• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海底地震仪(OBS)主动源转换横波的应用

    张洁 李家彪 阮爱国 卫小冬 牛雄伟 于志腾 庞新明

    张洁, 李家彪, 阮爱国, 卫小冬, 牛雄伟, 于志腾, 庞新明, 2018. 海底地震仪(OBS)主动源转换横波的应用. 地球科学, 43(10): 3778-3791. doi: 10.3799/dqkx.2018.534
    引用本文: 张洁, 李家彪, 阮爱国, 卫小冬, 牛雄伟, 于志腾, 庞新明, 2018. 海底地震仪(OBS)主动源转换横波的应用. 地球科学, 43(10): 3778-3791. doi: 10.3799/dqkx.2018.534
    Zhang Jie, Li Jiabiao, Ruan Aiguo, Wei Xiaodong, Niu Xiongwei, Yu Zhiteng, Pang Xinming, 2018. Application of Converted S-Waves from the Active-Source Ocean Bottom Seismometer Experiment. Earth Science, 43(10): 3778-3791. doi: 10.3799/dqkx.2018.534
    Citation: Zhang Jie, Li Jiabiao, Ruan Aiguo, Wei Xiaodong, Niu Xiongwei, Yu Zhiteng, Pang Xinming, 2018. Application of Converted S-Waves from the Active-Source Ocean Bottom Seismometer Experiment. Earth Science, 43(10): 3778-3791. doi: 10.3799/dqkx.2018.534

    海底地震仪(OBS)主动源转换横波的应用

    doi: 10.3799/dqkx.2018.534
    基金项目: 

    国家重大研究计划重点支持项目 91228205

    国家重大研究计划重点支持项目 91428204

    国家青年科学基金项目 41706044

    国家重大研究计划重点支持项目 91628301

    "全球变化与海气相互作用"专项 GASI-GEOGE-01

    国家重大研究计划重点支持项目 91028006

    国家海洋局第二海洋研究所基本科研业务费专项 JG1509

    国家海洋局第二海洋研究所基本科研业务费专项 JG1602

    详细信息
      作者简介:

      张洁(1987-), 女, 助理研究员, 博士, 主要从事海底地震和深部构造方面的研究

    • 中图分类号: P738

    Application of Converted S-Waves from the Active-Source Ocean Bottom Seismometer Experiment

    • 摘要: 横波(S波)为偏振波,具有不同于纵波(P波)的特性,对于地震探测具有特殊的意义.在被动源地震探测中已得到广泛的应用,如接收函数、S波分裂等.在主动源(气枪)海底地震(OBS)探测中,震源在水中,S波为地层转换波,其应用还不多.本文在介绍转换S波的产生、模式、处理和识别的基础上,以实例为切入点简述其具体应用.这些应用主要是基于1D/2D转换S波,用于揭示海底岩石类型、推断地壳性质、共轭陆缘问题、判定地幔蛇纹石化、估算天然气水合物的饱和度和预测流体等.目前在南海已获得了大量的2D和3D的OBS转换S波数据,可将转换S波的研究逐步从2D发展到3D研究,同时结合其他地球物理资料进行共同分析.利用转换S波的研究,有利于揭示南海扩张停止后形成的海山下不同地层的岩性和判定上地幔低速的性质等.

       

    • 图  1  西南次海盆3维地震调查T1测线OBS 1台站地震垂直分量(a)和径向分量(b)记录

      Zhang et al.(2016);垂直分量记录中的Pg为来自地壳内的折射震相,Pn为来自上地幔内的折射;径向分量记录中的PPgS震相和PPnS震相分别是Pg波和Pn波在上行过程中转换而来,而PgSS震相和PnSS震相分别是Pg波和Pn波在下行过程中转换而来.右侧的插图是图中红色方框内的放大图

      Fig.  1.  Vertical component (a) and radial component (b) of OBS 1 station along the T1 profile obtained from the 3D seismic survey in the Southwest sub-Basin

      图  2  西南次海盆3维地震调查T1测线OBS 20台站地震记录

      Zhang et al.(2016),图a为OBS 20垂直分量; 图b为OBS 20径向分量,折合速度为8 km/s.滤波3~15 Hz.图c为第240道(图a黑线位置)垂直分量记录的地震波形.图d为第240道径向分量记录(图b黑线位置)的地震波形.图e为第240道垂直分量记录(4.4~4.8 s)质点运动的轨迹.图f为第240道径向分量(5.3~5.7s)的质点运动轨迹

      Fig.  2.  vertical component (a) and radial (b) component of OBS 20 station along the T1 profile obtained from the 3D seismic survey in the Southwest sub-Basin

