Interfacial Reaction of Atmospheric Micro/Nano Particles and Significance of Mineral Coevolution
-
摘要: 综述了大气气溶胶颗粒物的特征、颗粒物的界面反应与矿物协同演化意义;重点介绍了大气颗粒物粒径分布和矿物成分,以及常见有毒有害气体的界面反应产物特征与关键化学过程;总结了矿物颗粒在大气气溶胶形成过程中汇聚、调控、催化的作用,以及颗粒物与大气中SO2、NOx的协同反应机制;分析了微纳米颗粒对二次有机气溶胶形成的影响,以及大气矿物相颗粒界面反应产物组合及协同演化作用.可为进一步研究大气颗粒物与大气中痕量污染气体反应形成二次气溶胶进而影响大气化学组成的过程提供指导,对深入探讨大气矿物颗粒表面特性在复合污染物中多介质反应的微界面化学过程,矿物尘-污染物气溶胶体系在雾-霾形成、转换、新生粒子和阻断行为的复合作用具有重要的环境学意义.Abstract: This paper presents the characteristics of atmospheric aerosols, the interfacial reaction between particles and the significance of coevolution of minerals, focusing on the size distribution and mineral composition of atmospheric particles, and characteristics of the products and key chemical processes of the interfacial reaction between the atmospheric particles and common toxic and harmful gases. In addition, the convergence role, adjustment mechanism, and catalystic effect of mineral particles on the aerosol formation process, and the synergistic reaction mechanism between SO2 and NOx in the atmosphere are summarized. Furthermore, the effects of micro/nano particles on the formation of secondary organic aerosols and the combination and coevolution of interfacial reaction products between atmospheric and mineral phases are analyzed. This review can provide guidance for further research on the process of atmospheric particulate matter reacting with trace polluted gases in the atmosphere to form secondary aerosols and then affecting the chemical composition of the atmosphere, and it is also of environmental significance since it facilitates future studies of both the micro-interface chemistry reaction of the surface characteristics of the atmospheric mineral particles in the complex pollutants and the combined effects of mineral dust-pollutant aerosol system in fog-haze formation, transformation, particle production and blocking behavior.
-
Key words:
- micro/nano /
- particle /
- interfacial reaction /
- mineralogy /
- coevolution
-
图 1 细粒子团聚形成的大颗粒
据武智晖(2016).a.类球状大颗粒;b.长杆状大颗粒;c.絮状无定型体大颗粒
Fig. 1. Large particles formed by agglomeration of flaky fine particles
图 2 五台山景区大气颗粒物SEM照片
据武智晖(2016).a.硅铝酸盐-水分-硫酸盐"核壳结构";b.团聚体
Fig. 2. Scanning electron microscope images of atmospheric particulates in Mount Wutai
表 1 国内外不同地区大气气溶胶颗粒粒径分布对比
Table 1. Comparison of aerosol particle size distribution in different areas
时间区域 津京冀 长三角 珠三角 四川盆地 欧洲 美洲 2000年以前 第1峰:0.5~0.7 μm;第2峰:0.5~0.7 μm 两个峰值分别位于0.1 μm和12.5 μm 10 μm以下的颗粒占80%左右 暂无研究 第1峰:0.002~0.003 μm;第2峰:0.035~0.050 μm 第1峰:0.2~0.5 μm;第2峰:5~30 μm 2000~2010年 第1峰:0.30~0.35 μm;第2峰:0.50~0.58 μm 春节期间最高浓度处于0.1~0.5 μm 0.25 μm≤D≤1 μm粒子群的平均直径为0.3 μm,占总粒子数的99.4% 暂无研究 第1峰:0.016~0.025 μm;第2峰:0.158~0.251 μm 第1峰:0.36~0.56 μm;第2峰:3.6~5.6 μm 2010年以后 最高浓度位于0.43~0.65 μm 两个峰值分别位于0.05 μm和0.1 μm 最高浓度位于0.056~18 μm 最高浓度位于0.7~2.1 μm 发现新鲜的道路交通、工业粒子处于0.026~0.093 μm 46%的颗粒小于0.02 μm 表 2 气溶胶粒子成分形貌类型及来源
Table 2. Composition, morphology, type and source of aerosol particles
颗粒类型 次类型 元素特征 物理特征 来源 烟尘 烟尘 主要为C 单链和聚集体 煤炭和生物质燃烧,交通排放 飞灰 飞灰 主要为Si、Al,有时含少量的Na、Mg、S等 球形 煤炭燃烧 富钾 富K 球形,对电子束敏感 复杂二次粒子 富硫 富S,含有O 球形,对电子束敏感,变成气泡状 主要来源于大气二次化学反应 钙硫 CaSO4 针形和长条状 矿物 晶体矿物 主要含有Si、Al 干的或吸湿性颗粒,单个或复杂聚集体 沙尘,地壳 有机颗粒 有机 主要有EC 电子束下非常稳定 有机颗粒 焦油球 主要为C 球形,电子束下非常稳定 生物质燃烧 金属颗粒 金属 Fe或Zn 球形或不规则 工业生产 表 3 不同颗粒物矿物特性分析
