Removal Behavior and Mechanism of Perfluorinated Compounds from Water by Nano-Materials
-
摘要: 全氟化合物(Perfluorinated Compounds,PFCs)是一类含有强极性碳氟键的阴离子表面活性剂.由于PFCs的高稳定性、高生物累积性和潜在毒性,其在水环境中的广泛存在已经对人类的生命健康造成了极大的威胁.近年来,研究者不断寻找有效的材料和处理技术去除水体中的PFCs.纳米材料因其特殊的结构和效应,比一般材料有更高的反应活性.总结了如碳纳米管、改性粘土矿物、纳米二氧化钛、氧化铟、氧化镓等新型纳米材料在物理吸附、光化学及电化学法去除PFCs中的应用,并比较了上述各材料去除PFCs的优缺点及各自的去除机制,分析了目前纳米材料去除水体中PFCs存在的主要问题并展望了今后的发展趋势.Abstract: Perfluorinated compounds (PFCs) are one type of anionic surfactants containing strong-polar carbon-fluorine bonds.PFCs widely exist in aqueous environment because of their high solubility and stability, which has potential risk to human health due to the high bioaccumulation and potential toxicity. Recently, various methods have been developed to remove PFCs from aquatic environment. Compared with bulk materials, nano-materials have higher reactivity because of their special structure. In this paper, it presents some nano-materials such as carbon nanotube, modified clay minerals, nano-TiO2, In2O3, Ga2O3, etc., which have been applied for adsorption, nanofiltration, photochemistry, electrochemistry, etc. Their advantages, disadvantages and mechanism are compared in detail. Besides, it also discusses the issues and prospects for PFCs removal from water by nanomaterials.
-
Key words:
- perfluorinated compound /
- nano-material /
- nano-mineral /
- adsorption /
- catalysis
-
图 1 不同HDTMAB负载量的有机蒙脱石吸附PFOS前后的结构示意
Fig. 1. Schematic diagram for the arrangements of HDTMAB in the different organo-Mts before and after PFOS adsorption
图 2 PFOA在In2O3和TiO2表面可能的降解机理
Fig. 2. Possible degradation mechanism of PFOA on surfaces of In2O3 and TiO2
-
[1] Anglada, Á., Urtiaga, A., Ortiz, I., 2009.Contributions of Electrochemical Oxidation to Waste-Water Treatment:Fundamentals and Review of Applications.Journal of Chemical Technology & Biotechnology, 84(12):1747-1755. https://doi.org/10.1002/jctb.2214 [2] Backe, W.J., Day, T.C., Field, J.A., 2013.Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS.Environmental Science & Technology, 47(10):5226-5234. https://doi.org/10.1021/es3034999 [3] Batten, S.R., Champness, N.R., Chen, X.M., et al., 2013.Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013).Pure and Applied Chemistry, 85(8):1715-1724. https://doi.org/10.1351/pac-rec-12-11-20 [4] Bei, Y., Deng, S., Du, Z., et al., 2014.Adsorption of Perfluorooctane Sulfonate on Carbon Nanotubes:Influence of pH and Competitive Ions.Water Science and Technology, 69(7):1489-1495. https://doi.org/10.2166/wst.2014.049 [5] Boulanger, B., Vargo, J.D., Schnoor, J.L., et al., 2005.Evaluation of Perfluorooctane Surfactants in a Wastewater Treatment System and in a Commercial Surface Protection Product.Environmental Science & Technology, 39(15):5524-5530. https://doi.org/10.1021/es050213u [6] Carter, K.E., Farrell, J., 2008.Oxidative Destruction of Perfluorooctane Sulfonate Using Boron-Doped Diamond Film Electrodes.Environmental Science & Technology, 42(16):6111-6115. https://doi.org/10.1021/es703273s [7] Chakrapani, N., Zhang, Y.M.M., Nayak, S.K., et al., 2003.Chemisorption of Acetone on Carbon Nanotubes.Journal of Physical Chemistry B, 107(35):9308-9311. https://doi.org/10.1021/jp034970v [8] Chen, H., Chen, S., Quan, X., et al., 2009.Sorption of Perfluorooctane Sulfonate (PFOS) on Oil and Oil-Derived Black Carbon:Influence of Solution pH and Ca2+.Chemosphere, 77(10):1406-1411. https://doi.org/10.1016/j.chemosphere.2009.09.008 [9] Chen, M.J., Lo, S.L., Lee, Y.C., et al., 