• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下深层岩石微纳米孔隙内气体渗流的多尺度模拟与分析

    王沫然 王梓岩

    王沫然, 王梓岩, 2018. 地下深层岩石微纳米孔隙内气体渗流的多尺度模拟与分析. 地球科学, 43(5): 1792-1816. doi: 10.3799/dqkx.2018.431
    引用本文: 王沫然, 王梓岩, 2018. 地下深层岩石微纳米孔隙内气体渗流的多尺度模拟与分析. 地球科学, 43(5): 1792-1816. doi: 10.3799/dqkx.2018.431
    Wang Moran, Wang Ziyan, 2018. Multiscale Simulation and Analysis for Gas Flow in Deep-Seated Micronano Pore. Earth Science, 43(5): 1792-1816. doi: 10.3799/dqkx.2018.431
    Citation: Wang Moran, Wang Ziyan, 2018. Multiscale Simulation and Analysis for Gas Flow in Deep-Seated Micronano Pore. Earth Science, 43(5): 1792-1816. doi: 10.3799/dqkx.2018.431

    地下深层岩石微纳米孔隙内气体渗流的多尺度模拟与分析

    doi: 10.3799/dqkx.2018.431
    基金项目: 

    国家油气重大专项 2017ZX05013001

    国家自然科学基金项目 11761131012

    国家自然科学基金项目 51676107

    详细信息
      作者简介:

      王沫然(1977-), 男, 教授, 主要从事微纳尺度渗流与多尺度模拟研究

    • 中图分类号: P618

    Multiscale Simulation and Analysis for Gas Flow in Deep-Seated Micronano Pore

    • 摘要: 页岩气是未来中国能源结构中的重要组成部分,但中国页岩气埋藏深度大,不能直接照搬美国对浅层页岩气的开采经验,需要对其输运机理有更清晰的认识.介绍了跨尺度混合模拟算法,分析了基于孔隙尺度模拟来研究场尺度的气井衰减曲线分析等问题,揭示了高努森数效应与非理想气体效应之间的耦合机理;介绍了考虑多孔介质弹性形变对渗流影响时计算表观渗透率的特征压力模型,为页岩气勘探开发提供了相关理论支持.

       

    • 图  1  中国页岩气在2012年至2015年的产量

      国家能源局(2012)中国地质调查局(2015)李杏茹等(2016)

      Fig.  1.  The shale gas production in China from 2012 to 2015

      图  2  Barnett页岩中孔隙直径的分布情况

      Fig.  2.  Pore size distribution of Barnett shale

      图  3  页岩在宏观尺度下的各向异性

      a.Barnett页岩中岩心样品的分层结构,深色层的有机质含量和孔隙度都大大高于浅色层(Bhandari and Flemings, 2015);b.Eagle Ford页岩中的微裂缝有着明显的方向性(Sone and Zoback, 2013)

      Fig.  3.  The anisotropy of shale in macroscale

      图  4  Wilcox页岩的扫描电镜图片

      Kwon et al.(2004).有机质孔隙具有很大的长宽比,结构在孔隙尺度下呈现出明显的各向异性

      Fig.  4.  SEM images of Wilcox shale

      图  5  牛蹄塘页岩的扫描电镜图片

      a.拍摄方向平行于地层;b.拍摄方向垂直于地层;在平行和垂直方向页岩结构的差异很大;据Wan et al.(2015)

      Fig.  5.  SEM images of Niutitang shale

      图  6  New Albany页岩中不同矿物组成的分布情况

      Gasaway et al.(2016)

      Fig.  6.  Composition of New Albany shale

      图  7  龙马溪页岩中孔隙的非均匀分布

      Tang et al.(2015)

      Fig.  7.  The heterogeneous distribution of pore of Longmaxi shale

      图  8  甲烷在373 K下的非理想气体效应

      a.状态方程;b.动力粘性系数;数据来自NIST数据库(Younglove and Ely, 1987; Setzmann and Wagner, 1991)

      Fig.  8.  The real gas effect of methane in 373 K

      图  9  甲烷在373 K下,实际的努森数与基于理想气体模型预测的偏差

      Wang et al.(2016)

      Fig.  9.  Deviation between real and predicted Kn based on ideal gas model

      图  10  基于随机生长方法重构的各向异性与非均质性结构示例

      a.各向异性;b.非均质性;上面两图为截面图,其中红色为固体,蓝色为孔隙;下面两图为三维图

      Fig.  10.  Example of the anisotropic and heterogeneity structures based on QSGS method

      图  11  体心立方结构(孔隙度为0.582,边长为320 nm)

      Fig.  11.  The BCC structure with porosity 0.582 and length 320 nm

      图  12  体心立方结构的本征渗透率模拟结果

      a.模型稳定性;b.模拟精度

      Fig.  12.  Simulation results about intrinsic permeability of BCC structure

      图  13  格子玻尔兹曼模拟结果与Beskok等的模型对比

      a.用平均速度归一化后的速度剖面;b.用本征渗透率归一化后的表观渗透率;据Beskok and Karniadakis(1999)