      图  3  Vp、Vs值与岩性的关系

      Wei et al.(2016)修改

      Fig.  3.  The relationship between Vp, Vs and lithology

      图  4  Vp、Vs值和蛇纹石化地幔橄榄岩关系

      Chian and Louden(1994)Carlson and Miller (1997)

      Fig.  4.  The relationship between Vp, Vs and serpentinzed peridotite

      图  5  叠加在AB地震剖面之上的气体水合物(水平和垂直方向上)饱和度情况

      Satyavani et al.(2016);BSR(似海底反射)之下的饱和度估算被去除了

      Fig.  5.  The horizontal and vertical saturation of gas hydrates superimposed over the seismic section along AB

      图  6  Vp与Vp/Vs的关系(a,c和e)和Vp与流体体积百分率的关系(b,d和f)

      流体体积百分率的计算方法是据Yamamoto et al.(1981).实线为H2O包裹体,虚线代表岩浆包裹体.红色、蓝色和绿色线条分别代表 0.001、0.01和0.1的裂隙纵横比.图a,b为上地壳的结果;图c,d为下地壳的结果;图e,f为上地幔结果,据Nakajima et al., (2001)修改

      Fig.  6.  The relationships between Vp and Vp/Vs (a, c, and e), and the relationship between Vp and volume fraction of fluids (b, d and f)