2015.Photocatalytic Decomposition of Perfluorooctanoic Acid by Transition-Metal Modified Titanium Dioxide.Journal of Hazardous Materials, 288:168-175. https://doi.org/10.1016/j.jhazmat.2015.02.004 [10] Chen, X., Xia, X.H., Wang, X.L., et al., 2011.A Comparative Study on Sorption of Perfluorooctane Sulfonate (PFOS) by Chars, Ash and Carbon Nanotubes.Chemosphere, 83(10):1313-1319. https://doi.org/10.1016/j.chemosphere.2011.04.018 [11] Cheng, D., Liao, P., Yuan, S.H., 2016.Effect of FeS Colloids on Desorption of As(Ⅴ) Adsorbed on Ferric Ion.Earth Science, 41(2):325-330 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.024 [12] Deng, S., Bei, Y., Lu, X., et al., 2015.Effect of Co-Existing Organic Compounds on Adsorption of Perfluorinated Compounds onto Carbon Nanotubes.Frontiers of Environmental Science & Engineering, 9(5):784-792. https://doi.org/10.1007/s11783-015-0790-1 [13] Enache, T.A., Chiorcea-Paquim, A.M., Fatibello-Filho, O., et al., 2009.Hydroxyl Radicals Electrochemically Generated In-Situ on a Boron-Doped Diamond Electrode.Electrochemistry Communications, 11(7):1342-1345. https://doi.org/10.1016/j.elecom.2009.04.017 [14] Fujii, S., Polprasert, C., Tanaka, S., et al., 2007.New POPs in the Water Environment:Distribution, Bioaccumulation and Treatment of Perfluorinated Compounds-A Review Paper.Journal of Water Supply Research and Technology-AQUA, 56(5):313-326. https://doi.org/10.2166/aqua.2007.005 [15] Fujishima, A., Honda, K., 1972.Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature, 238(5358):37-38. https://doi.org/10.1038/238037a0 [16] Gatto, S., Sansotera, M., Persico, F., et al., 2015.Surface Fluorination on TiO2 Catalyst Induced by Photodegradation of Perfluorooctanoic Acid.Catalysis Today, 241:8-14. https://doi.org/10.1016/j.cattod.2014.04.031 [17] Hoffmann, M.R., Martin, S.T., Choi, W.Y., et al., 1995.Environmental Applications of Semiconductor Photocatalysis.Chemical Reviews, 95(1):69-96. doi: 10.1021/cr00033a004 [18] Iijima, S., 1991.Helical Microtubules of Graphitic Carbon.Nature, 354(6348):56-58. https://doi.org/10.1038/354056a0 [19] Jia, D.W., Tian, B.H., Zhang, G.Z., et al., 2012.Adsorption of Pernuorooctane Sulfonate on Fe3O4 Magnetic Nanoparticles.Chinese Journal of Environmental Engineering, 6(2):389-392 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJJZ201202007.htm [20] Jiang, F., Zhao, H., Chen, H., et al., 2016.Enhancement of Photocatalytic Decomposition of Perfluorooctanoic Acid on CeO2/In2O3.RSC Advances, 6(76):72015-72021. https://doi.org/10.1039/C6RA09856H [21] Karn, B., Kuiken, T., Otto, M., 2009.Nanotechnology and In-Situ Remediation:A Review of the Benefits and Potential Risks.Environmental Health Perspectives, 117(12):1813-1831. https://doi.org/10.1289/ehp.0900793 [22] Kiso, Y., Sugiura, Y., Kitao, T., et al., 2001.Effects of Hydrophobicity and Molecular Size on Rejection of Aromatic Pesticides with Nanofiltration Membranes.Journal of Membrane Science, 192(1-2):1-10. https://doi.org/10.1016/S0376-7388(01)00411-2 [23] Lemal, D.M., 2004.Perspective on Fluorocarbon Chemistry.The Journal of Organic Chemistry, 69(1):1-11. https://doi.org/10.1021/jo0302556 [24] Li, M., Yu, Z., Liu, Q., et al., 2016.Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2.Chemical Engineering Journal, 286:232-238. https://doi.org/10.1016/j.cej.2015.10.037 [25] Li, X., Chen, S., Quan, X., et al., 2011.Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance.Environmental Science & Technology, 45(19):8498-8505. https://doi.org/10.1021/es202026v [26] Li, X., Zhang, P., Jin, L., et al., 2012a.Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism.Environmental Science & Technology, 46(10):5528-5534. https://doi.org/10.1021/es204279u [27] Li, Z., Zhang, P., Shao, T., et al., 2012b.In2O3 Nanoporous Nanosphere:A Highly Efficient Photocatalyst for Decomposition of Perfluorooctanoic Acid.Applied Catalysis B-Environmental, 125:350-357. https://doi.org/10.1016/j.apcatb.2012.06.017 [28] Li, Z., Zhang, P., Li, J., et al., 2013a.Synthesis of In2O3-Graphene Composites and Their Photocatalytic Performance towards Perfluorooctanoic Acid Decomposition.Journal of Photochemistry and Photobiology A-Chemistry, 271:111-116. https://doi.org/10.1016/j.jphotochem.2013.08.012 [29] Li, Z., Zhang, P., Shao, T., et al., 2013b.Different Nanostructured In2O3 for Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA).Journal of Hazardous Materials, 260:40-46. https://doi.org/10.1016/j.jhazmat.2013.04.042 [30] Li, Z., Zhang, P., Li, J., et al., 2014.Synthesis of In2O3 Porous Nanoplates for Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA).Catalysis Communications, 43:42-46. https://doi.org/10.1016/j.catcom.2013.09.004 [31] Liu, K., Zhang, S., Hu, X., et al., 2015.Understanding the Adsorption of PFOA on MIL-101-Based Anionic-Exchange Metal-Organic Frameworks:Comparing DFT Calculations with Aqueous Sorption Experiments.Environmental Science & Technology, 49(14):8657-8665. https://doi.org/10.1021/acs.est.5b00802 [32] Lu, X., Deng, S., Wang, B., et al., 2016.Adsorption Behavior and Mechanism of Perfluorooctane Sulfonate on Nanosized Inorganic Oxides.Journal of Colloid and Interface Science, 474:199-205. https://doi.org/10.1016/j.jcis.2016.04.032 [33] Luan, X., Zhou, Q., Bi, L., et al., 2014.Sorption Behavior and Mechanism of Perfluorooctanesulfonate (PFOS)on Chlorella and Chlorella Residues.Chinese Journal of Environmental Engineering, 8(3):897-902 (in Chinese with English abstract). [34] Ma, R., Shi, J., Shi, X., 2017.Spatial Variation of Hydraulic Conductivity Categories in a Highly Heterogeneous Aquifer:A Case Study in the North China Plain (NCP).Journal of Earth Science, 28(1):113-123. doi: 10.1007/s12583-016-0636-1 [35] Midasch, O., Schettgen, T., Angerer, J., 2006.Pilot Study on the Perfluorooctanesulfonate and Perfluorooctanoate Exposure of the German General Population.International Journal of Hygiene and Environmental Health, 209(6):489-496. https://doi.org/10.1016/j.ijheh.2006.06.002 [36] Niu, J., Lin, H., Gong, C., et al., 2013.Theoretical and Experimental Insights into the Electrochemical Mineralization Mechanism of Perfluorooctanoic Acid.Environmental Science & Technology, 47(24):14341-14349. https://doi.org/10.1021/es402987t [37] Niu, J., Lin, H., Xu, J., et al., 2012.Electrochemical Mineralization of Perfluorocarboxylic Acids (PFCAs) by Ce-Doped Modified Porous Nanocrystalline PbO2 Film Electrode.Environmental Science & Technology, 46(18):10191-10198. https://doi.org/10.1021/es302148z [38] Ochiai, T., Iizuka, Y., Nakata, K., et al., 2011.Efficient Electrochemical Decomposition of Perfluorocarboxylic Acids by the Use of a Boron-Doped Diamond Electrode.Diamond and Related Materials, 20(2):64-67. https://doi.org/10.1016/j.diamond.2010.12.008 [39] Ololade, I.A., Zhou, Q., Pan, G., 2016.Influence of Oxic/Anoxic Condition on Sorption Behavior of PFOS in Sediment.Chemosphere, 150:798-803. https://doi.org/10.1016/j.chemosphere.2015.08.068 [40] Olsen, G.W., Burris, J.M., Ehresman, D.J., et al., 2007.Half-Life of Serum Elimination of Perfluorooctanesulfonate, Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers.Environmental Health Perspectives, 115(9):1298-1305. https://doi.org/10.1289/ehp.10009 [41] Pan, B., Lin, D., Mashayekhi, H., et al., 2009.Adsorption and Hysteresis of Bisphenol A and 17 Alpha-Ethinyl Estradiol on Carbon Nanomaterials.Environmental Science & Technology, 43(2):5480-5485. https://doi.org/10.1021/es803362b [42] Pan, B., Xing, B., 2008.Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes.Environmental Science & Technology, 42(24):9005-9013. https://doi.org/10.1021/es801777n [43] Pan, G., You, C., 2010.Sediment-Water Distribution of Perfluorooctane Sulfonate (PFOS) in Yangtze River Estuary.Environmental Pollution, 158(5):1363-1367. https://doi.org/10.1016/j.envpol.2010.01.011 [44] Pan, G., Zhou, Q., Luan, X., et al., 2014.Distribution of Perfluorinated Compounds in Lake Taihu (China):Impact to Human Health and Water Standards.Science of the Total Environment, 487:778-784. https://doi.org/10.1016/j.scitotenv.2013.11.100 [45] Park, H., Vecitis, C.D., Cheng, J., et al., 2009.Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants:Effects of Ionic Headgroup and Chain Length.Journal of Physical Chemistry A, 113(4):690-696. https://doi.org/10.1021/jp807116q [46] Pérez, G., Fernández-Alba, A.R., Urtiaga, A.M., et al., 2010.Electro-Oxidation of Reverse Osmosis Concentrates Generated in Tertiary Water Treatment.Water Research, 44(9):2763-2772. https://doi.org/10.1016/j.watres.2010.02.017 [47] Qu, Y., Zhang, C., Li, F., et al., 2010.Photo-Reductive Defluorination of Perfluorooctanoic Acid in Water.Water Research, 44(9):2939-2947. https://doi.org/10.1016/j.watres.2010.02.019 [48] Saito, N., Sasaki, K., Nakatome, K., et al., 2003.Perfluorooctane Sulfonate Concentrations in Surface Water in Japan.Archives of Environmental Contamination and Toxicology, 45(2):149-158. doi: 10.1007/s00244-003-0163-9 [49] Sansotera, M., Persico, F., Pirola, C., et al., 2014.Decomposition of Perfluorooctanoic Acid Photocatalyzed by Titanium Dioxide:Chemical Modification of the Catalyst Surface Induced by Fluoride Ions.Applied Catalysis B-Environmental, 148:29-35. https://doi.org/10.1016/j.apcatb.2013.10.038 [50] Shao, T., Zhang, P., Jin, L., et al., 2013.Photocatalytic Decomposition of Perfluorooctanoic Acid in Pure Water and Sewage Water by Nanostructured Gallium Oxide.Applied Catalysis B-Environmental, 142:654-661. https://doi.org/10.1016/j.apcatb.2013.05.074 [51] Skutlarek, D., Exner, M., Farber, H., 2006.Perfluorinated Surfactants in Surface and Drinking Water.Environmental Science and Pollution Research, 13(5):299-307. doi: 10.1065/espr2006.07.326 [52] So, M.K., Taniyasu, S., Yamashita, N., et al., 2004.Perfluorinated Compounds in Coastal Waters of Hong Kong, South China, and Korea.Environmental Science & Technology, 38(15):4056-4063. https://doi.org/10.1021/es049441z [53] Trautmann, A.M., Schell, H., Schmidt, K.R., et al., 2015.Electrochemical Degradation of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Groundwater.Water Science and Technology, 71(10):1569-1575. https://doi.org/10.2166/wst.2015.143 [54] Urtiaga, A., Fernandez-Castro, P., Gómez, P., et al., 2014.Remediation of Wastewaters Containing Tetrahydrofuran.Study of the Electrochemical Mineralization on BDD Electrodes.Chemical Engineering Journal, 239:341-350. https://doi.org/10.1016/j.cej.2013.11.028 [55] Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., et