Zircon U-Pb Dating, Petrogenesis and Tectonic Background of the Early Paleozoic Ningtan Gneissic Granitic Pluton, in the Yunkai Terrane
-
摘要: 华南地区广泛发育的早古生代岩体形成的构造背景是近年来的研究焦点.云开地区是华南早古生代构造-岩浆活动最为强烈的地区之一.对本地区宁潭片麻状花岗质岩体进行详细的锆石LA-ICP-MS U-Pb定年和地球化学研究表明,宁潭岩体岩浆锆石发育较为明显的振荡环带,偶见被包裹的继承锆石核;3个样品的LA-ICP-MS锆石U-Pb年龄分别为430±2 Ma、426±4 Ma、433±2 Ma,指示该岩体侵位于早古生代.宁潭岩体富Si、Al,贫Mg、Ca,CIPW标准矿物中出现刚玉分子,属高钾钙碱性系列过铝质花岗岩类.其稀土元素配分曲线呈明显的海鸥型,显示较强负Eu异常,稀土元素分馏程度较低;亏损高场强元素,富集轻稀土元素及大离子亲石元素;全岩(87Sr/86Sr)i值较高(0.711 30~0.718 42),εNd(t)值较为均一(-8.6~-8.1),对应的TDM2值为1 827~1 848 Ma;岩浆锆石εHf(t)值变化范围较大(-10.9~-2.5),对应的TDM2值主要分布于1 600~2 000 Ma,峰值明显(~1 800 Ma).上述特征表明宁潭岩体属于地壳物质重熔型花岗岩,主要起源于华夏元古宙基底物质的重熔,源区以变质泥岩、变质砂岩为主.宁潭岩体侵位时华南地区陆内造山带处于后造山伸展垮塌阶段,该岩体的侵位与造山后的伸展作用有关.Abstract: Numerous researches have focused on the Early Paleozoic magmatic rocks widely developed in South China, because of their ambiguous petrogenesis. We present here the zircon U-Pb dating and geochemical data for the Ningtan gneissic granitic pluton in the Yunkai terrane, which experienced intensive tectonic-magmatic activity during the Early Paleozoic. Cathodoluminescence imaging reveals that these zircon crystals generally have oscillatory zoning and the inherited zircons are exposed. LA-ICP-MS zircon U-Pb dating of the three samples yielded weighted mean ages of 430±2 Ma, 426±4 Ma and 433±2 Ma, respectively indicating that the pluton was emplaced in the Early Paleozoic. The major element geochemistry is characterized by high content of Si, Al, low content of Mg, Ca and the appearance of corundum in CIPW standard mineral. The Ningtan pluton is composed of high-K calc alkaline peraluminous granitoids. The REE distribution curves show the seagull-shape, with strong depletion in Eu anomaly. They exhibit strongly negative high field strength elements and enrichment of light rare earth elements, large ion lithophile elements. The isotope data are characterized by high initial (87Sr/86Sr)i ratio (0.711 30 to 0.718 42), negative εNd(t) values (-8.6 to -8.1) and negative εHf(t) values (-10.9 to -2.5). The two stage Nd-isotope model ages (TDM2) are 1 827-1 848 Ma. The two stage Hf-isotope model ages (TDM2) mainly distribute in 1 600-2 000 Ma, with the peak value of~1 800 Ma. These geochemical data indicate that the Ningtan pluton belongs to the crust-derived granite category, originated from the remelting of Cathaysia Proterozoic basement, mainly metamorphic argillaceous rocks and sandstone. The emplacement of the Ningtan pluton, was formed in an extensional background, as a result of the intracontinental orogenic collapse of South China in Early Paleozoic.
-
Key words:
- Zircon U-Pb /
- petrogenesis /
- Early Paleozoic /
- intracontinental orogeny /
- Yunkai terrane /
- geochemistry
-
图 6 宁潭岩体SiO2-K2O图解(a)和A/CNK-A/NK图解(b)
底图分别据Peccerillo and Taylor(1976), Maniar and Piccoli(1989).黑色点为本研究结果,灰色点数据陆济璞和蔡贺清(2002)
Fig. 6. Plot of SiO2 vs. K2O (a) and A/CNK vs. A/NK (b) for the Ningtan pluton
图 7 宁潭岩体稀土元素球粒陨石标准化分布型曲线(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石与原始地幔数据均引自Sun and Mcdonough(1989).黑色线条为本研究结果,灰色线条数据陆济璞和蔡贺清(2002)
Fig. 7. Chondrite-normalized rare earth element diagrams and primitive mantle-normalized trace element spidergrams and for the Ningtan pluton
图 8 宁潭岩体(87Sr/86Sr)i-εNd(t)关系(a)和εNd(t)-εHf(t)关系(b)
华南地区显生宙I型和S型花岗岩区域引自Ling et al.(2001);洋中脊玄武岩、洋岛玄武岩和全球沉积物数据区域引自Vervoort et al.(1999);全球下地壳数据区域引自Vervoort et al.(2000)
Fig. 8. Plots of initial (87Sr/86Sr)i vs. εNd(t) (a) and εNd(t) vs. εHf(t) for the Ningtan pluton (b)
图 9 宁潭岩体摩尔CaO/(MgO+FeOt)-摩尔Al2O3/(MgO+FeOt)图解
底图据Alther et al.(2000).图例如图 6
Fig. 9. Molar CaO/(MgO+FeOt)-molar Al2O3/(MgO+FeOt) diagram
图 10 宁潭岩体Rb-(Y+Nb)构造环境判别图
底图据Pearce(1996).ORG.洋中脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;post-COLG.后碰撞花岗岩;UCC.大陆上地壳;BCC.整体大陆地壳;LCC.大陆下地壳.图例如图 6
Fig. 10. The Rb-(Y+Nb) diagram for discriminating the tectonic setting of the Ningtan pluton
表 1 宁潭岩体LA-ICP-MS锆石U-Pb分析结果
Table 1. Zircon U-Pb age analysis results of the Ningtan pluton by LA-ICP-MS
测点 Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ XD115片麻状二长花岗岩 XD115-1 90 314 0.29 0.068 5 0.000 8 0.556 3 0.010 2 0.058 9 0.000 9 427 5 449 8 563 33 95 XD115-2 76 1 587 0.05 0.069 1 0.000 8 0.539 5 0.007 9 0.056 6 0.000 7 431 5 438 6 477 27 98 XD115-3 59 273 0.22 0.069 2 0.000 8 0.557 5 0.010 0 0.058 4 0.000 9 431 5 450 8 546 35 96 XD115-4 88 519 0.17 0.069 7 0.000 8 0.535 7 0.008 0 0.055 8 0.000 7 434 5 436 6 444 29 100 XD115-5 63 245 0.26 0.068 3 0.000 8 0.527 7 0.008 9 0.056 0 0.000 8 426 5 430 7 453 33 99 XD115-6 64 237 0.27 0.068 1 0.000 8 0.565 6 0.009 8 0.060 3 0.001 0 425 5 455 8 613 34 93 XD115-7 70 390 0.18 0.067 9 0.000 8 0.543 4 0.008 3 0.058 0 0.000 8 424 5 441 7 530 30 96 XD115-8 59 335 0.18 0.063 2 0.000 7 0.498 1 0.008 3 0.057 1 0.000 9 395 