    • [1] Au, D., Clowes, R.M., 1984.Shear-Wave Velocity Structure of the Oceanic Lithosphere from Ocean Bottom Seismometer Studies.Geophysical Journal International, 77(1):105-123. https://doi.org/10.1111/j.1365-246x.1984.tb01927.x
      [2] Bandy, W.L., Gutiérrez, C.A.M., 2012.Gas Hydrates in the Southern Jalisco Subduction Zone as Evidenced by Bottom Simulating Reflectors in Multichannel Seismic Reflection Data of the 2002 Bart/Famex Campaign.Geofísica Internacional, 51(4):393-400. http://www.redalyc.org/articulo.oa?id=56824381007
      [3] Barckhausen, U., Roeser, H.A., 2004.Seafloor Spreading Anomalies in the South China Sea Revisited.Geophysical Monograph, 149:121-125. https://doi.org/10.1029/149GM07
      [4] Birch, F., 1961.The Velocity of Compressional Waves in Rocks to 10 Kilobars:2.Journal of Geophysical Research, 66(7):2199-2224. https://doi.org/10.1029/jz066i007p02199
      [5] Bougault, H., Hekinian, R., 1974.Rift Valley in the Atlantic Ocean near 36°50'N:Petrology and Geochemistry of Basaltic Rocks.Earth and Planetary Science Letters, 24(2):249-261. https://doi.org/10.1016/0012-821x(74)90103-4
      [6] Brandsdóttir, B., Menke, W.H., 1992.Thin Low-Velocity Zone within the Krafla Caldera, Ne-Iceland Attributed to a Small Magma Chamber.Geophysical Research Letters, 19(24):2381-2384. https://doi.org/10.1029/92gl02541
      [7] Bratt, S.R., Solomon, S.C., 1984.Compressional and Shear Wave Structure of the East Pacific Rise at 11°20'N:Constraints from Three-Component Ocean Bottom Seismometer Data.Journal of Geophysical Research:Solid Earth, 89(B7):6095-6110. https://doi.org/10.1029/jb089ib07p06095
      [8] Breivik, A.J., Mjelde, R., Faleide, J.I., et al., 2012.The Eastern Jan Mayen Microcontinent Volcanic Margin.Geophysical Journal International, 188(3):798-818. https://doi.org/10.1111/j.1365-246x.2011.05307.x
      [9] Canales, J.P., Tucholke, B.E., Collins, J.A., 2004.Seismic Reflection Imaging of an Oceanic Detachment Fault:Atlantis Megamullion (Mid-Atlantic Ridge, 30°10'N).Earth and Planetary Science Letters, 222(2):543-560. https://doi.org/10.1016/j.epsl.2004.02.023
      [10] Carlson, R.L., Miller, D.J., 1997.A New Assessment of the Abundance of Serpentinite in the Oceanic Crust.Geophysical Research Letters, 24(4):457-460. https://doi.org/10.1029/97gl00144
      [11] Chand, S., Minshull, T.A., Gei, D., et al., 2004.Elastic Velocity Models for Gas-Hydrate-Bearing Sediments-A Comparison.Geophysical Journal International, 159(2):573-590. https://doi.org/10.1111/j.1365-246x.2004.02387.x
      [12] Cheng, W.B., Shih, T.Y., Lin, W.Y., et al., 2014.Imaging Seismic Velocities for Hydrate-Bearing Sediments Using Converted Waves near Yuan-An Ridge, off Southwest Taiwan.Journal of Asian Earth Sciences, 92(5):215-223. https://doi.org/10.1016/j.jseaes.2013.10.013
      [13] Chian, D.P., Louden, K.E., 1994.The Continent-Ocean Crustal Transition across the Southwest Greenland Margin.Journal of Geophysical Research:Solid Earth, 99(B5):9117-9135. https://doi.org/10.1029/93jb03404
      [14] Christensen, N.I., 1984.Pore Pressure and Oceanic Crustal Seismic Structure.Geophysical Journal International, 79(2):411-423. https://doi.org/10.1111/j.1365-246x.1984.tb02232.x
      [15] Christensen, N.I., 1996.Poisson's Ratio and Crustal Seismology.Journal of Geophysical Research:Solid Earth, 101(B2):3139-3156. https://doi.org/10.1029/95jb03446
      [16] Christensen, N.I., 2004.Serpentinites, Peridotites, and Seismology.International Geology Review, 46(9):795-816. https://doi.org/http://doi.org/10.2747/0020-6814.46.9.795
      [17] Chung, T.W., Hirata, N., Sato, R., 1990.Two-Dimensional P-and S-Wave Velocity Structure of the Yamato Basin, the Southeastern Japan Sea, from Refraction Data Collected by an Ocean Bottom Seismographic Array.Journal of Physics of the Earth, 38(2):99-147. https://doi.org/10.4294/jpe1952.38.99
      [18] Dannowski, A., Grevemeyer, I., Ranero, C.R., et al., 2010.Seismic Structure of an Oceanic Core Complex at the Mid-Atlantic Ridge, 22°19'N.Journal of Geophysical Research, 115(B7):B07106. https://doi.org/10.1029/2009jb006943
