Zircon U-Pb Geochronogy, Geochemistry and Its Geological Implication of the Early Indosinian Basic Complex in the Qinghai Nanshan Tectonic Belt
-
摘要: 青海南山构造带是衔接宗务隆构造带、南祁连构造带和西秦岭造山带的重要结合带.该地区印支早期岩浆作用强烈,虽然该期基性岩分布少而分散,但其成因研究对探讨青海南山构造带印支期演化过程具有重要意义.本文对构造带中段由辉长岩和辉石岩组成的拉日基性杂岩体开展了详细的岩石学、矿物学、岩石地球化学及LA-ICP-MS锆石U-Pb同位素年代学研究.结果表明,辉长岩和辉石岩的结晶年龄分别为247.7±2.8 Ma和247.9±2.5 Ma,说明岩体侵位于早三叠世晚期.岩石具有低Si、富Na、低K和高Mg、Fe的特征;其中,辉长岩属拉斑玄武岩系列,同时,高Al2O3/TiO2比值和低TiO2含量与玻安岩和玻玄岩相似.岩石的地球化学特征与洋脊和板内玄武岩差异明显,其富集LREE和大离子亲石元素LILEs(Cs、Rb、K、Sr),亏损Nb、Ta、Zr、Hf、Ti、P等高场强元素,显示与岛弧岩浆岩相似的地球化学特征.矿物电子探针分析表明,斜长石为类似于岛弧或活动大陆边缘辉长岩中的高钙斜长石.辉长岩和辉石岩均为尖晶石二辉橄榄岩部分熔融的产物.综合分析表明,研究区可能存在晚古生代−早中生代有限小洋盆,拉日基性杂岩体形成于洋盆俯冲早期阶段.Abstract: The Qinghai Nanshan tectonic belt, situated in the northern margin of Gonghe basin, is the conjunction area among the West Qinling orogenic belt, South Qilian tectonic belt and Zongwulong tectonic belt. A large quantity of intrusive rocks outcropped in the Qinghai Nanshan tectonic belt, but the distribution of basic rocks is less and dispersed. The petrogenesis of basic rocks is significant to reveal the tectonic framework and evolution history in that period.The Lari basic complex is composed of gabbro and pyroxenite, which situates in the middle of the Qinghai Nanshan tectonic belt. In this paper, a detailed study on petrology, mineralogy, geochemistry and LA-ICP-MS zircon U-Pb dating was carried out for the Lari basic complex. The results show that the crystallization ages of the gabbro and pyroxenite are 247.7±2.8 Ma and 247.9±2.5 Ma, respectively, suggesting that the complex intruded in the late Early Triassic. The whole rock geochemical data show that the rocks of Lari basic complex are relatively rich in Na, Mg and Fe, but poor in Si and K, suggesting that the gabbros belong to the tholeiitic series. What's more, they have high ratios of Al2O3/TiO2, low contents of TiO2, which are typical features of boninite and boni-basalts. The rocks are enriched in LREE, LILEs (Cs, Rb, K, Sr) and depleted in HREE (Nb, Ta, Zr, Hf, Ti, P), which are similar to the arc magma, but different from ridge and intraplate basalt. The mineral electron microprobe analysis shows that plagioclase in the rocks of Lari basic complax is similar to the high calcium plagioclase in gabbro which originates in the island arc or active continental margin. The gabbro and pyroxenite of the Lari basic complex were formed by partial melting of the spinel lherzolite. In combination with analyses of regional geological setting, we suggest that there existed a Late Paleozoic-Early Mesozoic limited oceanic basin in the Qinghai Nanshan area. The Lari basic complex formed during the early stage of the oceanic basin subduction.