5 410 7 497 34 96 XD115-9 174 652 0.27 0.064 2 0.000 7 0.514 8 0.007 5 0.058 2 0.000 7 401 4 422 6 535 28 95 XD115-10 148 330 0.45 0.068 1 0.000 8 0.552 4 0.009 8 0.058 8 0.000 9 425 5 447 8 561 32 95 XD115-11 160 1 938 0.08 0.064 1 0.000 7 0.499 5 0.007 1 0.056 5 0.000 7 400 4 411 6 473 27 97 XD115-12 70 379 0.18 0.069 0 0.000 8 0.546 8 0.008 3 0.057 5 0.000 8 430 5 443 7 510 29 97 XD115-13 46 289 0.16 0.068 7 0.000 8 0.537 6 0.009 2 0.056 8 0.000 9 428 5 437 8 483 34 98 XD115-14 179 198 0.90 0.068 7 0.000 8 0.556 5 0.009 8 0.058 8 0.001 0 428 5 449 8 559 36 95 XD115-15 623 570 1.09 0.069 4 0.000 8 0.618 9 0.010 9 0.064 7 0.000 9 432 5 489 9 765 29 88 XD115-16 95 196 0.49 0.070 1 0.000 8 0.583 5 0.011 1 0.060 4 0.001 1 437 5 467 9 617 40 94 XD115-17 52 788 0.07 0.069 3 0.000 8 0.547 4 0.008 1 0.057 3 0.000 7 432 5 443 7 502 28 97 XD115-18 102 287 0.35 0.074 1 0.000 8 0.600 3 0.009 4 0.058 8 0.000 8 461 5 477 7 558 31 97 XD115-19 124 1 543 0.08 0.069 8 0.000 8 0.551 2 0.007 8 0.057 3 0.000 7 435 5 446 6 503 27 98 XD115-20 116 306 0.38 0.069 0 0.000 8 0.577 4 0.009 7 0.060 7 0.000 9 430 5 463 8 627 34 93 XD115-21 108 887 0.12 0.069 8 0.000 8 0.552 7 0.007 9 0.057 4 0.000 7 435 5 447 6 508 28 97 XD115-22 76 102 0.74 0.452 8 0.005 3 10.121 8 0.148 1 0.162 1 0.002 0 2 408 28 2 446 36 2 478 21 97 XD115-23 57 323 0.18 0.072 7 0.000 8 0.587 2 0.009 8 0.058 6 0.000 9 452 5 469 8 552 33 96 XD115-24 75 223 0.34 0.070 2 0.000 8 0.599 4 0.010 3 0.061 9 0.001 0 437 5 477 8 672 35 92 XD115-25 138 1 395 0.10 0.069 4 0.000 8 0.554 9 0.008 0 0.058 0 0.000 7 433 5 448 6 528 27 97 XD115-26 99 1 447 0.07 0.070 4 0.000 8 0.549 0 0.007 8 0.056 6 0.000 7 438 5 444 6 476 27 99 XD115-27 70 1 112 0.06 0.074 4 0.000 8 0.597 2 0.008 5 0.058 2 0.000 7 463 5 475 7 538 27 97 XD116片麻状二长花岗岩 XD116-1 88 503 0.18 0.068 5 0.000 8 0.527 2 0.008 6 0.055 8 0.000 8 427 5 430 7 446 31 99 XD116-2 67 445 0.15 0.069 5 0.000 8 0.553 8 0.009 4 0.057 8 0.000 9 433 5 448 8 522 34 97 XD116-3 85 610 0.14 0.071 3 0.000 8 0.556 5 0.009 7 0.056 6 0.000 9 444 5 449 8 477 36 99 XD116-4 60 110 0.55 0.069 2 0.000 8 0.502 7 0.019 0 0.052 7 0.001 9 431 5 413 16 315 84 104 XD116-5 60 514 0.12 0.070 2 0.000 8 0.544 3 0.008 6 0.056 2 0.000 8 437 5 441 7 462 32 99 XD116-6 108 276 0.39 0.068 3 0.000 7 0.665 0 0.017 1 0.070 6 0.001 8 426 5 518 13 947 51 82 XD116-7 153 444 0.35 0.068 0 0.000 7 0.539 9 0.008 8 0.057 6 0.000 9 424 5 438 7 514 33 97 XD116-8 261 434 0.60 0.069 1 0.000 8 0.542 0 0.008 8 0.056 9 0.000 8 431 5 440 7 488 32 98 XD116-9 76 518 0.15 0.068 9 0.000 8 0.634 0 0.009 9 0.066 7 0.001 0 429 5 499 8 830 30 86 XD116-10 61 588 0.10 0.067 6 0.000 7 0.542 5 0.009 1 0.058 2 0.000 9 422 5 440 7 537 34 96 XD116-11 96 1 022 0.09 0.069 9 0.000 8 0.550 8 0.007 9 0.057 1 0.000 7 436 5 446 6 497 28 98 XD116-12 106 1 030 0.10 0.067 7 0.000 7 0.543 6 0.008 2 0.058 2 0.000 8 423 5 441 7 537 31 96 XD116-13 87 723 0.12 0.068 5 0.000 8 0.552 6 0.008 2 0.058 5 0.000 8 427 5 447 7 549 30 96 XD116-14 107 2 282 0.05 0.069 1 0.000 8 0.558 3 0.007 9 0.058 6 0.000 7 431 5 450 6 551 28 96 XD116-15 186 229 0.81 0.067 9 0.000 7 0.591 0 0.012 7 0.063 1 0.001 3 424 5 472 10 712 44 90 XD116-16 182 323 0.56 0.068 0 0.000 7 0.559 2 0.009 4 0.059 7 0.000 9 424 5 451 8 591 34 94 XD116-17 246 336 0.73 0.067 5 0.000 8 0.538 0 0.012 3 0.057 8 0.001 2 421 5 437 10 522 46 96 XD116-18 145 759 0.19 0.066 5 0.000 7 0.524 1 0.007 7 0.057 2 0.000 8 415 5 428 6 498 29 97 XD116-19 151 1 797 0.08 0.067 3 0.000 7 0.525 2 0.007 5 0.056 6 0.000 7 420 5 429 6 476 28 98 XD116-20 71 505 0.14 0.065 8 0.000 7 0.554 9 0.008 6 0.061 2 0.000 9 411 4 448 7 645 31 92 XD116-21 74 302 0.25 0.067 7 0.000 7 0.653 4 0.013 0.070 0 0.001 3 422 5 511 10 930 39 83 XD116-22 59 232 0.26 0.066 7 0.000 7 0.524 7 0.010 9 0.057 1 0.001 1 416 5 428 9 494 43 97 XD116-23 44 243 0.18 0.066 7 0.000 7 0.599 9 0.012 6 0.065 2 0.001 3 416 5 477 10 781 42 87 XD116-24 70 604 0.12 0.068 7 0.000 8 0.568 1 0.008 8 0.060 0 0.000 9 428 5 457 7 604 31 94 XD116-25 118 620 0.19 0.069 3 0.000 8 0.557 9 0.008 5 0.058 4 0.000 8 432 5 450 7 545 30 96 XD116-26 146 142 1.03 0.143 9 0.001 6 1.519 6 0.027 7 0.076 6 0.001 3 866 10 938 17 1 111 35 92 XD119片麻状二长花岗岩 XD119-1 59 354 0.17 0.069 2 0.000 7 0.531 9 0.009 3 0.055 8 0.000 9 431 5 433 8 443 35 100 XD119-2 66 526 0.12 0.069 3 0.000 7 0.530 0 0.007 9 0.055 5 0.000 7 432 5 432 6 432 30 100 XD119-3 77 380 0.20 0.069 6 0.000 7 0.674 7 0.011 4 0.070 3 0.001 1 434 5 524 9 938 32 83 XD119-4 134 390 0.34 0.069 5 0.000 8 0.539 4 0.008 7 0.056 3 0.000 8 433 5 438 7 463 32 99 XD119-5 230 902 0.25 0.069 9 0.000 7 0.552 1 0.008 1 0.057 3 0.000 7 436 5 446 7 503 29 98 XD119-6 55 275 0.20 0.069 4 0.000 8 0.555 3 0.010 7 0.058 0 0.001 0 433 5 448 9 530 39 96 XD119-7 69 488 0.14 0.068 5 0.000 