      [19] Dash, R., Spence, G., 2011.P-Wave and S-Wave Velocity Structure of Northern Cascadia Margin Gas Hydrates.Geophysical Journal International, 187(3):1363-1377. https://doi.org/10.1111/j.1365-246x.2011.05215.x
      [20] Digranes, P., Mjelde, R., Kodaira, S., et al., 1998.A Regional Shear-Wave Velocity Model in the Central Vøring Basin, N.Norway, Using Three-Component Ocean Bottom Seismographs.Tectonophysics, 293(3-4):157-174. https://doi.org/10.1016/s0040-1951(98)00093-6
      [21] Domenico, S.N., 1984.Rock Lithology and Porosity Determination from Shear and Compressional Wave Velocity.Geophysics, 49(8):1188-1195. https://doi.org/10.1190/1.1441748
      [22] Eccles, J.D., White, R.S., Christie, P.A.F., 2009.Identification and Inversion of Converted Shear Waves:Case Studies from the European North Atlantic Continental Margins.Geophysical Journal International, 179(1):381-400. https://doi.org/10.1111/j.1365-246x.2009.04290.x
      [23] Eccles, J.D., White, R.S., Christie, P.A.F., 2011.The Composition and Structure of Volcanic Rifted Continental Margins in the North Atlantic:Further Insight from Shear Waves.Tectonophysics, 508(1-4):22-33. https://doi.org/10.1016/j.tecto.2010.02.001
      [24] Eccles, J.D., White, R.S., Robert, A.W., et al., 2007.Wide Angle Converted Shear Wave Analysis of a North Atlantic Volcanic Rifted Continental Margin:Constraint on Sub-Basalt Lithology.First Break, 25(10):63-70. https://doi.org/10.3997/1365-2397.2007026
      [25] Escartín, J., Canales, J.P., 2011.Detachments in Oceanic Lithosphere:Deformation, Magmatism, Fluid Flow, and Ecosystems.Eos, Transactions American Geophysical Union, 92(4):31. https://doi.org/10.1029/2011eo040003
      [26] Fowler, C.M.R., 1976.Crustal Structure of the Mid-Atlantic Ridge Crest at 37°N.Geophysical Journal International, 47(3):459-491. https://doi.org/10.1111/j.1365-246x.1976.tb07097.x
      [27] Fryer, P., Ambos, E.L., Hussong, D.M., 1985.Origin and Emplacement of Mariana Forearc Seamounts.Geology, 13(11):774.https://doi.org/10.1130/0091-7613(1985)13<774:oaeomf>2.0.co;2 doi: 10.1130/0091-7613(1985)13<774:oaeomf>2.0.co;2
      [28] Grevemeyer, I., Merz, M., Dannowski, A., et al., 2016.Seismic Structure of Lithosphere Emplaced at Ultra-Slow Spreading Rates.EGU General Assembly Conference, Vienna.
      [29] Gudlaugsson, S.T., Gunnarsson, K., Sand, M., et al., 1988.Tectonic and Volcanic Events at the Jan Mayen Ridge Microcontinent.Geological Society, London, Special Publications, 39(1):85-93. https://doi.org/10.1144/gsl.sp.1988.039.01.09
      [30] Guillot, S., Schwartz, S., Reynard, B., et al., 2015.Tectonic Significance of Serpentinites.Tectonophysics, 646:1-19. doi: 10.1016/j.tecto.2015.01.020
      [31] Hamilton, E.L., 1979.Vp/Vs and Poisson's Ratios in Marine Sediments and Rocks.The Journal of the Acoustical Society of America, 66(4):1093-1101. https://doi.org/10.1121/1.383344
      [32] Hekinian, R., Bideau, D., Cannat, M., et al., 1992.Volcanic Activity and Crust-Mantle Exposure in the Ultrafast Garrett Transform Fault near 13°28'S in the Pacific.Earth and Planetary Science Letters, 108(4):259-275. https://doi.org/10.1016/0012-821x(92)90027-s
      [33] Helgerud, M.B., Dvorkin, J., Nur, A., et al., 1999.Elastic-Wave Velocity in Marine Sediments with Gas Hydrates:Effective Medium Modeling.Geophysical Research Letters, 26(13):2021-2024. https://doi.org/10.1029/1999gl900421
      [34] Holbrook, W.S., Hoskins, H., Wood, W.T., et al., 1996.Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling.Science, 273(5283):1840-1843. https://doi.org/10.1126/science.273.5283.1840
      [35] Holbrook, W.S., Mooney, W.D., Christensen, N.I., 1992.The Seismic Velocity Structure of the Deep Continental Crust.Developments in Geotectonics, 23:1-43. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_27b381b986e24f9a2afd010ecae9e64b
      [36] Hyndman, R.D., Spence, G.D., 1992.A Seismic Study of Methane Hydrate Marine Bottom Simulating Reflectors.Journal of Geophysical Research, 97(B5):6683. https://doi.org/10.1029/92jb00234