      Fig.  13.  Comparison between LBM simulation and Beskok model

      图  14  孔-场跨尺度混合模拟算法示意

      Fig.  14.  Schematic of the pore-field-iteration (PFI) simulation method

      图  15  不同入口压力下稳态无滑移理想气体流动的压力分布

      Fig.  15.  Pressure distributions of steady state flow with different inlet pressure

      图  16  气体在多孔介质中的稳态流动过程

      气体在进出口压力差的驱动下,有着恒定的质量流率Qm

      Fig.  16.  Schematic for steady state gas flow in porous media

      图  17  甲烷在不同温度T和入口压力p1下,非理想气体效应对流动的影响

      在蓝色区域非理想气体效应促进流动,在红色区域非理想气体效应抑制流动,出口压力固定为1 MPa

      Fig.  17.  The impact of real gas effect on methane flow under different T, p1 condition

      图  18  甲烷在直通道内的流动模拟(a)和理论分析(b)

      a.模拟得到的质量流率;b.理论分析得到的无量纲数;当入口压力为37.9 MPa时,高努森数效应和非理想气体效应对流动的影响相互抵消

      Fig.  18.  Simulation (a) and theoretical analysis (b) of CH4 flow in straight channel

      图  19  二氧化碳在直通道内的流动模拟(a)和理论分析(b)

      a.模拟得到的质量流率;b.理论分析得到的无量纲数;当入口压力为8.3 MPa时,高努森数效应和非理想气体对流动有着相同程度的促进作用

      Fig.  19.  Simulation (a) and theoretical analysis (b) of CO2 flow in straight channel

      图  20  拟稳态流动模拟中基于QSGS法重构的微孔结构

      Fig.  20.  Micro-pore structure reconstructed based on QSGS in quasi-steady state flow simulation

      图  21  气井流入动态曲线

      a.高努森数效应和非理想气体效应对流入动态的影响;b.无滑移理想气体的流入动态曲线归一化后与理论模型的对比

      Fig.  21.  IPR curves with high Kn effect and/or real gas effect (a) and comparison of the simulation to theoretical result (b)

      图  22  衰减曲线分析

      井底压力(a)和质量流率(b)随时间的变化

      Fig.  22.  Decline curves of (a) bottom hole pressure and (b) gas production for pseudo-steady state flow in channel

      图  23  高努森数实际气体的衰减曲线与Arps经验关系式的对比

      Arps(1945)

      Fig.  23.  Comparison of the high Kn real gas flow simulation to Arps hyperbolic relation for the production decline curve

      图  24  气体在多孔介质中的稳态流动过程

      质量流率恒定为Qm,多孔介质两端分别为入口压力p1和出口压力p2,周围为恒定的围压pc

      Fig.  24.  Scheme of the system considered in the model

      图  25  可变形通道内的流动模拟的示意

      Fig.  25.  Scheme to illustrate the flow simulation in a elastic-deformable channel

      图  26  基于二氧化碳在不同应力敏感性的通道内的流动模拟结果

      a.Klinkenberg图;b.修正形变后的渗透率随努森数的变化;根据特征压力模型计算得到的表观渗透率;星形和圆形分别为简化前和简化后的特征压力模型;图b中的虚线为线性趋势线,红点为K0, ref的理论值

      Fig.  26.  Simulation results of different stress sensitivities for CO2 flow

      图  27  基于不同气体在相同应力敏感性的通道内的流动模拟结果

      a.Klinkenberg图;b.修正形变后的渗透率随努森数的变化;根据特征压力模型计算得到的表观渗透率.其中星形和圆形分别为简化前和简化后的特征压力模型.图b中的虚线为线性趋势线,红点为K0, ref的理论值

      Fig.  27.  Simulation results for different kinds of gas flows in the same channel

      图  28  用不同模型计算得到的表观渗透率

      a.煤;b.页岩;图据Klinkenberg(1941)

      Fig.  28.  Apparent permeability predicted by different models

      表  1  4种不同类型的高努森数效应和非理想气体效应的耦合

      Table  1.   Four kinds of couplings of high Kn effect and real gas effect

      非理想气体效应抑制流动 非理想气体效应促进流动
      非理想气体效应占主导 γ∈(-∞, -1) γ∈(1, +∞)
      高努森数效应占主导 γ∈(-1, 0) γ∈(0, 1)
      下载: 导出CSV

      表  2  直通道内气体流动模拟的物理条件

      Table  2.   Physics conditions of gas flow simulation in straight channel

      模拟条件 气体种类 通道高度l(nm) 通道长度L(m) 出口压力p2(MPa) 入口压力p1(MPa) 温度T(K)
      实例1 甲烷 10 10 10 14, 18, 22, …, 50 373
      实例2 二氧化碳 50 10 1 2, 3, 4, …, 10 323
      下载: 导出CSV

      表  3  气井流入动态中的物理条件

      Table  3.   Physical conditions of the gas well inflow

      温度
      T(K)
      储层压力
      pr(MPa)
      井底压力
      pw(MPa)
      气场长度
      L(m)
      373 40 5, 10, 20, 30 15
      下载: 导出CSV