-
Key words:
- basic complex /
- zircon U-Pb dating /
- geochemistry /
- late Early Triassic /
- Qinghai Nanshan
-
图 1 青海南山地区拉日基性杂岩体构造位置(a、b)及岩体地质简图(c)
图a据常宏等(2009)修改
Fig. 1. The tectonic setting (a, b) and geological sketch map (c) of the Lari basic complex in the Qinghai Nanshan area
图 5 拉日基性杂岩体岩石分类的TAS(a)和Zr-Y图(b)
图a据Middlemost (1994);图b据Barrett and MacLean (1994);Th.拉斑系列;Ch.钙碱性系列
Fig. 5. TAS diagram (a) and Zr-Y diagram (b) for the Lari basic complex
图 7 拉日基性杂岩体球粒陨石标准化稀土配分曲线(a)及微量元素原始地幔标准化蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据、OIB/E-MORB/N-MORB数据引自Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive-mantle normalized trace element spider diagrams (b) for the Lari basic complex
图 8 拉日基性杂岩体岩石源区判别图解
a.据Aldanmaz et al.(2000);b.据Furman et al. (2004);c.据Condie et al. (2002);DEP.亏损地幔;EN.富集地幔;N-MORB.普通洋中脊玄武岩;PM.原始地幔;REC.再循环板片;UC.上地壳
Fig. 8. Source characteristics of the Lari basic complex
图 9 拉日基性杂岩体Ba/La-Th/Yb图解和Th-U/Th图解
a.据Woodhead et al.(2001);b.据Dilek et al.(2008)
Fig. 9. Ba/La-Th/Yb and Th-U/Th diagrams of the Lari basic complex
图 11 拉日基性杂岩体La-La/Sm图解和Nb/Y-Th/Y图解
图a据Keppler(1996);图b据Taylor and McLennan(1985)
Fig. 11. La-La/Sm and Nb/Y-Th/Y diagrams of the Lari basic complex
图 12 拉日基性杂岩体构造环境判别图解
图a、b据李曙光(1993);图c据Shervais(1982);图d据Pearce and Peate(1995);MORB.洋中脊玄武岩;E-MORB.富集型MORB;N-MORB.亏损型MORB;IAB岛弧玄武岩;IAT.岛弧拉斑玄武岩;OIB.洋岛玄武岩;BAB.弧后盆地;CFB.大陆溢流玄武岩;Bon.玻安岩;CAB.钙碱性玄武岩
Fig. 12. Tectonic discrimination diagrams of the Lari basic complex
-
[1] Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2):67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 [2] Barrett, T. J., MacLean, W. H., 1994. Chemostratigraphy and Hydrothermal Alteration in Exploration for VHMS Deposits in Greenstone and Younger Volcanic Rocks. In: Lentz, D. R., ed., Alteration and Alteration Processes Associated with Ore-Forming Systems. Geological Association of Canada, St John's. [3] Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Amsterdam Elservier. doi: 10.1016/B978-0-444-42148-7.50008-3 [4] Chang, H., Jin, Z. D., An, Z. S., 2009. Sedimentary Evidences of the Uplift of the Qinghai Nanshan (the Mountains South to Qinghai Lake) and Its Implication for Structural Evolution of the Lake Qinghai-Gonghe Basin. Geological Review, 55(1):49-57 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200901006 [5] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0 [6] Condie, K. C., Frey, B. A., Kerrich, R., 2002. The 1.75 Ga Iron King Volcanics in West-Central Arizona:A Remnant of an Accreted Oceanic Plateau Derived from a Mantle Plume with a Deep Depleted Component. Lithos, 64(1-2):49-62. https://doi.org/10.1016/s0024-4937(02)00158-5 [7] Crawford, A. J., Falloon, T. J., Green, D. H., 1989. Classification, Petrogenesis and Tectonic Setting of Boninites. In: Crawford, A. J., ed., Boninites and Related Rocks. Unwin-Hyman, London. [8] Deng, J. F., Xiao, Q. H., Su, S. G., et al., 2007. Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion. Geological Journal of China Universities, 13(3):392-402 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703009 [9] Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1-4):174-209. https://doi.org/10.1016/j.lithos.2007.06.026 [10] Dong, Z. C., Gu, P. Y., Chen, R. M., et al., 2015. Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai. Earth Science, 40(1):130-144 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.009 [11] Furman, T., Bryce, J. G., Karson, J., et al., 2004. East African Rift System (EARS) Plume Structure:Insights from Quaternary Mafic Lavas of Turkana, Kenya. Journal of Petrology, 45(5):1069-1088. https://doi.org/10.1093/petrology/egh004 [12] Guo, A. L., Zhang, G. W., Sun, Y. G., et al., 2007. Geochemistry and Spatial Distribution of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin:Implications for Majixueshan Triple-Junction and East Paleotethyan Archipelagic Ocean. Science in China (Series D), 37(S1):249-261 (in Chinese). doi: 10.1016-j.immuni.2009.02.002/ [13] Guo, A. L., Zhang, G. W., Qiang, J., et al., 2009. Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1):1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200901001 [14] Hao, T. P., 1990. REE Geochemistry of Intermediate Acid Volcanic Rocks in Longyangxia Areas. Northwestern Geology, 23(4):24-27 (in Chinese). [15] Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x [16] Johnson, K. T. M., 1994. Experimental Cpx/and Garnet/Melt Partitioning of REE and other Trace Elements at High Pressures:Petrogenetic Implications. Mineralogical Magazine, 58A(1):454-455. https://doi.org/10.1180/minmag.1994.58a.1.236 [17] Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571):237-240. https://doi.org/10.1038/380237a0 [18] Kogiso, T., Hirschmann, M. M., 2001. Experimental Study of Clinopyroxenite Partial Melting and the Origin of Ultra-Calcic Melt Inclusions. Contributions to Mineralogy and Petrology, 142(3):347-360. https://doi.org/10.1007/s004100100295 [19] Kou, X. H., Zhang, K. X., Lin, Q. X., et al., 2007a. The Distribution of Permian Sedimentary Sequences in the Adjacent Area of Qinling-Qilian-Kunlun. Earth Science, 32(5):681-690 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2007.05.011 [20] Kou, X. H., Zhu, Y. H., Zhang, K. X., et al., 2007b. Discovery and Geochemistry of Upper Permian Volcanic Rocks in Tongren Area, Qinghai Province and Their Tectonic Significance. Earth Science, 32(1):45-50 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2007.01.006 [21] Kou, X. H., Zhang, K. X., Chen, Z. Q., et al., 2015. Study of the Permian Seamount Formation Series and Paleontology in the Bajiaocheng of Xiahe, Gansu. The Twenty-Eighth Academic Annual Meeting Symposium of Palaeontological Society of China, Shenyang (in Chinese). [22] Li, C. M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 33(3):161-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200903001 [23] Li, H. K., Geng, J. Z., Hao, S., et al., 2009. Study on the Determination of Zircon U-Pb Isotopic Age by Laser Ablation Multireceiver Plasma Mass Spectrometer (LA-MC-ICP MS). Petrology and Geochemistry, 28(Suppl.):600-601 (in Chinese). [24] Li, R. S., Ji, W. H., Zhao, Z. M., et al., 2007. Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt. Geological Bulletin of China, 26(4):373-381 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200704002 [25] Li, R. B., Pei, X. Z., Li, Z. C., 2015. Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. Earth Science, 40(7):1148-1162 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.096 [26] Li, S. H., Shi, Y. L., Tian, T., et al., 2017. Geochemical Characteristics, LA-ICP-MS Dating and Geological Significance of Early Triassic Quartz Diorite in Qinghai Nanshan. Journal of Qinghai University(Natural Science), 35(3):25-32 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb-zr201703005 [27] Li, S. G., 1993. Ba-Nb-Th-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302004.htm [28] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [29] Lu, L., Wu, Z. H., Hu, D. G., et al., 2010. Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains. Acta Petrologica Sinica, 26(4):1150-1158 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201004012 [30] Ludwig, K. R., 2003. User's Manual for Isoplot/Ex, Version3. 00//A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [31] Luo, W. X., Qian, L. L., Li, D. W., et al., 2013. Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East Kunlun:Constraints from Petrology, Geochemistry and Genetic Mineralogy. Earth Science, 38(6):1214-1228 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.119 [32] McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5):1021-1091. https://doi.org/10.1093/petrology/32.5.1021 [33] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [34] Müntener, O., Kelemen, P. B., Grove, T. L., 2001. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites:An Experimental Study. Contributions to Mineralogy and Petrology, 141(6):643-658. https://doi.org/10.1007/s004100100266 [35] Naumann, T. R., Geist, D. J., 1999. Generation of Alkalic Basalt by Crystal Fractionation of Tholeiitic Magma. Geology, 27(5):423. https://doi.org/10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 [36] Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 525-548. http://cn.bing.com/academic/profile?id=07172bff16d4303c212691c016029b47&encoded=0&v=paper_preview&mkt=zh-cn [37] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 [38] Peng, Y., Ma, Y. S., Liu, C. L., et al., 2016. Geological Characteristics and Tectonic Significance of the Indosinian Granodiorites from the Zongwulong Tectonic Belt in North Qaidam. Earth Science Frontiers, 23(2):206-221 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602020 [39] Piercey, S. J., Murphy, D. C., Mortensen, J. K., et al., 2001. Boninitic Magmatism in a Continental Margin Setting, Yukon-Tanana Terrane, Southeastern Yukon, Canada. Geology, 29(8):731-734. https://doi.org/10.1130/0091-7613(2001)029<0731:bmiacm>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0731:bmiacm>2.0.co;2 [40] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2 [41] Sajona, F. G., Maury, R. C., Pubellier, M., et al., 2000. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 54(3-4):173-206. https://doi.org/10.1016/s0024-4937(00)00019-0 [42] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [43] Sklyarov, E., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Research, 122(1-4):359-376. https://doi.org/10.1016/s0301-9268(02)00219-x [44] Stern, R. J., 2004. Subduction Initiation:Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4), 275-292. doi: 10.1016/j.epsl.2004.08.007 [45] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. In:Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins, Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [46] Sun, S. S., Nesbitt, R. W., 1978. Geochemical Regularities and Genetic Significance of Ophiolitic Basalts. Geology, 6(11):689. https://doi.org/10.1130/0091-7613(1978)6<689:gragso>2.0.co;2 doi: 10.1130/0091-7613(1978)6<689:gragso>2.0.co;2 [47] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust:Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [48] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262 [49] Wang, H. Q., Zhu, Y. H., Lin, Q. X., et al., 2010. LA-ICP-MS Zircon U-Pb Dating of the Gabbro from Longwu Gorge Ophiolite, Jianzha-Tongren Area, Qinghai, China and Its Geological Significance. Geological Bulletin of China, 29(1):86-92 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201001011 [50] Wang, H. Y., Gao, R., Li, Q. S., et al., 2014. Deep Seismic Reflection Profiling in the Songpan-West Qinling-Linxia Basin of the Qinghai-Tibet Plateau:Data Acquisition, Data Processing and Preliminary Interpretations. Chinese Journal of Geophysics, 57(5):1451-1461 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201405010.htm [51] Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile Across the Basin and Range, SW USA. Journal of Geophysical Research:Solid Earth, 107(B1):ECV 5-1-ECV 5-21. https://doi.org/10.1029/2001jb000209 [52] Wang, Y. Z., Bai, Y. S., Lu, H. L., 2001. Geological Characteristics of Tianjunnanshan Ophiolite in Qinghai and Its Forming Environment. Geology in Qinghai, 21(1):29-35 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL200101005.htm [53] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London 1-466. [54] Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [55] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). http://cn.bing.com/academic/profile?id=615cb8c204d789c7e63503208ec2377c&encoded=0&v=paper_preview&mkt=zh-cn [56] Yan, Z., Wang, Z. Q., Li, J. L., et al., 2012. Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6):1808-1828 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206008 [57] Yang, J. S., Shi, R. D., Wu, C. L., et al., 2009. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 20(2):303-331. https://doi.org/10.1007/s12583-009-0027-y [58] Yin, H. F., Zhang, K. X., 1998. Evolution and Characteristics of the Central Organic Belt. Earth Science, 23(5):438-442 (in Chinese with English abstract). [59] Zha, X. F., Gu, P. Y., Dong, Z. C., et al., 2016. Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam. Earth Science, 41(4):586-604 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.048 [60] Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan Continental Tectonic Node in China's Continental Tectonics. Earth Science Frontiers, 11(3):23-32 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200403004 [61] Zhang, H. F., Chen, Y. L., Xu, W. C., et al., 2006. Granitoids around Gonghe Basin in Qinghai Province:Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 22(12):2910-2922 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200612008.htm [62] Zhang, K. X., Zhu, Y. H., Lin, Q. X., et al., 2007. Discovery of a Mafic-Ultramafic Belt in the Rongwoxia Area, Tongren, Qinghai, China. Geological Bulletin of China, 26(6):661-667 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200706005 [63] Zhang, Q., Ma, W. P., Jin, W. J., 1995. Geochemistry and Tectonic Significance of Post-Tectonic Gabbro from Wangmuguan of Xinxian County, Henan Province. Geochimica, 24(4):341-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX504.003.htm [64] Zhang, Y. L., Xu, Y. G., 2012. Pyroxenites:High-Pressure Segregates or Recycled Oceanic Crust?. Geological Journal of China Universities, 18(1):74-87 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201201007 [65] Zhang, Y. J., Sun, F. Y., Xu, C. H., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China. Earth Science, 41(11):1830-1844 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.127 [66] Zhang, Y. M., Pei, X. Z., Li, Z. C., et al., 2017. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of the Dangjiasi Granitic Complex in the Qinghai Nanshan Tectonic Zone, and Its Geological Implications. Acta Geologica Sinica, 91(3):523-541 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201703003 [67] Zhang, Z. Y., Yin, H. F., Wang, B. Z., 2004. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains. Earth Science, 29(6):691-696 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2004.06.008 [68] Zhi, X. C., Li, B. X., Chen, D. G., 1995. Trace Element Geochemistry of Mantle Originated Diopside from Panshishan, Jiangsu Province. Scientia Geologica Sinica, 30(4):384-392 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX504.008.htm [69] Zhou, X. M., Xu, X. S., Dong, C. W., et al., 1994. Mineralogical Indicator of the Active Continental Margin of Southeastern China:Anorthitic Plagioclase. Chinese Science Bulletin, 39(11):1011-1014 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW199416009.htm [70] 常宏, 金章东, 安芷生, 2009.青海南山隆起的沉积证据及其对青海湖-共和盆地构造分异演化的指示.地质论评, 55(1):49-57. doi: 10.3321/j.issn:0371-5736.2009.01.006 [71] 邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009 [72] 董增产, 辜平阳, 陈锐明, 等, 2015.柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征.地球科学, 40(1):130-144. http://earth-science.net/WebPage/Article.aspx?id=3013 [73] 郭安林, 张国伟, 孙延贵, 等, 2007.共和盆地周缘晚古生代镁铁质火山岩地球化学及空间分布-玛积雪山三联点以及东古特提斯多岛洋启示.中国科学(D辑), 37(增刊1):249-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702216393 [74] 郭安林, 张国伟, 强娟, 等, 2009.青藏高原东北缘印支期宗务隆造山带.