      [37] Kandilarov, A., Mjelde, R., Flueh, E., et al., 2015.Vp/Vs Ratios and Anisotropy on the Northern Jan Mayen Ridge, North Atlantic, Determined from Ocean Bottom Seismic Data.Polar Science, 9(3):293-310. https://doi.org/10.1016/j.polar.2015.06.001
      [38] Kandilarov, A., Mjelde, R., Pedersen, R.B., et al., 2012.The Northern Boundary of the Jan Mayen Microcontinent, North Atlantic Determined from Ocean Bottom Seismic, Multichannel Seismic, and Gravity Data.Marine Geophysical Research, 33(1):55-76. https://doi.org/10.1007/s11001-012-9146-4
      [39] Kennett, J.P., 1982.Marine Geology.Prentice Hall, Englewood Cliffs, 813.
      [40] Kodaira, S., Mjelde, R., Gunnarsson, K., et al., 1997.Crustal Structure of the Kolbeinsey Ridge, North Atlantic, Obtained by Use of Ocean Bottom Seismographs.Journal of Geophysical Research:Solid Earth, 102(B2):3131-3151. https://doi.org/10.1029/96jb03487
      [41] Kodaira, S., Bellenberg, M., Iwasaki, T., et al., 1996.Vp/Vs Ratio Structure of the Lofoten Continental Margin, Northern Norway, and Its Geological Implications.Geophysical Journal International, 124(3):724-740. https://doi.org/10.1111/j.1365-246X.1996.tb05634.x
      [42] Kumar, D., Sen, M.K., Bangs, N.L., 2007.Gas Hydrate Concentration and Characteristics within Hydrate Ridge Inferred from Multicomponent Seismic Reflection Data.Journal of Geophysical Research, 112(B12):438-451. https://doi.org/10.1029/2007jb004993
      [43] Kvarven, T., Mjelde, R., Hjelstuen, B.O., et al., 2016.Crustal Composition of the Møre Margin and Compilation of a Conjugate Atlantic Margin Transect.Tectonophysics, 666(11):144-157. http://eprints.uni-kiel.de/30320/
      [44] Kvenvolden, K.A., 1988.Methane Hydrate-A Major Reservoir of Carbon in the Shallow Geosphere?Chemical Geology, 71(1/2/3):41-51. https://doi.org/10.1016/0009-2541(88)90104-0
      [45] Lee, M.W., Hutchinson, D.R., Collett, T.S., et al., 1996.Seismic Velocities for Hydrate-Bearing Sediments Using Weighted Equation.Journal of Geophysical Research:Solid Earth, 101(B9):20347-20358. https://doi.org/10.1029/96jb01886
      [46] Lee, M.W., Collett, T.S., 2006.Gas Hydrate and Free Gas Saturations Estimated from Velocity Logs on Hydrate Ridge, Offshore Oregon, U.S.A.Proceedings of the Ocean Drilling Program Scientific Results, 204:1-24.
      [47] Lewis, B.T., McClain, J., 1977.Converted Shear Waves as Seen by Ocean Bottom Seismometers and Surface Buoys.Bulletin of the Seismological Society of America, 67(5):1291-1302. http://bssa.geoscienceworld.org/content/67/5/1291
      [48] Li, J.B., 2001.The Study of the Geotransect Rifting Patterns and Spreading Mechanism of the East Basin of South China Sea.The Institute of Oceanology, Chinese Academy of Sciences, Dingdao (in Chinese with English abstract).
      [49] MacDonald, G.J., 1990.The Future of Methane as an Energy Resource.Annual Review of Energy, 15(1):53-83. https://doi.org/10.1146/annurev.eg.15.110190.000413
      [50] Mével, C., 2003.Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges.Comptes Rendus Geoscience, 335(10/11):825-852. https://doi.org/10.1016/j.crte.2003.08.006
      [51] Mjelde, R., 1992.Shear Waves from Three-Component Ocean Bottom Seismographs off Lofoten, Norway, Indicative of Anisotropy in the Lower Crust.Geophysical Journal International, 110(2):283-296. https://doi.org/10.1111/j.1365-246x.1992.tb00874.x
      [52] Mjelde, R., Breivik, A.J., Raum, T., et al., 2008.Magmatic and Tectonic Evolution of the North Atlantic.Journal of the Geological Society, 165(1):31-42. https://doi.org/10.1144/0016-76492007-018
      [53] Mjelde, R., Eckhoff, I., Solbakken, S., et al., 2007.Gravity and S-Wave Modelling Across the Jan Mayen Ridge, North Atlantic; Implications for Crustal Lithology.Marine Geophysical Researches, 28(1):27-41. https://doi.org/10.1007/s11001-006-9012-3
      [54] Mjelde, R., Iwasaki, T., Shimamura, H., et al., 2003.Spatial Relationship between Recent Compressional Structures and Older High-Velocity Crustal Structures; Examples from the Vøring Margin, NE Atlantic, and Northern Honshu, Japan.Journal of Geodynamics, 36(4):537-562. https://doi.org/10.1016/s0264-3707(03)00087-5