      表  4  衰减曲线分析中的物理条件

      Table  4.   The physical condition of the attenuation curve analysis

      温度
      T(K)
      储层压力
      pr(MPa)
      井底压力
      pw(MPa)
      气场长度
      L(m)
      373 40, 35, 30, 25, 20 30, 25, 20, 15, 10 15
      下载: 导出CSV

      表  5  可变形直通道内流动模拟的物理条件

      Table  5.   Physics conditions for flow simulation in the elastic-deformable channel

      气体类型 通道的应力敏感性α
      (MPa-1)
      通道参考高度
      lref(nm)
      通道长度
      L(m)
      入口压力
      p1(MPa)
      出口压力
      p2(MPa)
      温度
      T(K)
      甲烷、二氧化碳、乙烷 0, 0.025, 0.05, 0.1 100 0.05 0.5~10.0 0.1 318
      下载: 导出CSV

      表  6  岩心样本测量的实验条件

      Table  6.   Parameters for the experimental conditions of the core samples

      实验条件 岩心类型 气体种类 岩心长度
      L(m)
      岩心横截面积
      S(m2)
      围压
      pc(MPa)
      出口压力
      p1(MPa)
      温度
      T(K)
      岩心1 甲烷 0.033 3 0.001 155 15 0.15 298
      岩心2 页岩 二氧化碳 0.013 0 0.001 155 40 0.10 318
      下载: 导出CSV