al., 2015.Kinetics of the Electrochemical Mineralization of Perfluorooctanoic Acid on Ultrananocrystalline Boron Doped Conductive Diamond Electrodes.Chemosphere, 129:20-26. https://doi.org/10.1016/j.chemosphere.2014.05.090 [56] Urtiaga, A.M., Pérez, G., Ibáñez, R., et al., 2013.Removal of Pharmaceuticals from a WWTP Secondary Effluent by Ultrafiltration/Reverse Osmosis Followed by Electrochemical Oxidation of the RO Concentrate.Desalination, 331:26-34. https://doi.org/10.1016/j.desal.2013.10.010 [57] van der Bruggen, B., Schaep, J., Wilms, D., et al., 1999.Influence of Molecular Size, Polarity and Charge on the Retention of Organic Molecules by Nanofiltration.Journal of Membrane Science, 156(1):29-41. https://doi.org/10.1016/S0376-7388(98)00326-3 [58] Wang, T., Zhao, C., Li, P., et al., 2015.Fabrication of Novel Poly(m-Phenyleneisophthalamide) Hollow Fiber Nanofiltration Membrane for Effective Removal of Trace Amount Perfluorooctane Sulfonate from Water.Journal of Membrane Science, 477:74-85. https://doi.org/10.1016/j.memsci.2014.12.038 [59] Wu, Y., Li, Y., Tian, A., et al., 2016.Selective Removal of Perfluorooctanoic Acid Using Molecularly Imprinted Polymer-Modified TiO2 Nanotube Arrays.International Journal of Photoenergy, 1-10. https://doi.org/10.1155/2016/7368795 [60] Xiao, F., Zhang, X., Penn, L., et al., 2011.Effects of Monovalent Cations on the Competitive Adsorption of Perfluoroalkyl Acids by Kaolinite:Experimental Studies and Modeling.Environmental Science & Technology, 45(23):10028-10035. https://doi.org/10.1021/es202524y [61] Xu, Y., Schoonen, M.A.A., 2000.The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals.American Mineralogist, 85(3-4):543-556. https://doi.org/10.2138/am-2000-0416 [62] Yamashita, N., Kannan, K., Taniyasu, S., et al., 2005.A Global Survey of Perfluorinated Acids in Oceans.Marine Pollution Bulletin, 51(8-12):658-668. https://doi.org/10.1016/j.marpolbul.2005.04.026 [63] Yang, K., Xing, B., 2010.Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase:Polanyi Theory and Its Application.Chemical Reviews, 110(10):5989-6008. https://doi.org/10.1021/cr100059s [64] Yu, M., Wang, Y., Kong, S., et al., 2016a.Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides.Journal of Earth Science, 27(4):699-706. https://doi.org/10.1007/s12583-016-0714-4 [65] Yu, Y., Zhao, C., Yu, L., et al., 2016b.Removal of Perfluorooctane Sulfonates from Water by a Hybrid Coagulation-Nanofiltration Process.Chemical Engineering Journal, 289:7-16. https://doi.org/10.1016/j.cej.2015.12.048 [66] Yu, Q., Deng, S., Yu, G., 2008.Selective Removal of Perfluorooctane Sulfonate from Aqueous Solution Using Chitosan-Based Molecularly Imprinted Polymer Adsorbents.Water Research, 42(12):3089-3097. https://doi.org/10.1016/j.watres.2008.02.024 [67] Zhang, R., Yan, W., Jing, C., 2014.Mechanistic Study of PFOS Adsorption on Kaolinite and Montmorillonite.Colloids and Surfaces A-Physicochemical and Engineering Aspects, 462:252-258. https://doi.org/10.1016/j.colsurfa.2014.09.019 [68] Zhang, T.L., Pan, G., Zhou, Q., 2016.Temperature Effect on Photolysis Decomposing of Perfluorooctanoic Acid.Journal of Environmental Sciences, 42:126-133. https://doi.org/10.1016/j.jes.2015.05.008 [69] Zhao, B., Lü, M., Zhou, L., 2012.Photocatalytic Degradation of Perfluorooctanoic Acid with β-Ga2O3 in Anoxic Aqueous Solution.Journal of Environmental Sciences, 24(4):774-780. https://doi.org/10.1016/S1001-0742(11)60818-8 [70] Zhao, B., Zhang, P., 