      [55] Mjelde, R., Kodaira, S., Digranes, P., et al., 1997.Comparison between a Regional and Semi-Regional Crustal OBS Model in the Vøring Basin, Mid-Norway Margin.Pure and applied Geophysics, 149(4):641-665. https://doi.org/10.1007/s000240050045
      [56] Mjelde, R., Raum, T., Myhren, B., et al., 2005.Continent-Ocean Transition on the Vøring Plateau, NE Atlantic, Derived from Densely Sampled Ocean Bottom Seismometer Data.Journal of Geophysical Research, 110:B05101. https://doi.org/10.1029/2004jb003026
      [57] Mjelde, R., Sellevoll, M.A., Shimamura, H., et al., 1992.A Crustal Study off Lofoten, N.Norway, by Use of 3-Component Ocean Bottom Seismographs.Tectonophysics, 212(3-4):269-288. https://doi.org/10.1016/0040-1951(92)90295-h
      [58] Mjelde, R., Aurvåg, R., Kodaira, S., 2002.Vp/Vs-Ratios from the Central Kolbeinsey Ridge to the Jan Mayen Basin, North Atlantic; Implications for Lithology, Porosity and Present-Day Stress Field.Marine Geophysical Research, 23(2):123-145. https://doi.org/10.1023/A:1022439707307
      [59] Myhre, A.M., Eldholm, O., Sundvor, E., 1984.The Jan May En Ridge:Present Status.Polar Research, 2(1):47-59. https://doi.org/10.1111/j.1751-8369.1984.tb00485.x
      [60] Nakajima, J., Matsuzawa, T., Hasegawa, A., et al., 2001.Three-Dimensional Structure of Vp, Vs, and Vp/Vs beneath Northeastern Japan:Implications for Arc Magmatism and Fluids.Journal of Geophysical Research:Solid Earth, 106(B10):21843-21857. https://doi.org/10.1029/2000jb000008
      [61] Nakamura, K., Morishita, T., Bach, W., et al., 2009.Serpentinized Troctolites Exposed near the Kairei Hydrothermal Field, Central Indian Ridge:Insights into the Origin of the Kairei Hydrothermal Fluid Supporting a Unique Microbial Ecosystem.Earth and Planetary Science Letters, 280(1-4):128-136. https://doi.org/10.1016/j.epsl.2009.01.024
      [62] Niu, X.W., Ruan, A.G., Li, J.B., et al., 2015.Along-Axis Variation in Crustal Thickness at the Ultraslow Spreading Southwest Indian Ridge (50°E) from a Wide-Angle Seismic Experiment.Geochemistry, Geophysics, Geosystems, 16(2):468-485. doi: 10.1002/2014GC005645
      [63] Niu, X.W., Li, J.B., Ruan, A.G., et al., 2015.Evidence of Serpentinized Mantle Beneath a Non-Transform Discontinuity at an Ultra-Slow Spreading Ridge from Wide-Angle Ocean Bottom Seismometer Data.Chinese Science Bulletin, 60(10):952-961(in Chinese with English abstract). doi: 10.1360/N972014-01021
      [64] Nur, A., Simmons, G., 1969.The Effect of Saturation on Velocity in Low Porosity Rocks.Earth and Planetary Science Letters, 7(2):183-193. https://doi.org/10.1016/0012-821x(69)90035-1
      [65] O'Connell, R.J., Budiansky, B., 1974.Seismic Velocities in Dry and Saturated Cracked Solids.Journal of Geophysical Research, 79(35):5412-5426. https://doi.org/10.1029/jb079i035p05412
      [66] Pecher, I.A., Bialas, J., Flueh, E.R., 2011.Ocean Bottom Seismics.In: Gupta, H.K., ed., Encyclopedia of Solid Earth Geophysics, Springer, Heidelberg, 901-908.
      [67] Pickup, S.L.B., Whitmarsh, R.B., Fowler, C.M.R., et al., 1996.Insight into the Nature of the Ocean-Continent Transition off West Iberia from a Deep Multichannel Seismic Reflection Profile.Geology, 24(12):1079-1082.https://doi.org/10.1130/0091-7613(1996)024<1079:iitnot>2.3.co;2 doi: 10.1130/0091-7613(1996)024<1079:iitnot>2.3.co;2
      [68] Prada, M., Ranero, C.R., Sallarès, V., et al., 2016.Mantle Exhumation and Sequence of Magmatic Events in the Magnaghi-Vavilov Basin (Central Tyrrhenian, Italy):New Constraints from Geological and Geophysical Observations.Tectonophysics, 689:133-142. https://doi.org/10.1016/j.tecto.2016.01.041
      [69] Qiu, X.L., Zhao, M.H., Ao, W., et al., 2011.OBS Survey and Crustal Structure of the SW Sub-Basin and Nansha Block, South China Sea.Chinese Journal of Geophysics, 54(12):3117-3128(in Chinese with English abstract). doi: 10.1002/cjg2.1680/pdf
      [70] Ruan, A.G., Niu, X.W., Qiu, X.L., et al., 2011.A Wide Angle Ocean Bottom Seismometer Experiment across Liyue Bank, the Southern Margin of the South China Sea.Chinese Journal of Geophysics, 54(12):3139-3149 (in Chinese with English abstract). doi: 10.1002/cjg2.1682/full