      表  7  气体渗透率计算模型

      Table  7.   Models for the gas permeability prediction

      模型名称 理想气体模型 粘性近似模型 粘性及压缩因子近似模型 特征压力模型
      代表文献 Klinkenberg(1941) Gensterblum et al.(2014) Rushing et al.(2004) 本工作
      表观渗透
      率表达式
      $K(\mathit{\bar p}) = \frac{{2{\mu ^{{\rm{id}}}}L{Q_m}}}{{p_1^2 - p_2^2}}{R_g}T$ $K(\mathit{\bar p}) = \frac{{2\mu {\rm{(}}\mathit{\bar p}{\rm{)}}L{Q_m}}}{{p_1^2 - p_2^2}}{R_g}T$ $K(\mathit{\bar p}) = \frac{{2\mu {\rm{(}}\mathit{\bar p}{\rm{)}}L{Q_m}}}{{p_1^2 - p_2^2}}Z(\mathit{\bar p}, \mathit{T}){R_g}T$ $K(\mathit{p}_{{\rm{char}}}^{{\rm{smp}}}) = \frac{{{Q_m}Lv(\mathit{p}_{{\rm{char}}}^{{\rm{smp}}})}}{{{p_1} - {p_2}}}$
      下载: 导出CSV
    • [1] Albertoni, S., Cercignani, C., Gotusso, L., 1963.Numerical Evaluation of the Slip Coefficient.Physics of Fluids, 6(7):993-996. doi: 10.1063/1.1706857
      [2] Al-Hussainy, R., Jr, H.J.R., 1966.Application of Real Gas Flow Theory to Well Testing and Deliverability Forecasting.Journal of Petroleum Technology, 18(5):637-642. doi: 10.2118/1243-B-PA
      [3] Al-Wardy, W., Zimmerman, R.W., 2004.Effective Stress Law for the Permeability of Clay-Rich Sandstones.Journal of Geophysical Research Atmospheres, 109(B4):229-245.
      [4] Ansumali, S., Karlin, I.V., 2002.Kinetic Boundary Conditions in the Lattice Boltzmann Method.Physical Review E Statistical Nonlinear & Soft Matter Physics, 66(2 Pt 2):026311.
      [5] Arkilic, E.B., Schmidt, M.A., Breuer, K.S., 1997.Gaseous Slip Flow in Long Microchannels.Journal of Microelectromechanical Systems, 6(2):167-178. doi: 10.1109/84.585795
      [6] Arps, J.J., 1945.Anallysis of Decline Curves.Transactions of the AIME, 160:228-247. doi: 10.2118/945228-G
      [7] Begg, S.H., Chang, D.M., 1985.A Simple Statistical Mehtod for Calculating the Effective Vertical Permeability of a Reservoir Containing Discontinuous Shales:SPE, 1985/1/1/.Society of Petroleum Engineers. https://www.onepetro.org/download/conference-paper/SPE-14271-MS?id=conference-paper%2FSPE-14271-MS
      [8] Beskok, A., Karniadakis, G.E., 1999.Report:A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales.Microscale Thermophysical Engineering, 3(1):43-77. doi: 10.1080/108939599199864
      [9] Bhandari, A.R., Flemings, P.B., 2015.Anisotropy and Stress Dependence of Permeability in the Barnett Shale.Transport in Porous Media, 108(2):393-411. doi: 10.1007/s11242-015-0482-0
      [10] Bird, G.A., 1983.Definition of Mean Free Path for Real Gases.Physics of Fluids, 26(11):3222-3223. doi: 10.1063/1.864095
      [11] Burton, D., Wood, L., 2013.Geologically-Based Permeability Anisotropy Estimates for Tidally-Influenced Reservoirs Using Quantitative Shale Data.Petroleum Geoscience, 19(1):3-20. doi: 10.1144/petgeo2011-004
      [12] Cercignani, C., 1966.Cylindrical Poiseuille Flow of a Rarefied Gas.Physics of Fluids, 9(1):40-44. doi: 10.1063/1.1761530
      [13] Cercignani, C., Daneri, A., 1963.Flow of a Rarefied Gas between Two Parallel Plates.Journal of Applied Physics, 34(12):3509-3513. doi: 10.1063/1.1729249
      [14] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Unit.AAPG Bulletin, 96(6):1099-1119. doi: 10.1306/10171111052
      [15] Chen, D., Pan, Z., Ye, Z., et al., 2016.A Unified Permeability and Effective Stress Relationship for Porous and Fractured Reservoir Rocks.Journal of Natural Gas Science & Engineering, 29:401-412. https://www.sciencedirect.com/science/article/pii/S1875510016300336
      [16] Chen, G., 2005.Nanoscale Energy Transport and Conversion:A Parallel Treatment of Electrons, Molecules, Phonons, and Photons.Oxford University Press, Oxford. https://searchworks.stanford.edu/view/5792603
      [17] Chen, L., Fang, W., Kang, Q., et al., 2015a.Generalized Lattice Boltzmann Model for Flow through Tight Porous Media with Klinkenberg's Effect.Physical Review E Statistical Nonlinear & Soft Matter Physics, 91(3):033004. https://www.ncbi.nlm.nih.gov/pubmed/25871199
      [18] Chen, L., Zhang, L., Kang, Q., et al., 2015b.Nanoscale Simulation of Shale Transport Properties Using the Lattice Boltzmann Method:Permeability and Diffusivity.Scientific Reports, 5:8089. doi: 10.1038/srep08089
      [19] Chen, S., Doolen, G.D., 1998.Lattice Boltzmann Method for Fluid Flows.Annual Review of Fluid Mechanics, 30(1):329-364. doi: 10.1146/annurev.fluid.30.1.329
      [20] China Geological Survey, 2015. China Shale Gas Resource Survey Report 2014 (in Chinese).
      [21] Civan, F., 2010.Effective Correlation of Apparent Gas Permeability in Tight Porous Media.Transport in Porous Media, 82(2):375-384. doi: 10.1007/s11242-009-9432-z
      [22] David, C., Wong, T.F., Zhu, W., et al., 1994.Laboratory Measurement of Compaction-Induced Permeability Change in Porous Rocks:Implications for the Generation and Maintenance of Pore Pressure Excess in the Crust.Pure & Applied Geophysics, 143(1-3):425-456. doi: 10.1007%2FBF00874337
