Characteristics and Genetic Analysis of Hydrothermal Sediment of Lower Cretaceous in Hari Depression, Yin'e Basin
-
摘要: 银额盆地哈日凹陷下白垩统具有独特的沉积构造和矿物组成.通过开展岩石矿物和地球化学研究,论证其热水成因,探讨沉积环境和形成模式.研究区下白垩统发育方沸石、菱铁矿和白云石等矿物,富含Fe、Mn和Ba等元素,具有高∑REE、LREE富集和负Eu异常的稀土元素特征.结合Fe vs.Mn vs.(Cu+Co+Ni)×10和Ni vs.Co vs.Zn三角图解,证实下白垩统普遍含有热液成分.微量元素及碳氧同位素分析指示热水沉积岩形成于缺氧、封闭的咸水湖泊环境;氧同位素计算形成温度为43.94~86.08 ℃.研究表明,丰富的断裂系统为湖水下渗和热液喷流提供通道,湖水与热液的对流活动为湖盆持续输入热量和成矿离子.此类湖相热水沉积持续时间长、影响范围广,主要受物源供给和热液性质控制,代表一类特殊的沉积模式.Abstract: The Lower Cretaceous of the Hari sag in the Yin'e basin has a unique sedimentary structure and mineral composition. The cause, sedimentary environment and formation pattern of the hydrothermal sediment of Lower Cretaceous in Hari depression, Yin'e basin are discussed in this study, based on its mineralogy, petrology and geochemistry. The Lower Cretaceous in Hari depression with lots of minerals including ganalcites, siderite and dolomite, is rich in Fe, Mn and Ba, characterized by high content of ∑REE, enrichment of LREE, and the negative Eu anomaly. Combined with Fe vs. Mn vs. (Cu+Co+Ni)×10 and Ni vs. Co vs. Zn ternary diagrams, it is proved that the Lower Cretaceous received long-term hydrothermal input during deposition. Analyses of trace elements, carbon and oxygen isotopes indicate the anoxic, closed, salty and lacustrine depositional environment. The formation temperatures of carbonate calculated by oxygen isotopes range from 43.94 ℃ to 86.08 ℃. It is concluded that complex faulting system provides the access to the lake water infiltrating down and the hydrothermal fluids upwelling. Moreover, convection activities between the hydrothermal fluids and the lake water continually offer heat and mineral elements to the lake. This type of hydrothermal sedimentation is long enduring and wide ranging, controlled by both terrigenous detrital materials supply and hydrothermal fluid property, which represents a special sedimentary model.
-
图 2 哈日凹陷下白垩统主要造岩矿物显微特征
a.苏红图组,粉砂质泥岩,硅质斑状碎屑;b.苏红图组,白云质泥岩,方解石及铁质斑状碎屑;c.苏红图组,白云质泥岩,方解石、硅质及铁质斑状碎屑;d.巴音戈壁组,灰质泥岩,方沸石条带;e.巴音戈壁组,粉砂质泥岩,柱状电气石和斑点状菱铁矿;f.巴音戈壁组,粉砂质泥岩,富高价铁泥片;g.银根组,白云质泥岩,泥晶白云岩与其他矿物交互的纹层;h.银根组,泥质白云岩,石英碎屑;i.银根组,白云质泥岩,粉晶白云石及细晶方解石;Si.硅质矿物;Sd.菱铁矿;Cal.方解石;Anl.方沸石;Tur.电气石;Fe3+.高价铁矿物;Dol.白云石;Org.有机质纹层;Qtz.石英
Fig. 2. Microscopic characteristics of main rock-forming minerals of Lower Cretaceous in Hari depression
图 4 哈日凹陷下白垩统XRD矿物相三角图
Fig. 4. XRD ternary diagram of the identified mineral facies of Lower Cretaceous in Hari depression
图 8 Ni vs. Co vs. Zn(a)和Fe vs. Mn vs. (Cu+Co+Ni)×10(b)热水沉积三角图
HD.热水沉积物,HN.水成沉积物,RH.红海热水沉积,ED.东太平洋热水沉积金属矿物,FHC.Franciscan热水沉积硅质岩;a据Choi and Hariya(1992),b据Crerar et al.(1982)
Fig. 8. Ni vs. Co vs. Zn ternary diagram (a) and Fe vs. Mn vs. (Cu+Co+Ni)×10(b) ternary diagram of hydrothermal sediments
图 10 哈日凹陷下白垩统湖相沉积碳酸盐碳氧同位素组成与沉积环境分析
Fig. 10. Diagram showing carbon and oxygen isotope compositions and analytical results of sedimentary environment of Lower Cretaceous lacustrine sediment in Hari depression
表 1 哈日凹陷下白垩统XRD矿物分析数据(%)
Table 1. XRD mineralogical data of Lower Cretaceous in Hari depression