7 0.534 4 0.008 7 0.056 5 0.000 8 427 5 435 7 474 33 98 XD119-8 106 278 0.38 0.068 9 0.000 8 0.596 4 0.012 4 0.062 8 0.001 2 430 5 475 10 701 41 90 XD119-9 124 711 0.17 0.069 1 0.000 7 0.529 5 0.008 0 0.055 6 0.000 8 431 5 431 7 437 30 100 XD119-10 114 312 0.37 0.069 4 0.000 8 0.591 9 0.010 4 0.061 9 0.001 0 432 5 472 8 670 35 92 XD119-11 96 216 0.44 0.069 6 0.000 8 0.582 6 0.012 9 0.060 7 0.001 3 434 5 466 10 628 45 93 XD119-12 50 388 0.13 0.068 8 0.000 7 0.581 6 0.009 7 0.061 3 0.000 9 429 5 465 8 650 33 92 XD119-13 55 365 0.15 0.068 9 0.000 7 0.597 0.010 2 0.062 8 0.001 0 430 5 475 8 703 35 90 XD119-14 67 345 0.19 0.069 1 0.000 7 0.563 3 0.009 4 0.059 1 0.000 9 431 5 454 8 571 34 95 XD119-15 103 341 0.30 0.069 6 0.000 7 0.648 9 0.011 3 0.067 6 0.001 1 434 5 508 9 856 33 85 XD119-16 182 475 0.38 0.069 5 0.000 8 0.730 8 0.011 4 0.076 2 0.001 1 433 5 557 9 1 101 29 78 XD119-17 85 358 0.24 0.069 5 0.000 7 0.600 2 0.010 4 0.062 7 0.001 0 433 5 477 8 697 34 91 XD119-18 82 420 0.20 0.069 0 0.000 7 0.617 7 0.011 2 0.064 9 0.001 1 430 5 488 9 770 37 88 XD119-19 59 563 0.10 0.069 9 0.000 7 0.535 0 0.008 2 0.055 5 0.000 8 436 5 435 7 433 30 100 XD119-20 73 249 0.29 0.069 8 0.000 8 0.571 9 0.009 9 0.059 4 0.001 0 435 5 459 8 582 36 95 XD119-21 55 276 0.20 0.069 7 0.000 8 0.558 7 0.009 8 0.058 1 0.000 9 434 5 451 8 535 36 96 XD119-22 65 389 0.17 0.070 1 0.000 8 0.580 5 0.009 8 0.060 0 0.000 9 437 5 465 8 605 34 94 XD119-23 89 609 0.15 0.070 6 0.000 8 0.574 2 0.009 2 0.059 0 0.000 8 440 5 461 7 568 31 95 XD119-24 37 132 0.28 0.069 6 0.000 8 0.578 0 0.015 7 0.060 3 0.001 6 434 5 463 13 613 56 94 XD119-25 46 182 0.26 0.069 7 0.000 8 0.569 1 0.011 9 0.059 2 0.001 2 434 5 457 10 575 43 95 XD119-26 126 749 0.17 0.070 2 0.000 8 0.567 5 0.008 3 0.058 6 0.000 8 437 5 456 7 554 29 96 表 2 宁潭岩体锆石Lu-Hf同位素分析结果
Table 2. Zircon Lu-Hf isotopic data of the Ningtan pluton
测点 年龄(Ma) 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ 176Hf/177Hf εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf XD115片麻状二长花岗岩 3 430 0.053 939 0.000 228 0.001 413 0.000 004 0.282 251 0.000 039 0.282 240 -18.4 -9.4 1 429 2 002 -0.96 4 430 0.084 444 0.000 522 0.002 261 0.000 005 0.282 270 0.000 032 0.282 252 -17.8 -9.0 1 435 1 976 -0.93 5 430 0.053 463 0.000 273 0.001 442 0.000 003 0.282 347 0.000 025 0.282 336 -15.0 -6.0 1 294 1 788 -0.96 6 430 0.066 223 0.000 266 0.001 638 0.000 001 0.282 387 0.000 021 0.282 374 -13.6 -4.6 1 244 1 703 -0.95 7 430 0.060 850 0.000 467 0.001 723 0.000 009 0.282 282 0.000 021 0.282 269 -17.3 -8.4 1 396 1 938 -0.95 10 430 0.056 661 0.000 271 0.001 777 0.000 008 0.282 323 0.000 018 0.282 309 -15.9 -6.9 1 340 1 848 -0.95 12 430 0.056 872 0.000 233 0.001 882 0.000 007 0.282 325 0.000 016 0.282 310 -15.8 -6.9 1 341 1 846 -0.94 13 430 0.065 408 0.000 233 0.001 741 0.000 002 0.282 364 0.000 019 0.282 350 -14.4 -5.5 1 280 1 756 -0.95 14 430 0.089 401 0.000 763 0.002 336 0.000 011 0.282 398 0.000 020 0.282 379 -13.2 -4.4 1 252 1 691 -0.93 19 430 0.114 150 0.000 646 0.002 936 0.000 005 0.282 418 0.000 020 0.282 394 -12.5 -3.9 1 244 1 659 -0.91 20 430 0.055 549 0.000 234 0.001 602 0.000 007 0.282 356 0.000 019 0.282 343 -14.7 -5.7 1 287 1 773 -0.95 21 430 0.105 908 0.000 225 0.003 098 0.000 009 0.282 352 0.000 020 0.282 327 -14.9 -6.3 1 347 1 808 -0.91 22 2 478 0.012 840 0.000 102 0.000 351 0.000 001 0.280 866 0.000 022 0.280 850 -67.4 -12.5 3 258 3 741 -0.99 24 430 0.051 931 0.000 328 0.001 396 0.000 005 0.282 395 0.000 019 0.282 384 -13.3 -4.3 1 224 1 681 -0.96 25 430 0.082 134 0.000 529 0.002 271 0.000 007 0.282 371 0.000 018 0.282 352 -14.2 -5.4 1 289 1 751 -0.93 26 430 0.074 011 0.000 788 0.002 015 0.000 021 0.282 306 0.000 015 0.282 289 -16.5 -7.6 1 374 1 891 -0.94 XD116片麻状二长花岗岩 1 426 0.090 592 0.000 430 0.002 550 0.000 019 0.282 365 0.000 025 0.282 344 -14.4 -5.8 1 308 1 772 -0.92 3 426 0.088 711 0.000 297 0.002 339 0.000 001 0.282 414 0.000 023 0.282 395 -12.7 -4.0 1 229 1 659 -0.93 5 426 0.079 828 0.000 158 0.001 987 0.000 006 0.282 292 0.000 021 0.282 276 -17.0 -8.2 1 392 1 923 -0.94 7 426 0.069 911 0.000 124 0.001 829 0.000 004 0.282 243 0.000 024 0.282 228 -18.7 -9.9 1 457 2 030 -0.94 10 426 0.082 954 0.000 305 0.002 465 0.000 007 0.282 317 0.000 018 0.282 297 -16.1 -7.4 1 375 1 877 -0.93 12 426 0.079 391 0.000 204 0.002 372 0.000 001 0.282 388 0.000 019 0.282 369 -13.6 -4.9 1 268 1 717 -0.93 13 426 0.062 828 0.000 131 0.001 868 0.000 006 0.282 307 0.000 015 0.282 292 -16.4 -7.6 1 367 1 888 -0.94 14 426 0.071 541 0.000 327 0.002 283 0.000 012 0.282 302 0.000 015 0.282 283 -16.6 -7.9 1 390 1 907 -0.93 17 426 0.028 967 0.000 198 0.000 994 0.000 010 0.282 244 0.000 021 0.282 236 -18.7 -9.6 1 423 2 012 -0.97 18 426 0.067 351 0.000 377 0.002 007 0.000 008 0.282 357 0.000 018 0.282 341 -14.7 -5.9 