      [23] D'Humières, D., Ginzburg, I., Krafczyk, M., et al., 2002.Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions.Philosophical Transactions of thr Royal Soecity of London Series A-Mathematical Pysical and Engineering Sociences, 360(1792):437-451. doi: 10.1098/rsta.2001.0955
      [24] Dong, D.Z., Zou, C.N., Dai, J.X., et al., 2016.Suggestions on the Development Strategy of Shale Gas in China.Natural Gas Geoscience, 27(3):397-406 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200704003.htm
      [25] Dong, J.J., Hsu, J.Y., Wu, W., et al., 2010.Stress-Dependence of the Permeability and Porosity of Sandstone and Shale from TCDP Hole-A.International Journal of Rock Mechanics and Mining Sciences, 47(7):1141-1157. doi: 10.1016/j.ijrmms.2010.06.019
      [26] Evans, J.P., Forster, C.B., Goddard, J.V., 1997.Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones.Journal of Structural Geology, 1393-1404. https://www.sciencedirect.com/science/article/pii/S0191814197000576
      [27] Fathi, E., Tinni, A., Akkutlu, I.Y., 2012.Correction to Klinkenberg Slip Theory for Gas Flow in Nano-Capillaries.International Journal of Coal Geology, 103(23):51-59. https://www.sciencedirect.com/science/article/pii/S0166516212001681#!
      [28] Fenghour, A., Wakeham, W.A., Vesovic, V., 1998.The Viscosity of Carbon Dioxide.Journal of Physical & Chemical Reference Data, 27(1):31-44. doi: 10.1063/1.556013?journalCode=jpr
      [29] Fetkovich, M.J., 1980.Decline Curve Analysis Using Type Curves.Journal of Petroleum Technology, 32:1065-1067. doi: 10.2118/4629-PA
      [30] Firouzi, M., Alnoaimi, K., Kovscek, A., et al., 2014.Klinkenberg Effect on Predicting and Measuring Helium Permeability in Gas Shales.International Journal of Coal Geology, 123(2):62-68. http://earth.wanfangdata.com.cn/Journal/Paper/SDOS000011389643
      [31] Gasaway, C., Mastalerz, M., Krause, F., et al., 2016.Applicability of Micro-FTIR in Detecting Shale Heterogeneity.Journal of Microscopy, 265(1):60-72. http://www.searchanddiscovery.com/documents/2017/51360mastalerz/ndx_mastalerz.pdf
      [32] Gensterblum, Y., Ghanizadeh, A., Krooss, B.M., 2014.Gas Permeability Measurements on Australian Subbituminous Coals:Fluid Dynamic and Poroelastic Aspects.Journal of Natural Gas Science & Engineering, 19(7):202-214. https://core.ac.uk/display/36615310
      [33] Ghabezloo, S., Sulem, J., Guédon, S., et al., 2009.Effective Stress Law for the Permeability of a Limestone.International Journal of Rock Mechanics & Mining Sciences, 46(2):297-306. https://www.sciencedirect.com/science/article/pii/S1365160908001093#!
      [34] Ghanizadeh, A., Amann-Hildenbrand, A., Gasparik, M., et al., 2014a.Experimental Study of Fluid Transport Processes in the Matrix System of the European Organic-Rich Shales:Ⅱ.Posidonia Shale (Lower Toarcian, Northern Germany).International Journal of Coal Geology, 123(2):20-33. https://www.sciencedirect.com/science/article/pii/S0264817213002651
      [35] Ghanizadeh, A., Gasparik, M., Amann-Hildenbrand, A., et al., 2014b.Experimental Study of Fluid Transport Processes in the Matrix System of the European Organic-Rich Shales:I.Scandinavian Alum Shale.Marine & Petroleum Geology, 51(51):79-99. https://www.sciencedirect.com/science/article/pii/S0264817213002651
      [36] Gu, X, Cole, D.R., Rother, G., et al., 2015.Pores in Marcellus Shale:A Neutron Scattering and FIB-SEM Study.Energy & Fuels, 29(3):1295-1308. https://www.osti.gov/pages/servlets/purl/1265336
      [37] Guo, Z. L., Zheng, C. G., 2009, Theory and Applications of Lattice Boltzmann Method, Science Press, Beijing, 203 (in Chinese).
      [38] Guo, Z.L., Zheng, C.G., Shi, B.C., 2002.Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method.Chinese Physics, 11(4):366-374. doi: 10.1088/1009-1963/11/4/310
      [39] He, X.Y., Luo, L.S., 1997.Theory of the Lattice Boltzmann Equation:From Boltzmann Equation to Lattice Boltzmann Equation.Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 56(6):6811-6817. https://www.researchgate.net/profile/Li-Shi_Luo/publication/230691851_Theory_of_the_lattice_Boltzmann_method_From_the_Boltzmann_equation_to_the_lattice_Boltzmann_equation/links/09e4150b0df14ab2a8000000.pdf
      [40] Higuera, F.J., Succi, S., Benzi, R., 2007.Lattice Gas Dynamics with Enhanced Collisions.Europhysics Letters, 9(4):345. http://cat.inist.fr/?aModele=afficheN&cpsidt=19783234
      [41] Jasinge, D., Ranjith, P.G., Choi, S.K., 2011.Effects of Effective Stress Changes on Permeability of Latrobe Valley Brown Coal.Fuel, 90(3):1292-1300. doi: 10.1016/j.fuel.2010.10.053
      [42] Kalarakis, A.N., Michalis, V.K., Skouras, E.D., et al., 2012.Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media.Transport in Porous Media, 94(1):385-398. doi: 10.1007/s11242-012-0010-4