样号 层位 白云石 方解石 重晶石 方沸石 菱铁矿 黄铁矿 钾长石 钠长石 石英 粘土总量 H01 银根组 30.00 3.00 0.00 0.00 0.00 0.00 5.80 14.00 15.20 32.00 H02 银根组 34.90 5.60 0.70 2.60 0.00 0.10 3.40 29.70 1.40 21.60 H03 银根组 90.40 0.00 0.00 2.20 0.00 0.00 0.50 2.00 2.50 2.40 H04 银根组 27.30 0.00 0.00 0.80 0.00 0.00 1.20 5.20 16.70 48.80 H05 银根组 45.00 2.00 0.00 0.00 5.00 1.00 7.00 20.00 7.00 13.00 H06 银根组 49.00 3.00 0.00 0.00 3.00 2.00 4.00 15.00 8.00 16.00 H11 苏红图组 15.00 1.00 0.00 0.00 0.00 0.00 4.00 40.00 30.00 10.00 H12 苏红图组 17.00 0.00 0.00 0.00 0.00 0.00 0.00 42.00 31.00 10.00 H13 苏红图组 0.00 0.00 0.00 0.00 10.10 0.00 3.10 38.50 31.80 16.50 H14 苏红图组 2.90 0.60 0.00 18.40 0.00 0.00 2.30 13.10 24.70 38.00 H15 苏红图组 9.70 2.30 0.00 15.00 0.00 1.30 4.60 16.70 18.70 31.70 H16 苏红图组 8.00 0.00 0.00 0.00 4.70 0.00 1.80 13.50 33.40 38.60 H17 苏红图组 37.20 1.80 2.30 0.00 2.20 1.10 3.10 23.70 9.80 18.80 H21 巴音戈壁组 0.00 24.00 0.00 0.00 0.00 0.00 0.00 20.00 15.00 41.00 H22 巴音戈壁组 0.00 28.00 0.00 0.00 0.00 0.00 0.00 18.00 10.00 44.00 H23 巴音戈壁组 0.00 12.20 0.00 0.00 23.30 1.90 0.00 10.70 24.10 27.80 H24 巴音戈壁组 0.00 8.00 0.00 0.00 0.00 4.00 4.00 15.00 49.00 20.00 H25 巴音戈壁组 16.90 3.90 2.40 0.00 1.20 0.00 3.00 22.70 14.00 35.90 H26 巴音戈壁组 8.60 0.00 0.00 0.30 5.10 0.00 7.20 17.80 39.90 21.10 H27 巴音戈壁组 13.70 0.00 0.00 0.00 6.70 0.00 0.40 13.40 43.80 22.00 表 2 哈日凹陷下白垩统岩石全岩主量(%)、微量元素(10-6)和碳氧同位素(‰)地球化学分析结果
Table 2. Results of major elements, trace elements, carbon and oxygen isotopes of Lower Cretaceous in Hari depression
样品 银根组 苏红图组 巴音戈壁组 H01 H02 H03 H04 H05 H06 H11 H12 H13 H14 H15 H16 H17 H21 H22 H23 H24 H25 H26 H27 SiO2 45.50 36.60 40.20 43.70 44.60 34.00 43.50 58.20 54.10 65.30 58.90 46.50 42.10 55.80 55.80 45.50 51.80 47.10 45.50 74.80 TiO2 0.70 0.50 0.60 0.70 0.80 0.70 0.70 1.30 0.80 0.90 1.10 0.80 0.60 1.30 0.90 0.70 0.70 0.70 0.60 0.80 Al2O3 15.30 12.10 14.60 15.40 16.60 15.80 16.10 16.60 15.60 12.90 16.90 17.00 15.00 17.40 15.80 16.10 14.50 16.20 16.50 10.60 TFe2O3 5.30 4.00 6.40 7.10 6.70 8.40 6.50 3.80 5.70 4.40 6.60 7.90 6.70 7.50 6.20 7.00 5.10 8.00 7.60 2.90 MnO 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.00 MgO 3.30 5.90 2.50 4.50 5.70 4.70 5.50 1.90 2.80 1.10 1.80 3.60 6.00 2.70 3.10 4.30 3.80 4.40 5.00 1.20 CaO 6.40 12.00 9.90 7.50 4.80 5.20 5.90 2.70 3.60 3.70 1.30 5.30 7.70 2.10 4.00 7.60 7.20 4.50 6.70 1.40 Na2O 1.90 1.90 1.50 4.10 4.00 7.40 4.20 5.40 4.90 4.90 5.40 5.40 4.30 5.00 4.50 3.60 3.90 5.00 3.30 0.90 K2O 2.90 2.10 2.50 3.60 4.20 3.20 4.00 2.80 3.20 1.90 2.70 3.90 3.80 2.80 2.90 4.00 3.10 3.10 3.60 2.20 P2O5 0.10 0.20 0.10 0.10 0.20 0.10 0.10 0.20 0.20 0.10 0.10 0.10 0.10 0.20 0.10 0.10 0.20 0.10 0.10 0.10 LOI 18.50 24.20 21.20 12.00 12.90 14.90 13.40 6.90 8.60 4.60 4.60 9.80 13.80 5.10 6.30 10.70 10.00 9.20 10.90 4.70 TOTAL 100.0 99.5 99.6 98.7 100.5 94.4 100.0 99.8 99.8 99.9 99.5 100.4 100.1 100.0 99.6 99.5 100.3 98.5 99.9 99.5 Li 141.0 88.1 104.0 259.0 89.1 160.0 305.0 223.0 135.0 58.1 97.8 281.7 276.0 107.0 188.0 288.0 55.6 328.0 296.0 109.0 Be 2.85 2.25 2.61 2.8 2.17 1.81 3.55 2.32 2.97 1.51 2.22 2.99 2.53 2.58 2.57 3.04 1.81 3.31 3.07 1.51 Sc 14.50 11.10 14.60 15.30 11.30 10.90 18.40 12.60 15.20 10.54 12.40 17.86 19.80 17.40 14.90 15.10 20.80 15.10 16.50 8.44 V 105.0 83.7 110.0 112.0 90.4 94.6 101.0 127.0 107.0 100.4 133.0 120.8 104.0 153.0 98.0 126.0 86.0 138.0 110.0 44.2 Cr 66.4 50.2 64.6 75.3 59.4 86.3 72.1 70.9 68.6 69.7 96.2 66.9 75.6 98.8 65.0 73.6 38.7 81.7 73.9 28.1 Co 17.90 14.20 20.60 16.20 19.00 14.90 18.50 10.40 15.30 14.50 18.50 21.25 20.10 23.20 14.80 19.90 8.34 21.10 18.20 6.45 Ni 40.80 32.20 46.50 38.50 38.80 46.00 36.20 22.70 30.30 21.87 40.90 41.96 41.20 47.20 35.50 38.60 17.00 47.40 34.20 16.70 Cu 42.20 37.70 47.80 34.10 48.80 34.20 26.70 25.00 8.04 22.75 22.30 44.38 29.30 28.20 28.40 42.80 18.90 38.30 39.50 11.80 Zn 88.70 78.20 82.90 98.70 85.60 75.90 104.00 65.70 84.70 69.17 102.00 119.69 108.00 113.00 147.00 96.00 44.30 108.00 110.00 32.10 Ga 20.50 16.10 20.30 19.60 17.90 23.60 20.40 23.50 