岩石学报, 25(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901001 [75] 郝太平, 1990.龙羊峡地区中酸性火山岩稀土元素地球化学特征.西北地质, 23(4):24-27 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003277130 [76] 寇晓虎, 张克信, 林启祥, 等, 2007a.秦祁昆接合部二叠纪沉积建造时空分布.地球科学, 32(5):681-690. http://earth-science.net/WebPage/Article.aspx?id=3528 [77] 寇晓虎, 朱云海, 张克信, 等, 2007b.青海省同仁地区上二叠统石关组上部火山岩的新发现及其地球化学特征和构造环境意义.地球科学, 32(1):45-50. http://earth-science.net/WebPage/Article.aspx?id=1661 [78] 寇晓虎, 张克信, 陈中强, 2015.甘肃夏河八角城二叠纪洋盆海山建造序列及古生物学研究.沈阳: 中国古生物学会第28届学术年会. [79] 李长民, 2009.锆石成因矿物学与锆石微区定年综述.地质调查与研究, 33(3):161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001 [80] 李怀坤, 耿建珍, 郝爽, 等, 2009.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP MS)测定锆石U-Pb同位素年龄的研究.矿物学报, 28(增刊):600-601. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2009S1311.htm [81] 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-381. doi: 10.3969/j.issn.1671-2552.2007.04.002 [82] 李瑞保, 裴先治, 李佐臣, 等, 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40(7):1148-1162. http://earth-science.net/WebPage/Article.aspx?id=3118 [83] 李生虎, 石玉莲, 田滔, 等, 2017.青海南山早三叠世石英闪长岩地球化学特征、LA-ICP-MS定年及地质意义.青海大学学报, 35(3):25-32. http://d.old.wanfangdata.com.cn/Periodical/qhdxxb-zr201703005 [84] 李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005 [85] 陆露, 吴珍汉, 胡道功, 等, 2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义.岩石学报, 26(4): 1150-1158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004012 [86] 罗文行, 钱莉莉, 李德威, 等, 2013.东昆仑中灶火地区超镁铁质辉石岩的成因.地球科学, 38(6):1214-1228. http://earth-science.net/WebPage/Article.aspx?id=2803 [87] 彭渊, 马寅生, 刘成林, 等, 2016.柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义.地学前缘, 23(2):206-221. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602020 [88] 王绘清, 朱云海, 林启祥, 等, 2010.青海尖扎-同仁地区隆务峡蛇绿岩的形成时代及意义——来自辉长岩锆石LA-ICP-MS U-Pb年龄的证据.地质通报, 29(1):86-92. doi: 10.3969/j.issn.1671-2552.2010.01.011 [89] 王海燕, 高锐, 李秋生, 等, 2014.青藏高原松潘-西秦岭-临夏盆地深地震反射剖面-采集、处理与初步解释.地球物理学报, 57(5):1451-1461. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201405010.htm [90] 王毅智, 拜永山, 陆海莲, 2001.青海天峻南山蛇绿岩的地质特征及其形成环境.青海地质, 21(1):29-35. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070998.htm [91] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [92] 闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206008 [93] 殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5):438-442. doi: 10.3321/j.issn:1001-8166.1998.05.004 [94] 查显锋, 辜平阳, 董增产, 等, 2016.柴北缘西段早古生代构造-热事件及其构造环境.地球科学, 41(4):586-604. http://earth-science.net/WebPage/Article.aspx?id=3276 [95] 张国伟, 郭安林, 姚安平, 2004.中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘, 11(3):23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004 [96] 张宏飞, 陈岳龙, 徐旺春, 等, 2006.青海共和盆地周缘印支期花岗岩类的成因及其构造意义.岩石学报, 22(12):2910-2922. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612009 [97] 张克信, 朱云海, 林启祥, 等, 2007.青海同仁县隆务峡地区首次发现镁铁质——超镁铁质岩带.地质通报, 26(6):661-667. doi: 10.3969/j.issn.1671-2552.2007.06.005 [98] 张旗, 马文璞, 金唯俊, 等, 1995.一个造山后的辉长岩——河南新县王母观岩体的地球化学特征.地球化学, 24(4):341-350. doi: 10.3321/j.issn:0379-1726.1995.04.004 [99] 张亚玲, 徐义刚, 2012.辉石岩:高压结晶还是再循环洋壳?.高校地质学报, 18(1):74-87. doi: 10.3969/j.issn.1006-7493.2012.01.007 [100] 张延军, 孙丰月, 许成瀚, 等, 2016.柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素.地球科学, 41(11):1830-1844. http://earth-science.net/WebPage/Article.aspx?id=3382 [101] 张永明, 裴先治, 李佐臣, 等, 2017.青海南山当家寺花岗岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 91(3):523-541. doi: 10.3969/j.issn.0001-5717.2017.03.003 [102] 张智勇, 殷鸿福, 王秉璋, 等, 2004.昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据.地球科学, 29(6):691-696. doi: 10.3321/j.issn:1000-2383.2004.06.008 [103] 支霞臣, 李彬贤, 陈道公, 1995.盘石山幔源透辉石微量元素地球化学.地质科学, 30(4):384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500062015 [104] 周新民, 徐夕生, 董传万, 等, 1994.中国东南活动大陆边缘的矿物标志:钙长石质斜长石.科学通报, 39(11):1011-1014. http://www.cnki.com.cn/Article/CJFD1994-KXTB199411015.htm