      [43] Kaluarachchi, J.J., 1995.Analytical Solution to Two-Dimensional Axisymmetric Gas Flow with Klinkenberg Effect.Journal of Environmental Engineering, 121(5):417-420. doi: 10.1061/(ASCE)0733-9372(1995)121:5(417)
      [44] Karniadakis, G., Beskok, A., Aluru, N., 2005.Microflows and Nanoflows-Fundaamantals and Simulation.Springer, New York. http://www.worldcat.org/title/microflows-and-nanoflows-fundamentals-and-simulation/oclc/209819966
      [45] Klinkenberg, L.J., 1941.The Permeability of Porous Media to Liquids and Gases.American Petroleum Institute, 200-213. http://fac.ksu.edu.sa/sites/default/files/klinkenbergspaper-1941.pdf
      [46] Kong, X.Y., 2010.Advanced Mechanics of Fluids in Porous Media.Press of University of Science and Technology of China, Hefei, 31 (in Chinese). http://www.upc.edu/master/guiadocent/ing/250954/advanced-fluid-mechanics.pdf
      [47] Kwon, O., Kronenberg, A.K., Gangi, A.F., et al., 2004.Permeability of Illite-bearing Shale:1.Anisotropy and Effects of Clay Content and Loading.Journal of Geophysical Research Atmospheres, 109(10):67-85. http://cat.inist.fr/?aModele=afficheN&cpsidt=16289401
      [48] Lallemand, P., Luo, L.S., 2000.Theory of the Lattice Boltzmann Method:Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability.Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 61(6 Pt A):6546. http://www.academia.edu/10772800/Theory_of_the_lattice_Boltzmann_method_Dispersion_dissipation_isotropy_Galilean_invariance_and_stability
      [49] Lasseux, D., Jolly, P., Jannot, Y., et al., 2011.Permeability Measurement of Graphite Compression Packings.Journal of Pressure Vessel Technology, 133(133):041401. http://www.thermique55.com/principal/Publis/2011-JPVT.pdf
      [50] Li, C., Xu, P., Qiu, S., et al., 2016.The Gas Effective Permeability of Porous Media with Klinkenberg Effect.Journal of Natural Gas Science & Engineering, 34:534-540. doi: 10.1023%2FA%3A1006535211684
      [51] Li, S. L., 2008. Nature Gas Engineering, Petroleum Industry Press, Beijing (in Chinese).
      [52] Li, X.R., Zhao, Q.B., Lan, J.Z., 2016.Progress and Issues of the Shale Gas Exploration and Development in China.China Mining Magazine, 25(5):6-10 (in Chinese with English abstract). doi: 10.1111/1755-6724.12303_25
      [53] Li, Y., Tang, D., Xu, H., et al., 2014.Experimental Research on Coal Permeability:The Roles of Effective Stress and Gas Slippage.Journal of Natural Gas Science & Engineering, 21:481-488. https://www.sciencedirect.com/science/article/pii/S1875510014002649
      [54] Lin, J.F., Hu, H.Y., Li, Q., 2017.Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Eastern Sichuan, China.Earth Science, 42(7):1124-1133 (in Chinese with English abstract). http://www.mdpi.com/2073-4441/8/12/552/xml
      [55] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861. doi: 10.2110/jsr.2009.092
      [56] Lu, W.G., Huang, X.Z., 2016.US Shale Gas Revolution and China's Countermeasures.Journal of Southwest Petroleum University (Social Sciences Edition), 18(3):34-39 (in Chinese with English abstract). doi: 10.1080/14693062.2014.842857
      [57] Luo, Z.X., 2012.Shale Gas Exploration and Development in USA Today and Influence.Sino-Global Energy, 17(1):23-28 (in Chinese with English abstract). https://scholar.smu.edu/weil_ura/5/
      [58] Ma, J., Sanchez, J.P., Wu, K., et al., 2014.A Pore Network Model for Simulating Non-Ideal Gas Flow in Micro-and Nano-Porous Materials.Fuel, 116(1):498-508. https://www.sciencedirect.com/science/article/pii/S0016236113007692
      [59] Mccarthy, J.F., 1991.Analytical Models of the Effective Permeability of Sand-Shale Reservoirs.Geophysical Journal International, 105(2):513-527. doi: 10.1111/gji.1991.105.issue-2
      [60] Mehmani, A., Prodanovi, M., Javadpour, F., 2013.Multiscale, Multiphysics Network Modeling of Shale Matrix Gas Flows.Transport in Porous Media, 99(2):377-390. doi: 10.1007/s11242-013-0191-5
      [61] Michalis, V.K., Kalarakis, A.N., Skouras, E.D., et al., 2010.Rarefaction Effects on Gas Viscosity in the Knudsen Transition Regime.Microfluidics & Nanofluidics, 9(4-5):847-853. https://www.researchgate.net/profile/Eugene_Skouras/publication/226124671_Rarefaction_effects_on_gas_viscosity_in_the_Knudsen_transition_regime/links/004635167d54313753000000.pdf?origin=publication_detail
      [62] National Energy Adminstration, 2012. Shale Gas Development Plan (2011-2015) (in Chinses).
      [63] National Energy Adminstration, 2016. Shale Gas Development Plan (2016-2020) (in Chinses).
      [64] Pan, C, Luo, L.S., Miller, C.T., 2006.An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation.Computers & Fluids, 35(8-9):898-909. https://www.sciencedirect.com/science/article/pii/S0045793005001520#!