19.70 16.36 21.90 22.94 21.10 28.70 22.40 20.70 9.91 21.60 22.00 10.80 Ge 1.44 1.86 2.00 2.13 2.58 1.10 2.41 2.13 2.05 1.84 1.37 2.03 3.64 2.25 1.80 1.96 0.70 1.88 2.39 1.65 Rb 139.0 103.0 121.0 152.0 121.0 128.0 208.0 78.5 101.0 65.7 103.0 144.2 152.0 90.6 109.0 156.0 54.1 125.0 130.0 78.1 Sr 310.0 513.0 824.0 429.0 368.0 454.0 365.0 250.0 235.0 265.2 122.0 330.5 524.0 166.0 258.0 430.0 949.0 316.0 437.0 134.0 Y 26.80 24.20 34.60 26.30 25.80 18.60 14.40 27.10 29.30 28.46 29.00 25.63 28.40 40.60 27.40 36.90 34.90 28.20 23.90 23.10 Zr 136.0 115.0 118.0 139.0 129.0 88.9 162.0 264.0 255.0 234.8 249.0 154.6 143.0 318.0 200.0 150.0 81.0 157.0 162.0 199.0 Nb 11.00 9.16 10.50 10.20 9.34 9.37 11.40 23.00 15.80 10.65 15.40 11.58 9.22 21.10 16.10 10.90 4.57 10.80 9.89 10.00 Cs 25.10 24.50 17.90 62.00 28.60 2.67 84.20 5.66 11.90 5.19 19.10 35.45 33.20 7.90 17.70 25.00 11.40 62.50 36.30 7.72 Ba 483.0 453.0 567.0 366.0 426.0 1 429.0 383.0 495.0 452.0 393.7 405.0 472.1 416.0 515.0 449.0 687.0 791.0 634.0 562.0 339.0 La 30.00 24.30 34.00 27.60 26.20 62.80 26.20 37.20 34.20 28.50 36.20 32.98 28.90 50.30 35.60 30.40 30.40 28.90 22.70 26.50 Ce 63.40 51.40 74.90 58.20 54.50 139.00 50.50 80.50 74.30 56.19 75.30 65.92 64.50 115.00 71.20 73.40 62.30 57.80 44.60 55.30 Pr 7.21 5.93 8.52 6.80 6.18 16.90 5.89 9.14 8.19 6.98 8.42 8.05 7.19 12.10 8.37 8.43 7.46 7.25 5.51 6.05 Nd 28.00 23.40 33.40 26.80 23.90 60.10 21.90 35.70 32.00 27.66 31.40 29.45 28.50 45.70 32.10 34.90 29.50 28.50 21.70 22.70 Sm 5.70 4.79 7.24 5.50 5.00 9.42 4.03 7.00 6.38 5.79 6.10 6.17 6.14 8.54 6.17 7.59 6.82 6.00 4.40 4.50 Eu 1.17 1.01 1.52 1.19 1.09 1.84 0.81 1.40 1.31 1.14 1.23 1.15 1.33 1.67 1.20 1.65 1.56 1.26 0.96 0.85 Gd 5.33 4.62 6.61 5.20 4.65 7.10 3.51 6.18 5.88 5.43 5.23 5.66 5.70 7.61 5.48 7.35 6.65 5.44 4.14 4.43 Tb 0.83 0.71 1.06 0.81 0.73 0.79 0.49 0.89 0.90 1.05 0.80 0.99 0.88 1.16 0.81 1.16 1.08 0.86 0.66 0.69 Dy 4.82 4.17 6.33 4.74 4.39 3.82 2.68 4.99 5.25 5.93 4.90 5.20 5.20 7.01 4.73 6.78 6.37 5.12 4.01 4.12 Ho 0.95 0.82 1.24 0.91 0.89 0.67 0.51 0.96 1.02 1.10 1.02 0.96 1.01 1.43 0.96 1.30 1.23 1.02 0.83 0.82 Er 2.77 2.40 3.49 2.60 2.62 1.85 1.52 2.84 2.99 3.05 3.07 2.70 2.82 4.40 2.99 3.63 3.31 2.84 2.52 2.42 Tm 0.42 0.35 0.51 0.38 0.40 0.27 0.23 0.43 0.45 0.48 0.47 0.42 0.42 0.69 0.48 0.52 0.47 0.41 0.38 0.36 Yb 2.67 2.28 3.25 2.45 2.59 1.69 1.59 2.80 2.95 3.07 3.12 2.76 2.72 4.54 3.23 3.29 2.86 2.54 2.55 2.30 Lu 0.41 0.35 0.48 0.37 0.40 0.25 0.26 0.43 0.46 0.49 0.48 0.45 0.41 0.69 0.50 0.50 0.42 0.38 0.40 0.34 Hf 3.74 3.09 3.25 3.78 3.58 2.59 4.63 6.96 6.92 6.14 6.59 4.27 3.83 8.46 5.32 3.95 1.99 4.38 4.20 5.48 Ta 0.91 0.72 0.91 0.80 0.80 0.71 0.98 1.89 1.34 0.66 1.16 0.69 0.73 1.71 1.18 0.82 0.35 0.78 0.75 0.83 Pb 29.30 21.80 30.30 22.40 25.90 34.30 18.10 33.20 19.00 18.59 31.60 29.90 21.60 24.40 27.00 34.30 16.90 22.90 20.90 15.40 Mn/Sr 2.50 1.51 1.03 1.80 2.22 1.88 2.76 1.55 4.62 2.69 1.91 2.76 2.21 4.66 3.59 2.16 0.88 2.94 2.13 2.32 V/Cr 1.59 1.67 1.70 1.48 1.52 1.10 1.40 1.78 1.57 1.44 1.38 1.81 1.37 1.55 1.51 1.71 2.22 1.69 1.49 1.57 V/(V+Ni) 0.72 0.72 0.70 0.74 0.70 0.67 0.74 0.85 0.78 0.82 0.77 0.74 0.72 0.76 0.73 0.77 0.83 0.74 0.76 0.73 Sr/Ca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 Rb/K 0.01 0.01 0.01 0.