报, 22(4):884-894. http://xueshu.baidu.com/s?wd=paperuri%3A%28b6c0a0db5e9dbdc642e51034900348c8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dysxb200604012%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=2676202700417011769 [55] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学报, 24(2):155-162. http://xueshu.baidu.com/s?wd=paperuri%3A%28753ef5949416cffdfa6f32467d0d9a59%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dccdz402.004%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=11780543584440000175 [56] 刘彬, 马昌前, 刘园园, 等, 2010.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示.岩石矿物学杂志, 29(2):151-165. http://www.cnki.com.cn/Article/CJFDTotal-DZKX201402018.htm [57] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406018.htm [58] 刘成东, 张文秦, 莫宣学, 等, 2002.东昆仑约格鲁岩体暗色微粒包体特征及成因.地质通报, 21(11):739-744. doi: 10.3969/j.issn.1671-2552.2002.11.009 [59] 龙晓平, 金巍, 葛文春, 等, 2006.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学, 35(4):367-376. http://www.cqvip.com/QK/92960X/200604/22019108.html [60] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11):3229-3241. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505018.htm [61] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 [62] 马昌前, 佘振兵, 张金阳, 等, 2006.地壳根、造山热与岩浆作用.地学前缘, 13(2):130-139. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2004Z2004.htm [63] 马昌前, 王人镜, 邱家骧, 1992.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例.地质论评, 38(2):109-119. http://www.oalib.com/paper/4895963 [64] 马昌前, 熊富浩, 尹烁, 等, 2015.造山带岩浆作用的强度和施加性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报, 31(12):3555-3568. http://xueshu.baidu.com/s?wd=paperuri%3A%28cfc9db7bbb34d29d0d3539b26a0d278b%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dysxb201512004%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=14649726230556023107 [65] 马昌前, 杨坤光, 唐仲华, 等, 1994.花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社, 48-53. [66] 马铁球, 伍光英, 贾宝华, 等, 2005.南岭中段郴州一带中、晚侏罗世花岗岩浆的混合作用——来自镁铁质微粒包体的证据.地质通报, 24(6):506-512. http://industry.wanfangdata.com.cn/jt/Magazine?magazineId=zgqydz&yearIssue=2005_6 [67] 肖庆辉, 邓晋福, 马昌前, 等, 2002.花岗岩研究思维与方法.北京:地质出版社, 53-63. [68] 谢磊, 王德滋, 王汝成, 等, 2004.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录.岩石学报, 20(6):1397-1408. http://xueshu.baidu.com/s?wd=paperuri%3A%28e3840e590872e165aeaa019877a976ea%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dysxb200406008%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=15636779025814982620 [69] 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11):3350-3364. http://www.oalib.com/paper/1476006 [70] 殷鸿福, 张克信, 陈能松, 2003.中国人民共和国区域地质调查报告(1:25万冬给措纳湖幅).武汉:中国地质大学出版社. [71] 曾认宇, 赖健清, 张利军, 等, 2016.湘中紫云山岩体暗色微粒包体的成因:岩相学、全岩及矿物地球化学证据.地球科学, 41(9):1461-1478. http://earth-science.net/WebPage/Article.aspx?id=3352 [72] 周珣若, 任进, 1994.长江中下游中生代花岗岩.北京:地质出版社, 119. [73] 周珣若, 王方正, 1987.岩石物理化学.郑州:河南科学技术出版社, 191-197. [74] 周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19880328&journal_id=ysxb [75] 朱云海, 张克信, 陈能松, 等, 1999.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学, 24(2):134-138. http://earth-science.net/WebPage/Article.aspx?id=776