1 300 1 779 -0.94 19 426 0.085 447 0.000 076 0.002 569 0.000 006 0.282 374 0.000 018 0.282 354 -14.1 -5.4 1 295 1 751 -0.92 22 426 0.050 115 0.000 113 0.001 400 0.000 004 0.282 337 0.000 021 0.282 325 -15.4 -6.4 1 308 1 814 -0.96 24 426 0.110 760 0.000 780 0.002 641 0.000 006 0.282 356 0.000 025 0.282 335 -14.7 -6.1 1 324 1 793 -0.92 25 426 0.102 138 0.000 206 0.003 343 0.000 009 0.282 401 0.000 022 0.282 375 -13.1 -4.7 1 283 1 704 -0.90 26 866 0.076 960 0.000 569 0.002 191 0.000 008 0.282 391 0.000 017 0.282 356 -13.5 -4.4 1 257 1 468 -0.93 XD119片麻状二长花岗岩 1 433 0.079 435 0.000 308 0.002 407 0.000 003 0.282 436 0.000 021 0.282 417 -11.9 -3.0 1 199 1 606 -0.93 2 433 0.070 819 0.000 200 0.001 919 0.000 001 0.282 377 0.000 022 0.282 361 -14.0 -5.0 1 268 1 730 -0.94 6 433 0.054 695 0.000 511 0.001 532 0.000 012 0.282 265 0.000 018 0.282 252 -17.9 -8.9 1 414 1 972 -0.95 7 433 0.089 013 0.000 088 0.002 422 0.000 006 0.282 335 0.000 019 0.282 315 -15.5 -6.7 1 347 1 833 -0.93 9 433 0.092 948 0.000 404 0.002 662 0.000 007 0.282 359 0.000 017 0.282 337 -14.6 -5.9 1 321 1 783 -0.92 11 433 0.051 088 0.000 153 0.001 522 0.000 002 0.282 314 0.000 017 0.282 302 -16.2 -7.1 1 344 1 862 -0.95 14 433 0.076 518 0.000 960 0.002 097 0.000 006 0.282 348 0.000 026 0.282 331 -15.0 -6.1 1 316 1 797 -0.94 19 433 0.067 505 0.000 345 0.001 859 0.000 005 0.282 307 0.000 017 0.282 292 -16.4 -7.5 1 366 1 884 -0.94 21 433 0.059 126 0.000 520 0.001 571 0.000 008 0.282 445 0.000 017 0.282 432 -11.6 -2.5 1 160 1 572 -0.95 23 433 0.085 994 0.000 566 0.002 281 0.000 023 0.282 361 0.000 019 0.282 343 -14.5 -5.7 1 303 1 771 -0.93 24 433 0.076 930 0.000 667 0.001 923 0.000 024 0.282 327 0.000 024 0.282 311 -15.8 -6.8 1 341 1 842 -0.94 25 433 0.051 971 0.000 231 0.001 353 0.000 003 0.282 206 0.000 019 0.282 195 -20.0 -10.9 1 490 2 099 -0.96 26 433 0.081 162 0.000 473 0.002 203 0.000 005 0.282 382 0.000 017 0.282 364 -13.8 -4.9 1 271 1 724 -0.93 表 3 宁潭岩体主量元素、微量元素分析结果
Table 3. Major and trace element results of the Ningtan pluton
样品 XD115 XD116 XD119 老虎头单元 陈冲单元 亭子单元 马田单元 SiO2 75.95 76.13 75.03 75.19 71.00 75.07 72.80 Al2O3 12.41 12.68 12.90 13.26 15.04 13.49 14.43 Fe2O3 0.16 0.29 0.31 0.54 0.67 0.54 0.73 FeO 2.51 2.27 2.78 1.51 2.34 1.45 2.05 CaO 1.06 0.62 0.70 0.98 1.28 1.17 2.00 MgO 0.24 0.19 0.22 0.13 0.59 0.31 0.79 K2O 4.67 4.45 4.64 4.67 5.46 4.61 3.26 Na2O 2.36 2.63 2.57 2.50 2.48 2.60 2.26 TiO2 0.12 0.09 0.10 0.08 0.25 0.11 0.24 P2O5 0.10 0.13 0.13 0.16 0.13 0.19 0.16 MnO 0.06 0.07 0.08 0.06 0.06 0.05 0.05 灼失 0.05 0.17 0.20 0.63 0.66 0.65 0.56 总量 99.68 99.73 99.65 99.71 99.96 100.24 99.33 La 16.80 8.79 12.60 19.00 33.40 22.05 33.80 Ce 35.6 19.8 28.0 39.7 75.2 44.0 64.2 Pr 4.15 2.33 3.30 3.91 6.47 4.48 6.00 Nd 15.40 8.69 12.20 13.30 22.95 14.20 22.00 Sm 4.22 2.58 3.66 3.91 6.72 4.23 5.22 Eu 0.40 0.20 0.24 0.37 0.73 0.44 1.25 Gd 4.12 2.39 3.50 5.13 7.31 5.13 3.43 Tb 0.93 0.62 0.84 0.93 1.30 0.88 0.65 Dy 6.30 4.74 6.23 6.04 8.78 5.91 4.64 Ho 1.27 0.98 1.28 1.30 1.92 1.29 0.98 Er 3.40 2.80 3.62 3.69 5.52 3.83 2.58 Tm 0.52 0.48 0.62 0.56 0.75 0.57 0.37 Yb 3.29 3.30 4.16 3.26 4.57 3.39 2.29 Lu 0.42 0.42 0.54 0.49 0.71 0.51 0.34 Y 33.10 25.00 32.40 34.70 50.65 36.30 23.60 (La/Yb)N 3.66 1.91 2.17 4.18 5.24 4.67 10.59 δEu 0.29 0.24 0.20 0.25 0.32 0.29 0.85 Cr 27.7 27.2 41.2 5.0 6.5 5.0 16.0 Ni 4.87 4.80 6.75 3.00 5.00 3.00 7.00 Co 2.20 1.74 2.16 2.00 6.50 7.00 6.00 Rb 267.0 360.0 356.0 269.0 278.5 287.0 160.0 Cs 14.3 16.2 14.4 11.8 12.7 15.3 11.8 Sr 40.4 24.4 23.4 49.0 90.5 59.0 160.0 Ba 191 86.4 80.8 280.0 645.0 335.0 870.0 V 6.43 4.20 5.18 16.00 3 105.00 22.00 39.00 Sc 5.02 5.40 5.28 Nb 7.57 8.92 10.10 7.80 12.50 9.30 7.20 Ta 1.64 1.98 2.10 0.88 1.20 0.83 0.71 Zr 84.1 63.2 67.8 Hf 3.58 3.08 3.20 Be 4.36 4.82 4.60 4.60 4.20 6.60 3.90 Ga 13.7 15.4 15.6 U 8.85 6.46 11.40 Th 11.70 9.64 11.40 注:老虎头、陈冲、亭子和马田单元根据陆济璞和蔡贺清(2002). 表 4 宁潭岩体Rb-Sr、Sm-Nd同位素分析结果
Table 4. Rb-Sr and Sm-Nd isotopic data of the Ningtan pluton
样号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd εNd(t) TDM1(Ma) TDM2(Ma) XD115 263.7 38.24 20.15 0.841 83 0.718 42 4.22 16.14 0.158 0 0.512 10 -8.4 2 861 1 848 XD116 346.0 23.64 43.34 0.979 67 0.716 70 2.42 8.55 0.171 6 0.512 15 -8.1 3 594 1 826 XD119 344.0 23.03 44.24 0.984 15 0.711 30 3.26 11.67 0.169 1 0.512 15 -8.1 3 411 1 827 -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2014.Zircon SHRIMP U-Pb Dating and Geochemistry of Caledonian Miao'Ershan Pluton in the Western Part of the Nanling Mountains and Their Tectonic Significance.Acta Petrologica et Mineralogica, 33(3):407-423 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2014.03.001 [3] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [4] Charvet, J., 2013.The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block:An Overview.Journal of Asian Earth Sciences, 74(18):198-209. https://doi.org/10.1016/j.jseaes.2013.02.015 [5] Cheng, S.B., Fu, J.M., Chen, X.Q., et al., 2012.Zircon SHRIMP U-Pb Dating and Geochemical Characteristics of Haiyangshan Monzogranitic Batholith, Northeast Guangxi.Geology and Minetal Resources of South China, 28(2):132-140 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-3701.2012.02.006 [6] Geng, J.Z., Li, H.K., Zhang, J., et al., 2011.Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS.Geological Bulletin of China, 30(10):1508-1513 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2011.10.004 [7] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3/4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [8] Guan, Y.L., Yuan, C., Long, X.P., et al., 2013.Early Paleozoic Intracontinental Orogeny of the Eastern South China Block:Evidence from Ⅰ-Type Granitic Plutons in the SE Yangtze Block.Geotectonica et Metallogenia, 37(4):698-720 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2013.04.016 [9] Guan, Y.L., Yuan, C., Long, X.P., et al., 2016.Genesis of Mafic Enclaves from Early Paleozoic Granites in the South China Block:Evidence from Petrology, Geochemistry and Zircon U-Pb Geochronology.Geotectonica et Metallogenia, 40(1):109-124 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2016.01.010 [10] Guo, L.Z., Shi, Y.S., Lu, H.F., et al., 1989.The Pre-Devonian Tectonic Patterns and Evolution of South China.Journal of Southeast Asian Earth Sciences, 3(1-4):87-93. https://doi.org/10.1016/0743-9547(89)90012-3 [11] Han, K.Y., Xu, K.J., Gao, L.Z., et al., 2017.U-Pb Age and Lu-Hf Isotope of Detrital Zircons from the Meta-Sedimentary Rocks in the Yunkai Region and Their Geological Significance.Acta Petrologica Sinica, 33(9):2939-2956 (in Chinese with English abstract). [12] Huang, G.C., Wang, X.W., Yang, S.Y., et al., 2001.Chronological Evidence for the Existence of the Meso-to Paleoproterozoic Basement in the Yunkai Uprift Area.Regional Geology of China, 20(2):194-199 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2001.02.013 [13] Huang, X.L., Yu, Y., Li, J., et al., 2013.Geochronology and Petrogenesis of the Early Paleozoic Ⅰ-Type Granite in the Taishan Area, South China:Middle-Lower Crustal Melting during Orogenic Collapse.Lithos, 177(3):268-284. https://doi.org/10.1016/j.lithos.2013.07.002 [14] Ji, W.B., Lu, Y.F., Fu, J.M., et al., 2016.LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of Wanyangshan Batholith in Nanling Area, South China, and Tectonic Implications.Geological Review, 62(5):1329-1343 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2016.05.016 [15] Jia, X.H., Wang, X.D., Yang, W.Q., 2017.Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block.Journal of Asian Earth Sciences, 135:80-94. https://doi.org/10.13039/501100001809 [16] Li, L.M., Sun, M., Wang, Y.J., Xing, G., et al., 2011.U-Pb and Hf Isotopic Study of Zircons from Migmatised Amphibolites in the Cathaysia Block:Implications for the Early Paleozoic Peak Tectonothermal Event in Southeastern China.Gondwana Research, 19(1):191-201. https://doi.org/10.1016/j.gr.2010.03.009 [17] Li, S.Z., Li, X.Y., Zhao, S.J., et al., 2016.Global Early Paleozoic Orogens (Ⅲ):Intracontinental Orogen in South China.Journal of Jilin University (Earth Science Edition), 46(4):1005-1025 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.201604103 [18] Li, X.H., 1993.On the Genesis of Caledonian Granitoid Rocks at Wanyangshan and Zhuguangshan, Southeast China:Evidence from Trace Elements and Rare-Earth Elements Geochemistry.Geochimica, 1:35-44 (in Chinese with English abstract). [19] Li, Z.X., Li, X.H., Wartho, J.A., et al., 2010.Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and Pressure-Temperature Conditions.Geological Society of America Bulletin, 122(5-6):772-793. https://doi.org/10.1130/b30021.1 [20] Ling, H.F., Shen, W.Z., Wang, R.C., et al., 2001.Geochemical Characteristics and Genesis of Neoproterozoic Granitoids in the Northwestern Margin of the Yangtze Block.Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):805-819. https://doi.org/10.1016/s1464-1895(01)00129-6 [21] Lu, J.P., Cai, H.Q., 2002.Primarily Discussion on Geological Feature and Structure Environment of Nintan Intrusive in Southeast Guangxi.Guangxi Geology, 15(4):11-16 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-321X.2002.04.003 [22] Luo, Z., 1990.The Geological Features and Tectonic Evolution in Bobai-Cenxi Deep Fault Zone, Guangxi.Geology of Guangxi, 3(1):25-34 (in Chinese with English abstract). [23] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO; 2 [24] Pearce, J., 1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://cn.bing.com/academic/profile?id=74f99961a201b754ad5c70bd9c422827&encoded=0&v=paper_preview&mkt=zh-cn [25] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [26] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a.Early Paleozoic Subduction in Cathaysia (Ⅰ):New Evidence from Nuodong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.065 [27] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b.Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.079 [28] Peng, S.M., Peng, S.B., Shao, J.G., 1995.Geological Features and Tectonic Evolution of Peripheral Faults around Yunkai Massif.Guangdong Geology, 10(2):9-16 (in Chinese with English abstract). [29] Qin, X.F., Pan, Y.M., Li, J., et al., 2006.Zircon SHRIMP U-Pb Geochoronology of the Yunkai Metamorphic Complex in Southeastern Guangxi, China.Geological Bulletin of China, 25(5):553-559. [30] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015.The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt.Acta Geoscientia Sinica, 36(3):282-291 (in Chinese with English abstract). https://doi.org/10.3975/cagsb.2015.03.03 [31] Ren, J.S., 1964.A Preliminary Study on Pre-Devonian Geotectonic Problems of Southeastern China.Acta Geologica Sinica, 44(4):418-431 (in Chinese with Russian abstract). https://www.deepdyve.com/lp/wiley/on-the-geotectonics-of-southern-china-P4E51rgWYD [32] Ren, J.S., 1990.On the Geotectonics of Southern China.Acta Geologica Sinica, 64(4):275-288 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=410d457b3daf899caf769d6d015e26f2&encoded=0&v=paper_preview&mkt=zh-cn [33] Ren, J.S., Li, C., 2016.Cathaysia Old Land and Relevant Problems:Pre-Devonian Tectonics of Southern China.Acta Geologica Sinica, 90(4):607-614 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201604001 [34] Shu, L.S., 2006.Predevonian Tectonic Evolution of South China:from Cathaysian Block to Caledonian Period Folded Orogenic Belt.Geological Journal of China Universities, 12(4):418-431 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1006-7493.2006.04.002 [35] Shu, L.S., Wang, B., Cawood, P.A., et al., 2015.Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China.Tectonics, 34(8):1600-1621. https://doi.org/10.13039/501100001809 [36] Shu, L.S., Yu, J.H., Jia, D., et al., 2008.Early Paleozoic Orogenic Belt in the Eastern Segment of South China.Geologcal Bulletin of China, 27(10):1581-1593 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2008.10.001 [37] Song, M.J., Shu, L.S., Santosh, M., et al., 2015.Late Early Paleozoic and Early Mesozoic Intracontinental Orogeny in the South China Craton:Geochronological and Geochemical Evidence.Lithos, 232:360-374. https://doi.org/10.13039/501100001809 [38] Sun, S.S., Mcdonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [39] Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica Acta, 63(3-4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 [40] Vervoort, J.D., Patchett, P.J., Albarède, F., et al., 2000.Hf-Nd Isotopic Evolution of the Lower Crust.Earth and Planetary Science Letters, 181(1-2):115-129. https://doi.org/10.1016/s0012-821x(00)00170-9 [41] Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., et al., 1999.Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System.Earth and Planetary Science Letters, 168(1-2):79-99. https://doi.org/10.1016/s0012-821x(99)00047-3 [42] Wan, Y.S., Liu, D.Y., Wilde, S.A., et al., 2010.Evolution of the Yunkai Terrane, South China:Evidence from SHRIMP Zircon U-Pb Dating, Geochemistry and Nd Isotope.Journal of Asian Earth Sciences, 37(2):140-153. https://doi.org/10.1016/j.jseaes.2009.08.002 [43] Wang, L., Long, W.G., Zhou, D., 2013.Zircon LA-ICP-MS U-Pb Age of Caledonian Granites from Precambrian Basement in Yunkai Area and Its Geological Implications.Chinese Geology, 40(4):1016-1029 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2013.04.003 [44] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013a.Phanerozoic Tectonics of the South China Block:Key Observations and Controversies.Gondwana Research, 23(4):1273-1305. https://doi.org/10.13039/501100002367 [45] Wang, Y.J., Fan, W.M., Zhao, G.C., et al., 2007.Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block.Gondwana Research, 12(4):404-416. https://doi.org/10.1016/j.gr.2006.10.003 [46] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2011.Kwangsian Crustal Anatexis within the Eastern South China Block:Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains.Lithos, 127(1-2):239-260. https://doi.org/10.13039/501100001809 [47] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2013b.Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence.Lithos, 160-161:37-54. https://doi.org/10.1016/j.lithos.2012.11.004 [48] Wang, Y.J., Zhang, F.F., Fan, W.M., et al., 2010.Tectonic Setting of the South China Block in the Early Paleozoic:Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology.Tectonics, 29(6):1-70. https://doi.org/10.1029/2010tc002750 [49] Wang, Z.Q., Chen, B., Ma, X.H., 2017.Multiple Magmatism in the Luchuan-Bobai Metallogenic Belt of Guangxi and Its Relationship with W-Mo Mineralization.Acta Geologica Sinica, 91(2):421-439 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0001-5717.2017.02.009 [50] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, (6):1217-1238 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2007.06.001 [51] Wu, J.H., Xiang, Y.X., Huang, G.R., et al., 2012.Caledonian Zircon SHRIMP U-Pb Age of Porphyroclastic Lava in Northern Guangdong Province and Its Geological Significance.Geological Journal of China Universities, 18(4):601-608 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1006-7493.2012.04.002 [52] Wu, J., Wang, G.Q., Liang, H.Y., et al., 2014.Indentification of Caledonian Volcanic Rock in the Dabaoshan Ore-Field in Northern Guangdong Province and Its Geological Implication.Acta Petrologica Sinica, 30(4):1145-1154 (in Chinese with English abstract). [53] Xia, Y., Xu, X.S., Zou, H.B., et al., 2014.Early Paleozoic Crust-Mantle Interaction and Lithosphere Delamination in South China Block:Evidence from Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granites.Lithos, 184-187:416-435. https://doi.org/10.1016/j.lithos.2013.11.014 [54] Xu, H., Ni, Z.X., Huang, B.C., et al., 2016.Determination of Early Paleozoic TTG Intrusive Rocks at the Southeast Edge of Dayao Mountain, Guangxi.Geology in China, 43(3):780-796 (in Chinese with English abstract). [55] Xu, K.Q., Liu, Y.J., Yu, S.Y., et al., 1960.The Discovery of Caledonian Granite in Southern Jiangxi Province.Geological Review, 20(3):112-114 (in Chinese). [56] Xu, W.J., Xu, X.S., 2015.Early Paleozoic Intracontinental Felsic Magmatism in the South China Block:Petrogenesis and Geodynamics.Lithos, 234-235:79-92. https://doi.org/10.13039/501100001809 [57] Xu, Y.J., Du, Y.S., 2018.From Periphery Collision to Intraplate Orogeny-Early Paleozoic Orogenesis in the Southeastern Part of South China.Earth Science, 43 (2):333-353 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.582 [58] Yan, C.L., Shu, L.S., Michel, F., et al., 2017.Early Paleozoic Intracontinental Orogeny in the Yunkai Domain, South China Block:New Insights from Field Observations, Zircon U-Pb Geochronological and Geochemical Investigations.Lithos, 268-271:320-333. https://doi.org/10.13039/501100001809 [59] Yang, M.G., Zhu, P.J., Xiong, Q.H., et al., 2012.Framework and Evolution of the Neoproterozoic-Early Paleozoic South-China Rift System.Acta Geologica Sinica, 86(9):1367-1375 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0001-5717.2012.09.004 [60] Yao, W.H., Li, Z.X., Li, W.X., et al., 2012.Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China:Evidence from Ca.435 Ma High-Mg Basalts.Lithos, 154:115-129. https://doi.org/10.1016/j.lithos.2012.06.033 [61] Yi, L.W., Ma, C.Q., Wang, L.X., et al., 2014.Discovery of Late Ordovician Subvolcanic Rocks in South China:Existence of Subduction-Related Dacite from Early Paleozoic.Earth Science, 39(6):637-653 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.061 [62] Yin, F.G., Xu, X.S., Wan, F., et al., 2001.The Sedimentary Response to the Evolutionary Process of Caledonian Foreland Basin System in South China.Acta Geoscientia Sinica, 22(5):425-428 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1006-3021.2001.05.009 [63] Yu, Y., Huang, X.L., He, P.L., et al., 2016.Ⅰ-Type Granitoids Associated with the Early Paleozoic Intracontinental Orogenic Collapse along Pre-Existing Block Boundary in South China.Lithos, 248-251:353-365. https://doi.org/10.13039/501100001809 [64] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [65] Zhang, C.L., Santosh, M., Zhu, Q.B., et al., 2015.The Gondwana Connection of South China:Evidence from Monazite and Zircon Geochronology in the Cathaysia Block.Gondwana Research, 28(3):1137-1151. https://doi.org/10.1016/j.gr.2014.09.007 [66] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013.Tectonics of South China Continent and Its Implications.Science in China (Series D), 56(11):1804-1828. https://doi.org/10.1007/s11430-013-4679-1 [67] Zhang, X.S., Xu, X.S., Xia, Y., et al., 2017.Early Paleozoic Intracontinental Orogeny and Post-Orogenic Extension in the South China Block:Insights from Volcanic Rocks.Journal of Asian Earth Sciences, 141:24-42. https://doi.org/10.13039/501100001809 [68] Zhong, Z.Q., You, Z.D., Zhou, H.W., et al., 1996.The Evolution and Basic Structural Framework of the Basement of the Yunkai Uplift.Regional Geology of China, 56(1):36-43 (in Chinese with English abstract). [69] Zhou, D., Long, W.G., Ke, X.Z., et al., 2017.Petrogenesis of the Tectonic Mélange on the Northern Margin of the Yunkai Terrane, South China.Acta Petrologica Sinica, 33(3):810-830 (in Chinese with English abstract). https://www.researchgate.net/publication/270052695_Petrogenesis_and_chemogenesis_of_oceanic_and_continental_orogens_in_Asia_Current_topics_Part_I_Preface [70] 柏道远, 钟响, 贾朋远, 等, 2014.