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 ∑REE 153.7 126.5 182.6 143.5 133.5 306.7 120.1 190.6 176.3 146.9 177.8 162.9 155.6 260.8 173.9 180.8 160.4 148.2 115.4 131.4 ∑LREE 135.5 110.8 159.7 126.1 116.8 290.3 109.3 171.0 156.4 126.3 158.7 143.7 136.5 233.3 154.7 156.3 138.0 129.6 99.9 115.9 ∑HREE 18.20 15.70 22.97 17.47 16.66 16.44 10.80 19.52 19.90 20.59 19.09 19.13 19.16 27.52 19.17 24.53 22.38 18.61 15.49 15.49 ∑LREE/ 7.45 7.06 6.95 7.22 7.01 17.65 10.12 8.76 7.86 6.13 8.31 7.51 7.12 8.47 8.07 6.37 6.17 6.97 6.45 7.48 ∑HREE La/Yb 7.42 7.04 6.92 7.44 6.68 24.51 10.88 8.77 7.66 6.12 7.67 7.88 7.01 7.32 7.30 6.10 7.00 7.49 5.89 7.61 La/Sm 3.21 3.09 2.87 3.06 3.19 4.06 3.96 3.24 3.27 3.00 3.62 3.26 2.87 3.59 3.52 2.44 2.71 2.93 3.15 3.59 Gb/Yb 1.60 1.63 1.64 1.70 1.45 3.37 1.77 1.77 1.60 1.42 1.35 1.64 1.68 1.35 1.36 1.80 1.86 1.72 1.30 1.55 δEu 0.66 0.66 0.68 0.69 0.70 0.70 0.67 0.66 0.66 0.63 0.67 0.60 0.69 0.64 0.64 0.68 0.72 0.68 0.69 0.59 δCe 1.01 1.00 1.03 0.99 1.00 1.00 0.95 1.02 1.04 0.93 1.01 0.95 1.05 1.09 0.96 1.07 0.97 0.94 0.93 1.02 δ18O -5.39 -4.09 -3.67 -8.72 -7.66 -3.09 -3.16 -9.99 -5.9 -4.36 -5.76 -11.2 -10.41 -10.61 δ13C 6.75 8.57 8.14 3.64 6.56 10.91 7.89 2.89 3.89 6.33 7.60 2.31 1.22 1.47 注:TFe2O3代表全铁,ΣREE代表总稀土含量;LREE/HREE代表轻重稀土比值(LREE为轻REE,HREE为重REE);δEu=(Eu)N/SQRT(Sm×Gd)N;δCe=(Ce)N/SQRT(La×Pr)N,N代表球粒陨石标准化后的比值,稀土元素球粒陨石标准化数据引自参考文献(Sun and McDonough,1989). -
[1] Barrat, J.A., Boulègue, J., Tiercelin, J.J., et al., 2000.Strontium Isotopes and Rare-Earth Element Geochemistry of Hydrothermal Carbonate Deposits from Lake Tanganyika, East Africa.Geochimica et Cosmochimica Acta, 64(2):287-298.https://doi.org/10.1016/s0016-7037(99)00294-x doi: 10.1016/S0016-7037(99)00294-X [2] Bemis, B.E., Spero, H.J., Bijma, J., et al., 1998.Reevaluation of the Oxygen Isotopic Composition of Planktonic Foraminifera:Experimental Results and Revised Paleotemperature Equations.Paleoceanography, 13(2):150-160.https://doi.org/10.1029/98pa00070 doi: 10.1029/98PA00070 [3] Boni, M., Parente, G., Bechstädt, T., et al., 2000.Hydrothermal Dolomites in SW Sardinia (Italy):Evidence for a Widespread Late-Variscan Fluid Flow Event.Sedimentary Geology, 131(3-4):181-200.https://doi.org/10.1016/s0037-0738(99)00131-1 doi: 10.1016/S0037-0738(99)00131-1 [4] Campbell, F.A., Williams, G.D., 1965.Chemical Composition of Shales of Mannville Group (Lower Cretaceous) of Central Alberta, Canada.AAPG Bulletin, 49(1):81-87.https://doi.org/10.1306/a66334ea-16c0-11d7-8645000102c1865d http://cn.bing.com/academic/profile?id=0200320b85503710c2a8adbc80093cac&encoded=0&v=paper_preview&mkt=zh-cn [5] Chen, J.P., Zhang, L.P., Chen, J.J., et al., 2001.New Opinions on Oil and Gas Generation and Exploration in Jiuxi Basin(Ⅲ)-Oil and Gas Migration, Pool Formation and Exploration Target.Petroleum Exploration and Development, 28(3):12-16 (in Chinese with English abstract). [6] Chen, X.P., Gao, J.Y., Chen, D.F., et al., 1992.The Concept of Hydrothermal Sedimentation and Its Petrological Criteria.Acta Sedimentologica Sinica, 10(3):124-132 (in Chinese with English abstract). [7] Choi, J.H., Hariya, Y., 1992.Geochemistry and Depositional Environment of Mn Oxide Deposits in the Tokoro Belt, Northeastern Hokkaido, Japan.Economic Geology, 87(5):1265-1274. https://doi.org/10.2113/gsecongeo.87.5.1265 [8] Cocherie, A., Calvez, J.Y., Oudin-Dunlop, E., 1994.Hydrothermal Activity as Recorded by Red Sea Sediments:Sr-Nd Isotopes and REE Signatures.Marine Geology, 118(3-4):291-302. https://doi.org/10.1016/0025-3227(94)90089-2 [9] Cojan, I., Moreau, M.G., Stott, L.E., 2000.Stable Carbon Isotope Stratigraphy of the Paleogene Pedogenic Series of Southern France as a Basis for Continental-Marine Correlation.Geology, 