      [65] Ren, J., Guo, P., Peng, S., et al., 2016.Investigation on Permeability of Shale Matrix Using the Lattice Boltzmann Method.Journal of Natural Gas Science & Engineering, 29:169-175. https://www.sciencedirect.com/science/article/pii/S1875510016300117#!
      [66] Rushing, J.A., Newsham, K.E., Lasswell, P.M., et al., 2004.Klinkenerg-Corrected Permeability Measurements in Tight Gas Sands:Steady-State versus Unsteady-State Techniques:SPE, 2004/1/1.Society of Petroleum Engineers. http://www.academia.edu/8478135/Gas_darcy_klinkenberg_and_forcheimmer
      [67] Sangani, A.S., Acrivos, A., 1982.Slow Flow through a Periodic Array of Spheres.International Journal of Multiphase Flow, 8(4):343-360. doi: 10.1016/0301-9322(82)90047-7
      [68] Setzmann, U., Wagner, W., 1991.A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa.Journal of Physical & Chemical Reference Data, 20(6):1061-1155. http://cat.inist.fr/?aModele=afficheN&cpsidt=5569231
      [69] Shi, J.Q., Durucan, S., 2016.Near-Exponential Relationship between Effective Stress and Permeability of Porous Rocks Revealed in Gangi's Phenomenological Models and Application to Gas Shales.International Journal of Coal Geology, 154-155:111-122. doi: 10.1016/j.coal.2015.12.014
      [70] Shi, Y., Wang, C.Y., 1986.Pore Pressure Generation in Sedimentary Basins:Overloading versus Aquathermal.Journal of Geophysical Research Atmospheres, 91(B2):2153-2162. doi: 10.1029/JB091iB02p02153
      [71] Shmonov, V.M., Mal'Kovskii, V.I., Zharikov, A.V., 2011.A Technique for Measuring Permeability of Samples of Anisotropic Rocks for Water and Gas.Instruments & Experimental Techniques, 54(5):722-728. doi: 10.1134%2FS002044121105006X
      [72] Sone, H., Zoback, M.D., 2013.Mechanical Properties of Shale-Gas Reservoir Rocks-Part 1:Static and Dynamic Elastic Properties and Anisotropy.Geophysics, 78(5):D378-D389. doi: 10.1190/geo2013-0050.1?journalCode=gpysa7
      [73] Span, R., Wagner, W., 1996.A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1 100 K at Pressures up to 800 MPa.Journal of Physical & Chemical Reference Data, 25(6):1509-1596. http://www.oalib.com/references/15984045
      [74] Succi, S., 2001.The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.Clarendon Press, Oxford, 110. http://www.scholarpedia.org/article/Lattice_Boltzmann_Method
      [75] Sun, J.M., Jiang, L.M., Liu, X.F., et al., 2012.Log Application and Prospect of Digital Core Technology.Well Logging Technology, 36(1):1-7 (in Chinese with English abstract).
      [76] Tanikawa, W., Shimamoto, T., 2009.Comparison of Klinkenberg-Corrected Gas Permeability and Water Permeability in Sedimentary Rocks.International Journal of Rock Mechanics & Mining Sciences, 46(2):229-238. https://ci.nii.ac.jp/naid/120001092489
      [77] Tang, X., Jiang, Z., Li, Z., et al., 2015.The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China.Journal of Natural Gas Science & Engineering, 23:464-473. doi: 10.1007%2Fs11707-016-0617-y
      [78] Tang, Y., Tang, X., Wang, G.Y., et al., 2011.Summary of Hydraulic Fracturing Technology in Shale Gas Development.Geological Bulletin of China, 30(2):393-399 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1027.htm
      [79] Villazon, M., German, G., Sigal, R.F., et al., 2011.Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution Formation Factor and Non-Darcy Flow Mechanisms:SPE, 2011/1/1/.Society of Petroleum Engineers. https://www.onepetro.org/conference-paper/SPE-147438-MS
      [80] Wan, Y., Pan, Z., Tang, S., et al., 2015.An Experimental Investigation of Diffusivity and Porosity Anisotropy of a Chinese Gas Shale.Journal of Natural Gas Science & Engineering, 23:70-79. https://www.sciencedirect.com/science/article/pii/S1875510015000268
      [81] Wang, M., Chen, S., 2007.Electroosmosis in Homogeneously Charged Micro-and Nanoscale Random Porous Media.Journal of Colloid & Interface Science, 314(1):264-273. https://www.sciencedirect.com/science/article/pii/S0021979707007217#!
      [82] Wang, M., Kang, Q., 2009.Electrokinetic Transport in Microchannels with Random Roughness.Analytical Chemistry, 81(8):2953-2961. doi: 10.1021/ac802569n
      [83] Wang, M., Li, Z., 2003.Nonideal Gas Flow and Heat Transfer in Micro-and nanochannels Using the Direct Simulation Monte Carlo Method.Physical Review E Statistical Nonlinear & Soft Matter Physics, 68(4 Pt 2):046704. https://www.ncbi.nlm.nih.gov/pubmed/14683076
      [84] Wang, M., Li, Z., 2007.An Enskog Based Monte Carlo Method for High Knudsen Number Non-Ideal Gas Flows.Computers & Fluids, 36(8):1291-1297. https://www.sciencedirect.com/science/article/pii/S0045793007000588#!
      [85] Wang, M., Li, Z., 2008.Analyses of Gas Flows in Micro-and Nanochannels.International Journal of Heat and Mass Transfer, 51:3630-3641. doi: 10.1016/j.ijheatmasstransfer.2007.10.011