南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义.岩石矿物学杂志, 33(3):407-423. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502003.htm [71] 程顺波, 付建明, 陈希清, 等, 2012.桂东北海洋山岩体锆石SHRIMP U-Pb定年和地球化学研究.华南地质与矿产, 28(2):132-140. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310005.htm [72] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 [73] 关义立, 袁超, 龙晓平, 等, 2013.华南地块东部早古生代的陆内造山作用:来自I型花岗岩的启示.大地构造与成矿学, 37(4):698-720. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410058003.htm [74] 关义立, 袁超, 龙晓平, 等, 2016.华南早古生代花岗岩中暗色包体的成因:岩石学、地球化学和锆石年代学证据.大地构造与成矿学, 40(1):109-124. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ddgzyckx201601010 [75] 韩坤英, 许可娟, 高林志, 等, 2017.云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义.岩石学报, 33(9):2939-2956. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310005.htm [76] 黄圭成, 汪雄武, 杨世义, 等, 2001.两广云开隆起区存在中——古元古代基底的年代学证据.中国区域地质, 20(2):194-199. http://www.oalib.com/paper/4899171 [77] 季文兵, 路远发, 付建明, 等, 2016.南岭地区万洋山岩体锆石LA-ICP-MS U-Pb年龄和地球化学特征及其构造意义.地质论评, 62(5):1329-1343. http://www.cnki.com.cn/Article/CJFDTotal-KWXB201601014.htm [78] 李三忠, 李玺瑶, 赵淑娟, 等, 2016.全球早古生代造山带(Ⅲ):华南陆内造山.吉林大学学报(地球科学版), 46(4):1005-1025. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604002.htm [79] 李献华, 1993.万洋山-诸广山加里东期花岗岩的形成机制——微量元素和稀土元素地球化学证据.地球化学, 22(1):35-44. http://wiki.cnki.com.cn/HotWord/5152897.htm [80] 陆济璞, 蔡贺清, 2002.桂东南宁潭岩体地质特征及其构造环境初探.广西地质, 15(4):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdz200204003 [81] 罗璋, 1990.广西博白-岑溪断裂带地质特征与构造演化.广西地质, 3(1):25-34. https://www.wenkuxiazai.com/doc/d578ccee28ea81c759f57832-3.html [82] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5):765-778. doi: 10.11764/j.issn.1672-1926.2016.05.765 [83] 彭松柏, 刘松峰, 林木森, 等, 2016.华夏早古生代俯冲作用(Ⅱ):大爽高镁——镁质安山岩新证据.地球科学, 41(6):931-947. http://www.earth-science.net/WebPage/Article.aspx?id=3309 [84] 彭少梅, 彭松柏, 邵建国, 1995.云开地块周边断裂带的地质特征.广东地质, 10(2):9-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200503005.htm [85] 任纪舜, 1964.中国东南部泥盆纪前几个大地构造問題的初步探讨.地质学报, 44(4):418-431. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200001006.htm [86] 任纪舜, 1990.论中国南部的大地构造.地质学报, 64(4):275-288. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201211002.htm [87] 任纪舜, 李崇, 2016.华夏古陆及相关问题——中国南部前泥盆纪大地构造.地质学报, 90(4):607-614. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201604001.htm [88] 舒良树, 2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报, 12(4):418-431. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm [89] 舒良树, 于津海, 贾东, 等, 2008.华南东段早古生代造山带研究.地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 [90] 覃小锋, 潘元明, 李江, 等, 2006.桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学.地质通报, 25(5):553-559. http://mall.cnki.net/magazine/Article/ZQYD200605004.htm [91] 覃小锋, 王宗起, 王涛, 等, 2015.桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约.地球学报, 36(3):282-291. http://www.oalib.com/paper/4973425 [92] 王磊, 龙文国, 周岱, 2013.云开地区加里东期花岗岩锆石U-Pb年龄及其地质意义.中国地质, 40(4):1016-1029. http://mall.cnki.net/magazine/Article/DIZI201304004.htm [93] 王志强, 陈斌, 马星华, 2017.广西陆川-博白成矿带多期次岩浆活动与钨钼成矿作用.地质学报, 91(2):421-439. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201702009 [94] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, (6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm [95] 巫建华, 项媛馨, 黄国荣, 等, 2012.广东北部碎斑熔岩加里东期锆石SHRIMP年龄的首获及其地质意义.高校地质学报, 18(4):601-608. http://www.doc88.com/p-6963978581355.html [96] 伍静, 王广强, 梁华英, 等, 2014.粤北大宝山矿区加里东期火山岩的厘定及其地质意义.岩石学报, 30(4):1145-1154. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140419 [97] 许华, 倪战旭, 黄炳诚, 等, 2016.广西大瑶山东南缘早古生代TTG侵入岩石组合的确定及其区域构造意义.中国地质, 43(3):780-796. doi: 10.12029/gc20160307 [98] 徐克勤, 刘英俊, 俞受鋆, 等, 1960.江西南部加里东期花岗岩的发现.地质论评, 20(3):112-114. http://mall.cnki.net/magazine/article/DZLP196405001.htm [99] 徐亚军, 杜远生, 2018.从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化.地球科学, 43(2):333-353. http://www.earth-science.net/WebPage/Article.aspx?id=3732 [100] 杨明桂, 祝平俊, 熊清华, 等, 2012.新元古代-早古生代华南裂谷系的格局及其演化.地质学报, 86(9):1367-1375. http://www.cqvip.com/QK/95080X/201209/43758732.html [101] 易立文, 马昌前, 王连训, 等, 2014.华南晚奥陶世次火山岩的发现:早古生代与俯冲有关的英安岩?地球科学, 39(6):637-653. http://www.earth-science.net/WebPage/Article.aspx?id=2872 [102] 尹福光, 许效松, 万方, 等, 2001.华南地区加里东期前陆盆地演化过程中的沉积响应.地球学报, 22(5):425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205007.htm [103] 钟增球, 游振东, 周汉文, 等, 1996.两广云开隆起区基底的组成演化及其基本结构格局.中国区域地质, 56(1):36-43. http://www.cqvip.com/QK/95894X/199601/2139673.html [104] 周岱, 龙文国, 柯贤忠, 等, 2017.云开地块北缘构造混杂岩的岩石成因探讨.岩石学报, 33(3):810-830. http://cdmd.cnki.com.cn/Article/CDMD-10697-2007129676.htm