28(3):259-262.https://doi.org/10.1130/0091-7613(2000)28<259:scisot>2.0.co; 2 doi: 10.1130/0091-7613(2000)28<259:SCISOT>2.0.CO;2 [10] Crerar, D.A., Namson, J., Chyi, M.S., et al., 1982.Manganiferous Cherts of the Franciscan Assemblage; I, General Geology, Ancient and Modern Analogues, and Implications for Hydrothermal Convection at Oceanic Spreading Centers.Economic Geology, 77(3):519-540. https://doi.org/10.2113/gsecongeo.77.3.519 [11] Davies, G.R., Smith, Jr.L.B., 2006.Structurally Controlled Hydrothermal Dolomite Reservoir Facies:An Overview.AAPG Bulletin, 90:1641-1690. https://doi.org/10.1306/05220605164 [12] Gemero-Diaz, H., Miller, C. K., Lewis, R., 2013. sCore: A Mineralogy Based Classification Scheme for Organic Mudstones. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, Paper SPE-166284. https: //doi. org/10. 2118/166284-MS [13] Guo, Q.H., Liu, M.L., Li, J.X., 2017.Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses.Earth Science, 42(2):286-297(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.021 [14] Herron, M.M., 1988.Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data.SEPM Journal of Sedimentary Research, 58:820-829.https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d http://cn.bing.com/academic/profile?id=1f7ee1b565870268835600573c65a1a9&encoded=0&v=paper_preview&mkt=zh-cn [15] Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129.https://doi.org/10.1016/0009-2541(94)90085-x doi: 10.1016/0009-2541(94)90085-X [16] Kaufman, A.J., Knoll, A.H., 1995.Neoproterozoic Variations in the C-Isotopic Composition of Seawater:Stratigraphic and Biogeochemical Implications.Precambrian Research, 73(1-4):27-49. https://doi.org/10.1016/0301-9268(94)00070-8 [17] Keith, M.L., Weber, J.N., 1964.Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils.Geochimica et Cosmochimica Acta, 28(10-11):1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5 [18] Klinkhammer, G.P., Elderfield, H., Edmond, J.M., et al., 1994.Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges.Geochimica et Cosmochimica Acta, 58(23):5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6 [19] Land, L.S., Hoops, G.K., 1973.Sodium in Carbonate Sediments and Rocks:A Possible Index to the Salinity of Diagenetic Solutions.SEPM Journal of Sedimentary Research, 43(3):614-617.https://doi.org/10.1306/74d7281a-2b21-11d7-8648000102c1865d http://cn.bing.com/academic/profile?id=3ed899c80215abc71f1d84c578da193d&encoded=0&v=paper_preview&mkt=zh-cn [20] Li, H., Liu, Y.Q., Zhang, L.X., et al., 2017.Origin and Geological Significance of Sedimentary Exhalative Rocks with "Porphyritic" Structures in the Middle Permian Pingdiquan Formation, Eastern Junggar Basin.Journal of Palaeogeography, 19(2):211-226 (in Chinese with English abstract). [21] Liu, B.J., Zhang, J.Q., 1992.Sedimentary Diagenesis.Science Press, Beijing(in Chinese). [22] Liu, C.L., Zhao, Q.H., Wang, P.X., 2001.Correlation between Carbon and Oxygen Isotopic Ratios of Lacustrine Carbonates and Types of Oil-Producing Paleolakes.Geochimica, 30(4):363-367 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7499a5bfa4203251d7f9e89495b98739&encoded=0&v=paper_preview&mkt=zh-cn [23] Liu, Y.Q., Li, H., Zhu, Y.S., et al., 2010.Permian Lacustrine Eruptive Hydrothermal Dolomites, Santanghu Basin, Xinjiang Province.Acta Sedimentologica Sinica, 28(5):861-867 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=059ad0a4e7e4eaf451637a587c3d0b87&encoded=0&v=paper_preview&mkt=zh-cn [24] Lu, F.Y., An, Z.S., 2010.Climatic and Environmental Significance of Ostracod Abundance and Their Shell Oxygen Isotope from Lake Qinghai Surface Sediments.Marine Geology & Quaternary Geology, 30(5):119-128 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=64c4294d50736354ba125fdfe64268a0&encoded=0&v=paper_preview&mkt=zh-cn [25] Ma, F., Xu, H.X., Gu, J.Y., et al., 2009.Cambrian Dolomite Origin and Reservoir Evolution in East Tarim Basin.Petroleum Exploration and Development, 36(2):144-155 (in Chinese with English abstract). [26] Marchig, V., Gundlach, H., Möller, P., et al., 1982.Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments.Marine Geology, 50(3):241-256.https://doi.org/10.1016/0 025-3227(82)90141-4 doi: 10.1016/0025-3227(82)90141-4 [27] Murray, R.W., 1994.Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications.Sedimentary Geology, 90(3-4):213-232. https://doi.org/10.1016/0037-0738(94)90039-6 [28] O'Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969.Oxygen Isotope Fractionation in Divalent Metal Carbonates.The Journal of Chemical Physics, 51(12):5547-5558. https://doi.org/10.1063/1.1671982 [29] Pan, L.Y., Huang, G.P., Shou, J.F., et al., 2009.A Preliminary Study of Formation Environment of the Neogene Lacustrine Carbonates in Nanyinshan Area of Qaidam Basin:Constrains from Carbon-Oxygen Isotope and Fluid Inclusion Analysis.Bulletin of Mineralogy, Petrology and Geochemistry, 28(1):71-74 (in Chinese with English abstract). https://www.researchgate.net/publication/288150982_A_preliminary_study_of_formation_environment_of_the_neogene_lacustrine_carbonates_in_nanyishan_area_of_qaidam_Basin_Constrains_from_carbon-oxygen_isotope_and_fluid_inclusion_analysis [30] Ren, Z.L., 2000.Comparison of Thermal Evolution History in Sedimentary Basins, North China.Oil & Gas Geology, 21(1):33-37 (in Chinese with English abstract). https://www.researchgate.net/publication/284313257_Comparison_of_thermal_evolution_history_in_sedimentary_basins_North_China [31] Ren, Z.L., Zhao, C.Y., 2001.Recovery and Comparison of Geo-Thermal Gradient for the Late Mesozoic Sedimentary Basins in the Northern Part of China.Petroleum Exploration and Development, 28(6):1-4 (in Chinese with English abstract). [32] Rona, P.A., 1978.Criteria for Recognition of Hydrothermal Mineral Deposits in Oceanic Crust.Economic Geology, 73(2):135-160. https://doi.org/10.2113/gsecongeo.73.2.135 [33] Rona, P.A., Hannington, M.D., Raman, C.V., et al., 1993.Active and Relict Sea-Floor Hydrothermal Mineralization at the TAG Hydrothermal Field, Mid-Atlantic Ridge.Economic Geology, 88(8):1989-2017. https://doi.org/10.2113/gsecongeo.88.8.1989 [34] Rona, P.A., Klinkhammer, G., Nelsen, T.A., et al., 1986.Black Smokers, Massive Sulphides and Vent Biota at the Mid-Atlantic Ridge.Nature, 321(6065):33-37. https://doi.org/10.1038/321033a0 [35] Ross, D.J.K., Bustin, R.M., 2009.Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata:Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin.Chemical Geology, 260(1-2):1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027 [36] Savelli, C., Marani, M., Gamberi, F., 1999.Geochemistry of Metalliferous, Hydrothermal Deposits in the Aeolian Arc (Tyrrhenian Sea).Journal of Volcanology and Geothermal Research, 88(4):305-323.https://doi.org/10.1016/s0377-0273(99)00007-4 doi: 10.1016/S0377-0273(99)00007-4 [37] Stoffers, P., 1990.Active Pitcairn Hotspot Found.Marine Geology, 95(1):51-55.https://doi.org/10.1016/0025-3227(90)90020-k doi: 10.1016/0025-3227(90)90020-K [38] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [39] Talbot, M.R., 