2009.Photocatalytic Decomposition of Perfluorooctanoic Acid with Beta-Ga2O3 Wide Bandgap Photocatalyst.Catalysis Communications, 10(8):1184-1187. https://doi.org/10.1016/j.catcom.2009.01.017 [71] Zhao, C., Zhang, J., He, G., et al., 2013.Perfluorooctane Sulfonate Removal by Nanofiltration Membrane the Role of Calciumions.Chemical Engineering Journal, 233:224-232. https://doi.org/10.1016/j.cej.2013.08.027 [72] Zheng, J.F., Tsai, W., Lin, T.D., et al., 2007.Ga2O3(Gd2O3)/Si3N4 Dual-Layer Gate Dielectric for InGaAs Enhancement Mode Metal-Oxide-Semiconductor Field-Effect Transistor with Channel Inversion.Applied Physics Letters, 91(22):223502. https://doi.org/10.1063/1.2817742 [73] Zhou, F., Zhu, J., Zhang, P., et al., 2017.Effect of Groundwater Components on Hydroxyl Radical Production by Fe(Ⅱ) Oxygenation.Earth Science, 42(6):1039-1044 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.082 [74] Zhou, Q., Deng, S.B., Yu, Q., et al., 2010.Sorption of Perfluorooctane Sulfonate on Organo-Montmorillonites.Chemosphere, 78(6):688-694. https://doi.org/10.1016/j.chemosphere.2009.12.005 [75] Zhou, Q., Luan, X., Pan, G., 2012.Sorption of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from Water.Chinese Science Bulletin, 57(17):1526-1532 (in Chinese with English abstract). doi: 10.1360/972011-2464 [76] Zhou, Q., Pan, G., Shen, W., 2013a.Enhanced Sorption of Perfluorooctane Sulfonate and Cr(Ⅵ) on Organo-Montmorillonite:Influence of Solution pH and Uptake Mechanism.Adsorption-Journal of the International Adsorption Society, 19(2-4):709-715. https://doi.org/10.1007/s10450-013-9496-5 [77] Zhou, Q., Pan, G., Zhang, J., 2013b.Effective Sorption of Perfluorooctane Sulfonate (PFOS) on Hexadecyltrimethylammonium Bromide Immobilized Mesoporous SiO2 Hollow Sphere.Chemosphere, 90(9):2461-2466. https://doi.org/10.1016/j.chemosphere.2012.11.009 [78] Zhou, Q.X., Hu, X.G., 2007.Researching Progresses in Environmental Pollution Behavior, Toxic Effects and Mechanisms of PFOS/PFOA.Environmental Science, 28(10):2153-2162 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/18268971 [79] Zhou, Y.P., Wen, B., Hu, X.Y., et al., 2012.Adsorption of Perfluorinated Compounds on Cationic Surfactant Coated Multiwalled Carbon Nanotubes.Environmental Chemistry, 31(1):43-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX201201008.htm [80] Zhu, Z.B., Zhou, Q., Zhang, M.Y., et al., 2015.Simultaneous Multifunctional Sorption of PFOS and Cr(Ⅵ), on Activated Carbon Prepared by One-Step Microwave Activation.Water Air and Soil Pollution, 226(8):259-267. https://doi.org/10.1007/s11270-015-2496-1 [81] 成东, 廖鹏, 袁松虎, 2016.FeS胶体对三价铁吸附态As(Ⅴ)的解吸作用.地球科学, 41(2):325-330. http://earth-science.net/WebPage/Article.aspx?id=3249 [82] 贾大伟, 田秉晖, 张国珍, 等, 2012.Fe3O4纳米磁性微粒对全氟辛烷磺酸盐的吸附.环境工程学报, 6(2):389-392. http://www.cjcu.jlu.edu.cn/CN/volumn/volumn_1571.shtml [83] 栾萱, 周琴, 毕磊, 等, 2014.全氟辛烷磺酸盐(PFOS)在藻渣/小球藻上的吸附行为及机理.环境工程学报, 8(3):897-902. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjjz201403018&dbname=CJFD&dbcode=CJFQ [84] 周帆, 朱健, 张鹏, 等, 2017.地下水化学组成对Fe2+氧化产生羟自由基的影响.地球科学, 42(6):1039-1044. http://earth-science.net/WebPage/Article.aspx?id=3595 [85] 周琴, 栾萱, 潘纲, 2012.水中典型全氟化合物的吸附行为.科学通报, 57(17):1526-1532. http://www.cqvip.com/QK/94252X/201217/42327637.html [86] 周启星, 胡献刚, 2007.PFOS/PFOA环境污染行为与毒性效应及机理研究进展.环境科学, 28(10):2153-2162. doi: 10.3321/j.issn:0250-3301.2007.10.001 [87] 周艳萍, 温蓓, 胡晓宇, 等, 2012.全氟化合物在阳离子表面活性剂改性碳纳米管上的吸附.环境化学, 31(1):43-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201201007