      [86] Wang, M., Wang, J., Pan, N., et al., 2007.Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media.Physical Review E Statistical Nonlinear & Soft Matter Physics, 75(3 Pt 2):036702. https://www.doc88.com/p-1436331028495.html
      [87] Wang, M.R., Li, Z.X., 2005.Monte Carlo Simulations of Dense Gas Flow and Heat Transfer in Micro-and Nano-Channels.Science in China (Series E):Engineering & Materials Science, 48(3):317-325. doi: 10.1360%2F03ye0511.pdf
      [88] Wang, Z., Guo, Y., Wang, M., 2016.Permeability of High-Kn Real Gas Flow in Shale and Production Prediction by Pore-Scale Modeling.Journal of Natural Gas Science & Engineering, 28:328-337. https://www.sciencedirect.com/science/article/pii/S1875510015302894
      [89] Wang, Z.J., 2002.Seismic Anisotropy in Sedimentary Rocks, Part 1:A Single-Plug Laboratory Method.Geophysics, 67(5):1423-1440. doi: 10.1190/1.1512743
      [90] Willis, D.R., 1962.Comparison of Kinetic Theory Analyses of Linearized Couette Flow.Physics of Fluids, 5(2):127. doi: 10.1063/1.1706585
      [91] Wu, K.L., Chen, Z.X., Li, X.F., 2015.Real Gas Transport Through Nanopores of Varying Cross-Section Type and Shape Gas Reservoirs.Chemical Engineering Journal, 281:813-825. doi: 10.1016/j.cej.2015.07.012
      [92] Wu, Y.S., Pruess, K., Persoff, P., 1998.Gas Flow in Porous Media with Klinkenberg Effects.Transport in Porous Media, 32(1):117-137. doi: 10.1023/A:1006535211684
      [93] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017.Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China.Earth Science, 42(7):1045-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201401003.htm
      [94] Xue, C.J., 2011.Technical Advance and Development Proposals of Shale Gas Fracturing.Petroleum Drilling Techniques, 39(3):24-29 (in Chinese with English abstract). http://www.hsdl.org/?view&did=722252
      [95] Younglove, B.A., Ely, J.F., 1987.Thermophysical Properties of Fluids.Ⅱ.Methane, Ethane, Propane, Isobutane, and Normal Butane.Journal of Physical & Chemical Reference Data, 16(4):577-798. doi: 10.1002/9781118985960.meh401
      [96] Yu, G., 2014.Issues of The U.S.Gas Revolution.Global Science.Technology and Economy Outlook, 29(11):11-20 (in Chinese with English abstract). https://www.legistorm.com/reports/view/crs/264617/The_United_Arab_Emirates_UAE_Issues_for_U_S_Policy.html
      [97] Zhang, P., Hu, L., Meegoda, J.N., et al., 2015.Micro/Nano-Pore Network Analysis of Gas Flow in Shale Matrix.Scientific Reports, 5(13501):13501. http://www.nature.com/articles/doi:10.1038%2Fsrep13501
      [98] Zheng, J.T., Zheng, L.G., Liu, H.H., et al., 2015.Relationships between Permability, Porosity and Effective Stress for Low-Permeability Sedimentary Rock.International Journal of Rock Mechanics and Mining Sciences, 78:304-318. doi: 10.1016/j.ijrmms.2015.04.025
      [99] Zhu, W., Shan, R., 2014.Progress of Digital Rock Physics.Oil Geophysical Prospecting, 49(6):1138-1146 (in Chinese with English abstract). https://www.researchgate.net/publication/285966443_Progress_of_digital_rock_physics
      [100] 中国地质调查局, 2015. 中国页岩气资源调查报告(2014年).
      [101] 董大忠, 邹才能, 戴金星, 等, 2016.中国页岩气发展战略对策建议.天然气地球科学, 27(3):397-406. doi: 10.11764/j.issn.1672-1926.2016.03.0397
      [102] 郭照立, 郑楚光, 2009.格子Boltzmann方法原理及其应用.北京:科学出版社, 203.
      [103] 孔祥言, 2010.高等渗流力学.合肥:中国科学技术大学出版社, 31.
      [104] 李士伦, 2008.天然气工程.北京:石油工业出版社.
      [105] 李杏茹, 赵祺彬, 兰井志, 2016.近期我国页岩气勘探开发进展与存在问题.中国矿业, 25(5):6-10. http://www.cqvip.com/QK/92839A/201605/668843328.html
      [106] 林俊峰, 胡海燕, 黎祺, 2017.川东焦石坝地区页岩气特征及其意义.地球科学, 42(7):1124-1133. http://www.earth-science.net/WebPage/Article.aspx?id=3605
      [107] 卢文刚, 黄小珍, 2016.美国的页岩气革命与我国的应对之策.西南石油大学学报(社会科学版), 18(3):34-39. http://www.cqvip.com/QK/88954X/201603/669034903.html
      [108] 罗佐县, 2012.美国页岩气勘探开发现状及其影响.中外能源, 17(1):23-28. http://mall.cnki.net/magazine/Article/SYZW201201004.htm
      [109] 国家能源局, 2012. 页岩气发展规划(2011-2015年).
      [110] 国家能源局, 2016. 页岩气发展规划(2016-2020年).
      [111] 孙建孟, 姜黎明, 刘学锋, 等, 2012.数字岩心技术测井应用与展望.测井技术, 36(1):1-7. http://mall.cnki.net/magazine/Article/CJJS201202010.htm
      [112] 唐颖, 唐玄, 王广源, 等, 2011.页岩气开发水力压裂技术综述.地质通报, 30(2):393-399. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1027.htm
      [113] 解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 42(7):1045-1056. http://www.earth-science.net/WebPage/Article.aspx?id=3612
      [114] 薛承瑾, 2011.页岩气压裂技术现状及发展建议.石油钻探技术, 39(3):24-29. http://www.cnki.com.cn/Article/CJFDTotal-SYZT201601003.htm
      [115] 禹庚, 2014.美国大规模页岩气开发的若干问题.全球科技经济瞭望, 29(11):11-20. doi: 10.3772/j.issn.1009-8623.2014.11.003
      [116] 朱伟, 单蕊, 2014.虚拟岩石物理研究进展.石油地球物理勘探, 49(6):1138-1146. http://mall.cnki.net/magazine/Article/KTDQ2003Z1008.htm
    • 加载中
    图(28) / 表(7)
    计量
    • 文章访问数:  4660
    • HTML全文浏览量:  1417
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-08-22
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回