1990.A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates.Chemical Geology:Isotope Geoscience Section, 80(4):261-279. https://doi.org/10.1016/0168-9622(90)90009-2 [40] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Public, Oxford, London. https://www.amazon.com/Continental-Crust-Composition-Examination-Geochemical/dp/0632011483 [41] Urey, H.C., Lowenstam, H.A., Epstein, S., et al., 1951.Measurement of Paleotemperatures and Temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States.Geological Society of America Bulletin, 62(4):399-416.https://doi.org/10.1130/0016-7606(1951)62[399:mopato]2.0.co; 2 doi: 10.1130/0016-7606(1951)62[399:MOPATO]2.0.CO;2 [42] Wang, C.L., Liu, C.L., Xu, H.M., et al., 2013.Carbon and Oxygen Isotopes Characteristics of Palaeocene Saline Lake Facies Carbonates in Jiangling Depression and Their Environmental Significance.Acta Geoscientica Sinica, 34(5):567-576 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ca757b934fd5169861ba83e6d9f5a87d&encoded=0&v=paper_preview&mkt=zh-cn [43] Wen, H.G., Zheng, R.C., Qing, H.R., et al., 2014.Primary Dolostone Related to the Cretaceous Lacustrine Hydrothermal Sedimentation in Qingxi Sag, Jiuquan Basin on the Northern Tibetan Plateau.Science China:Earth Sciences, 44(4):591-604 (in Chinese). doi: 10.1007/s11430-013-4654-x [44] Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., et al., 1998.Sulfur Geochemistry of Hydrothermal Waters in Yellowstone National Park:I.The Origin of Thiosulfate in Hot Spring Waters.Geochimica et Cosmochimica Acta, 62(23-24):3729-3743.https://doi.org/10.1016/s0016-7037(98)00269-5 http://cn.bing.com/academic/profile?id=64e7f73d70c6cd5f7aabec07a8856826&encoded=0&v=paper_preview&mkt=zh-cn [45] Yuan, J.Y., Huang, C.G., Cao, Z.L., et al., 2015.Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite and Its Palaeoenvironment Significance:A Case Study of Lower Eocene Ganchaigou Formation in Western Qaidam Basin.Geochimica, 44(3):254-266 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=890841e3401cf8216c72d2ab44e3a71e&encoded=0&v=paper_preview&mkt=zh-cn [46] Zeng, F.M., 2016.Provenance of the Late Quaternary Loess Deposit in the Qinghai Lake Region.Earth Science, 41(1):131-138 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2016.010 [47] Zhang, W.Z., Yang, H., Xie, L.Q., et al., 2010.Lake-Bottom Hydrothermal Activities and Their Influences on the High-Quality Source Rock Development:A Case from Chang 7 Source Rocks in Ordos Basin.Petroleum Exploration and Development, 37(4):424-429 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60043-2 [48] Zheng, R.C., Wang, C.S., Zhu, L.D., et al., 2003.Discovery of the First Example of "White Smoke Type" of Exhalative Rock(Hydrothermal Sedimentary Dolostone) in Jiuxi Basin and Its Significance.Journal of Chengdu University of Technology(Science & Thechnology Edition), 30(1):1-8 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2b68394c2b5a46ffce780412a8e76cef&encoded=0&v=paper_preview&mkt=zh-cn [49] Zhong, D.K., Jiang, Z.C., Guo, Q., et al., 2015a.Discovery of Hydrothermal Dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia, and Its Geologic and Mineral Significance.Oil & Gas Geology, 36(4):587-595 (in Chinese with English abstract). [50] Zhong, D.K., Jiang, Z.C., Guo, Q., et al., 2015b.A Review about Research History, Situation and Prospects of Hydrothermal Sedimentation.Journal of Palaeogeography, 17(3):285-296 (in Chinese with English abstract). [51] Zhu, D.Y., Jin, Z.J., Hu, W.X., 