      [71] Sang, L.K., Ma, C.Q., 2012.Petrology.Geological Publishing House, Beijing, 148-181(in Chinese).
      [72] Satyavani, N., Sain, K., Gupta, H.K., 2016.Ocean Bottom Seismometer Data Modeling to Infer Gas Hydrate Saturation in Krishna-Godavari (KG) Basin.Journal of Natural Gas Science and Engineering, 33:908-917. doi: 10.1016/j.jngse.2016.06.037
      [73] Searle, R.C., Cannat, M., Fujioka, K., et al., 2003.FUJI Dome:A Large Detachment Fault near 64°E on the very Slow-Spreading Southwest Indian Ridge.Geochemistry, Geophysics, Geosystems, 4(8):9105. https://doi.org/10.1029/2003gc000519
      [74] Shan, G.Y., Han, L.G., Zhang, L.H., et al., 2010.Research and Analysis of Converted Wave in Reservoir Prediction.Progress in Geophysics, 25(1):282-287(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201001039.htm
      [75] Spencer, J.W.Jr., Nur, A.M., 1976.The Effects of Pressure, Temperature, and Pore Water on Velocities in Westerly Granite.Journal of Geophysical Research, 81(5):899-904. https://doi.org/10.1029/jb081i005p00899
      [76] Spudich, P.K.P., Helmberger, D.V., 1979.Synthetic Seismograms from Model Ocean Bottoms.Journal of Geophysical Research:Solid Earth, 84(B1):189-204. https://doi.org/10.1029/jb084ib01p00189
      [77] Spudich, P., Orcutt, J., 1980.Petrology and Porosity of an Oceanic Crustal Site:Results from Wave Form Modeling of Seismic Refraction Data.Journal of Geophysical Research:Solid Earth, 85(B3):1409-1433. https://doi.org/10.1029/jb085ib03p01409
      [78] Stewart, R.R., Gaiser, J.E., Brown, R.J., et al., 2003.Converted-Wave Seismic Exploration:Applications.Geophysics, 68(1):40-57. https://doi.org/10.1190/1.1543193
      [79] Subrahmanyam, C., Paul, J., 1994.Mesozoic Anomalies in the Bay of Bengal.Earth & Planetary Science Letters, 121(94):469-475. https://doi.org/10.1016/0012-821X(94)90084-1
      [80] Tatham, R.H., 1982.Vp/Vs and Lithology.Geophysics, 47(3):336-344. https://doi.org/10.1190/1.1441339
      [81] Wang, J., Zhao, M.H., et al., 2016.3D Seismic Structure of the Zhenbei-Huangyan Seamounts Chain in the East Sub-Basin of the South China Sea and Its Mechanism of Formation.Geological Journal, 51(B4):448-463. doi: 10.1002/gj.2781/pdf
      [82] Wang, T.K., Chen, M.K., Lee, C.S., et al., 2006.Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea.Tectonophysics, 412(3/4):237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      [83] Wang, T.K., Chen, T.R., Deng, J.M., et al., 2015.Velocity Structures Imaged from Long-Offset Reflection Data and Four-Component OBS Data at Jiulong Methane Reef in the Northern South China Sea.Marine and Petroleum Geology, 68:206-218. doi: 10.1016/j.marpetgeo.2015.08.024
      [84] Wang, Y., Li, Z.W., You, Q.Y., et al., 2016.Shear-Wave Velocity Structure of the Shallow Sediments in the Bohai Sea from an Ocean-Bottom-Seismometer Survey.Geophysics, 81(3):ID25-ID36. https://doi.org/10.1190/geo2015-0417.1
      [85] Watanabe, T., 1993.Effects of Water and Melt on Seismic Velocities and Their Application to Characterization of Seismic Reflectors.Geophysical Research Letters, 20(24):2933-2936. https://doi.org/10.1029/93gl03170
      [86] Wedepohl, K.H., 1995.The Composition of the Continental Crust.Geochimica et Cosmochimica Acta, 59(7):1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      [87] Wei, X.D., Ruan, A.G., Li, J.B., et al., 2016.S-Wave Velocity Structure and Tectonic Implications of the Northwestern Sub-Basin and Macclesfield of the South China Sea.Marine Geophysical Research, 38(1/2):125-136. http://jglobal.jst.go.jp/public/20090422/201702219906954405
      [88] Wei, X.D., Ruan, A.G., Zhao, M.H., et al., 2015.Shear Wave Velocity Structure of Reed Bank, Southern Continental Margin of the South China Sea.Tectonophysics, 644-645:151-160. doi: 10.1016/j.tecto.2015.01.006
      [89] Wei, X.D., Zhao, M.X., Ruan, A.G., et al., 2011.Crustal Structure of Shear Waves and Its Tectonic Significance in the Mid-Northern Continental Margin of the South China Sea.Chinese Journal of Geophysics, 54(12):3150-3160(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201112017.htm
      [90] White, R.S., Stephen, R.A., 1980.Compressional to Shear Wave Conversion in Oceanic Crust.Geophysical Journal International, 63(2):547-565. https://doi.org/10.1111/j.1365-246x.1980.tb02637.x
      [91] Whitmarsh, R.B., Wallace, P.J., 2001.The Rift-to-Drift Development of the West Iberia Nonvolcanic Continental Margin: A Summary and Review of the Contribution of Ocean Drilling Program Leg 173.In: Beslier, M.O., Whitmarsh, R.B., Wallace, P.J., et al., eds., Proc.ODP, Sci.Results 173.Ocean Drilling Program, College Station, Texas A&T University, College Station, TX: 1-36.
      [92] Wyllie, M.R.J., Gregory, A.R., Gardner, G.H.F., 1958.An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media.Geophysics, 23(3):459-493. https://doi.org/10.1190/1.1438493
      [93] Yamamoto, K., Kosuga, M., Hirasawa, T., 1981.A Theoretical Method for Determination of Effective Elastic Constants of Isotropic Composite.Science Reports of the Tôhoku University:Seventh, 5(28):47-67.
      [94] Yan, P., Zhou, D., Liu, Z.S., 2001.A Crustal Structure Profile Across the Northern Continental Margin of the South China Sea.Tectonophysics, 338(1):1-21. https://doi.org/10.1016/s0040-1951(01)00062-2
      [95] Yao, B.C., 1996.Tectonic Evolution of the South Shina Sea in Cenozoic.Marine Geology & Quaternary Geology, 16(2):1-13 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hydz602.000.htm
      [96] Yun, T.S., 2005.Compressional and Shear Wave Velocities in Uncemented Sediment Containing Gas Hydrate.Geophysical Research Letters, 32(10):153-174. https://doi.org/10.1029/2005gl022607
      [97] Zhang, J., Li, J.B., Ruan, A.G., et al., 2016.The Velocity Structure of a Fossil Spreading Centre in the Southwest Sub-Basin, South China Sea.Geological Journal, 51(1/2):548-561. https://doi.org/10.1002/gj.2778
      [98] Zhang, J., 2016.Post-Spreading Magmatism and the Velocity Structure of a Fossil Spreading Center in the Southwest Sub-Basin, South China Sea(Dissertation).Zhejiang University, Hangzhou(in Chinese with English abstract).
      [99] Zhao, M.H., Qiu, X.L., Li, J.B., et al., 2013.Three-Dimensional Seismic Structure of the Dragon Flag Oceanic Core Complex at the Ultraslow Spreading Southwest Indian Ridge (49°39'E).Geochemistry, Geophysics, Geosystems, 14(10):4544-4563. https://doi.org/10.1002/ggge.20264
      [100] Zhao, M.H., Qiu, X.L., Xia, S.H., et al., 2008.Identification and Analysis of Shear Waves Recorded by Three-Component OBSs in Northeastern South China Sea.Progress in Natural Science, 18(2):181-188. https://doi.org/10.1016/j.pnsc.2007.06.005
      [101] Zhao, M.H., Qiu, X.L., Xia, S.H., et al., 2010.Seismic Structure in the Northeastern South China Sea:S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data.Tectonophysics, 480(1/2/3/4):183-197. https://doi.org/10.1016/j.tecto.2009.10.004
      [102] 李家彪, 2001.南海东部海盆的张裂特征及扩张方式研究(博士学位论文).青岛:中国科学院海洋研究所.
      [103] 牛雄伟, 李家彪, 阮爱国, 等, 2015.超慢速扩张洋中脊ntd的蛇纹石化地幔:海底广角地震探测.科学通报, 60(10):952-961. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB201510011&dbname=CJFD&dbcode=CJFQ
      [104] 丘学林, 赵明辉, 敖威, 等, 2011.南海西南次海盆与南沙地块的obs探测和地壳结构.地球物理学报, 54(12):3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
      [105] 阮爱国, 牛雄伟, 丘学林, 等, 2011.穿越南沙礼乐滩的海底地震仪广角地震试验.地球物理学报, 54(12):3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014
      [106] 桑隆康, 马昌前, 2012.岩石学.北京:地质出版社, 148-181.
      [107] 单刚义, 韩立国, 张丽华, 等, 2010.转换波在储层预测中的研究分析.地球物理学进展, 25(1):282-287. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201001037
      [108] 卫小冬, 赵明辉, 阮爱国, 等, 2011.南海中北部陆缘横波速度结构及其构造意义.地球物理学报, 54(12):3150-3160. doi: 10.3969/j.issn.0001-5733.2011.12.015
      [109] 姚伯初, 1996.南海海盆新生代的构造演化史.海洋地质与第四纪地质, 16(2):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600250284
      [110] 张洁, 2016.南海西南次海盆扩张期后岩浆活动及其残留扩张中心的纵横波速度结构(博士学位论文).杭州:浙江大学.
    • 加载中
    图(6)
    计量
    • 文章访问数:  4053
    • HTML全文浏览量:  1922
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-19
    • 刊出日期:  2018-10-20

    目录

      /

      返回文章
      返回