2010.Hydrothermal Recrystallization of the Lower Ordovician Dolomite and Its Significance to Reservoir in Northern Tarim Basin.Science China:Earth Sciences, 40(2):156-170 (in Chinese). http://cn.bing.com/academic/profile?id=e8e05f40f20869068e1585ed2f3a7ea3&encoded=0&v=paper_preview&mkt=zh-cn [52] Zuo, Y.H., Qiu, N.S., Hao, Q.Q., et al., 2015.Geothermal Regime and Source Rock Thermal Evolution in the Chagan Sag, Inner Mongolia, Northern China.Marine and Petroleum Geology, 59:245-267. https://doi.org/10.1016/j.marpetgeo.2014.09.001 [53] 陈建平, 张立平, 陈建军, 等, 2001.酒西盆地油气形成与勘探方向新认识三——油气运移、成藏规律与勘探方向.石油勘探与开发, 28(3):12-16. http://mall.cnki.net/magazine/Article/SKYK200103003.htm [54] 陈先沛, 高计元, 陈多福, 等, 1992.热水沉积作用的概念和几个岩石学标志.沉积学报, 10(3):124-132. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199203014.htm [55] 郭清海, 刘明亮, 李洁祥, 2017.腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因.地球科学, 42(2):286-297.https://doi.org/10.3799/dqkx.2017.021 http://www.earth-science.net/WebPage/Article.aspx?id=3426 [56] 李红, 柳益群, 张丽霞, 等, 2017.准噶尔盆地东部中二叠统平地泉组具"斑状"结构热水喷流沉积岩的成因及地质意义.古地理学报, 19(2):211-226. doi: 10.7605/gdlxb.2017.02.017 [57] 刘宝珺, 张锦泉, 1992.沉积成岩作用.北京:科学出版社. [58] 刘传联, 赵泉鸿, 汪品先, 2001.湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型.地球化学, 30(4):363-367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200104009 [59] 柳益群, 李红, 朱玉双, 等, 2010.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩.沉积学报, 28(5):861-867. http://www.cqvip.com/QK/95994X/201005/35656971.html [60] 卢凤艳, 安芷生, 2010.青海湖表层沉积物介形虫丰度及其壳体氧同位素的气候环境意义.海洋地质与第四纪地质, 30(5):119-128. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201005019.htm [61] 马锋, 许怀先, 顾家裕, 等, 2009.塔东寒武系白云岩成因及储集层演化特征.石油勘探与开发, 36(2):144-155. http://www.cqvip.com/qk/90664X/200902/29841454.html [62] 潘立银, 黄革萍, 寿建峰, 等, 2009.柴达木盆地南翼山地区新近系湖相碳酸盐岩成岩环境初探——碳、氧同位素和流体包裹体证据.矿物岩石地球化学通报, 28(1):71-74. https://www.wenkuxiazai.com/doc/afc5bd4e767f5acfa1c7cdd1-2.html [63] 任战利, 2000.中国北方沉积盆地热演化史的对比.石油与天然气地质, 21(1):33-37. doi: 10.11743/ogg20000108 [64] 任战利, 赵重远, 2001.中生代晚期中国北方沉积盆地地热梯度恢复及对比.石油勘探与开发, 28(6):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200106001 [65] 王春连, 刘成林, 徐海明, 等, 2013.江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义.地球学报, 34(5):567-576. doi: 10.3975/cagsb.2013.05.07 [66] 文华国, 郑荣才, Qing, H.R., 等, 2014.青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩.中国科学:地球科学, 44(4):591-604. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404003.htm [67] 袁剑英, 黄成刚, 曹正林, 等, 2015.咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区始新统下干柴沟组为例.地球化学, 44(3):254-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201503005 [68] 曾方明, 2016.青海湖地区晚第四纪黄土的物质来源.地球科学, 41(1):131-138.https://doi.org/10.3799/dqkx.2016.010 http://www.earth-science.net/WebPage/Article.aspx?id=3226 [69] 张文正, 杨华, 解丽琴, 等, 2010.湖底热水活动及其对优质烃源岩发育的影响——以鄂尔多斯盆地长7烃源岩为例.石油勘探与开发, 37(4):424-429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201004005 [70] 郑荣才, 王成善, 朱利东, 等, 2003.酒西盆地首例湖相"白烟型"喷流岩——热水沉积白云岩的发现及其意义.成都理工大学学报(自然科学版), 30(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10697-1012443502.htm [71] 钟大康, 姜振昌, 郭强, 等, 2015a.内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义.石油与天然气地质, 36(4):587-595. http://mall.cnki.net/magazine/Article/SYYT201504009.htm [72] 钟大康, 姜振昌, 郭强, 等, 2015b.热水沉积作用的研究历史、现状及展望.古地理学报, 17(3):285-296. http://edu.wanfangdata.com.cn/Periodical/Detail/gdlxb201503001 [73] 朱东亚, 金之钧, 胡文瑄, 2010.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义.中国科学:地球科学, 40(2):156-170. http://www.cqvip.com/QK/98491X/201002/32980640.html