Table 3. Analysis of mineral properties of different particles
矿物颗粒物 石英(%) 方解石(%) 钠长石(%) 白云母(%) 斜绿泥石(%) 石膏(%) 白云石(%) 高岭土(%) 甘肃天水 63 14 11 5 4 1 2 0 甘肃静宁 62 15 12 4 4 1 2 0 宁夏银川 57 20 8 7 5 1 2 0 内蒙古托县 51 19 11 4 2 4 6 3 河北石家庄 36 26 8 0 0 8 10 12 山西运城 28 17 12 0 0 24 10 9 河北承德 56 7 25 0 0 0 12 0 四川绵阳 22 6 27 31 0 3 5 6 -
[1] Al-Abadleh, H.A., Krueger, B.J., Ross, J.L., et al., 2003.Phase Transitions in Calcium Nitrate Thin Films.Chemical Communications, 9(22):2796-2797. https://doi.org/10.1039/b308632a [2] And, C.D.Z., Pemberton, J.E., 1998.In Situ Monitoring of the NaCl + HNO3 Surface Reaction:The Observation of Mobile Surface Strings.Journal of Physical Chemistry B, 102(45):8950-8953. https://doi.org/10.1021/jp982910x [3] Andreae, M.O., Crutzen, P.J., 1997.Atmospheric Aerosols:Biogeochemical Sources and Role in Atmospheric Chemistry.Science, 276(5315):1052-1058. https://doi.org/10.1126/science.276.5315.1052 [4] Bai, Z.P., Li, W.F., 2008.Characteristics and Formation Mechanism of Secondary Organic Aerosol.The Chinese Journal of Process Engineering, 8(1):202-208 (in Chinese with English abstract). https://gupea.ub.gu.se/handle/2077/31839 [5] Barrie, L.A., Yi, Y., Leaitch, W.R., et al., 2010.A Comparison of Large-Scale Atmospheric Sulphate Aerosol Models (Cosam):Overview and Highlights.Tellus, 53(5):615-645. https://doi.org/10.1034/j.1600-0889.2001.530507.x [6] Bei, N., Xiao, B., Meng, N., et al., 2016.Critical Role of Meteorological Conditions in a Persistent Haze Episode in the Guanzhong Basin, China.Science of the Total Environment, 550:273-284. https://doi.org/10.1016/j.scitotenv.2015.12.159 [7] Borrowman, C.K., Zhou, S., Burrow, T.E., et al., 2015.Formation of Environmentally Persistent Free Radicals from the Heterogeneous Reaction of Ozone and Polycyclic Aromatic Compounds.Physical Chemistry Chemical Physics, 18(1):205-212. https://doi.org/10.1039/c5cp05606c [8] Bullard, R.L., Singh, A., Anderson, S.M., et al., 2017.10-Month Characterization of the Aerosol Number Size Distribution and Related Air Quality and Meteorology at the Bondville, IL Midwestern Background Site.Atmospheric Environment, 154:348-361. https://doi.org/10.1016/j.atmosenv.2016.12.055 [9] Chaplygin, I.V., Lavrushin, V.Y., Dubinina, E.O., et al., 2016.Geochemistry of Volcanic Gas at the 2012-2013 New Tolbachik Eruption, Kamchatka.Journal of Volcanology & Geothermal Research, 323:186-193. https://doi.org/10.1016/j.jvolgeores.2016.04.005 [10] Chen, K.Z., Wang, L.P., Liu, X.B., 2000.Application and Investigation of Nanometer Particles in the Biomedical Field.Progress in Pharmaceutical Sciences, 24(4):193-196 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YXJZ200004000.htm [11] Chen, T.H., Xu, H.F., 2003.TEM Investigation of Atmospheric Particle Settlings and Its Significance in Environmental Mineralogy.Acta Petrologica et Mineralogica, 22(4):425-428 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200304023.htm [12] Chen, W., Dong, F.Q., Dai, Q.W., et al., 2013.Composition Characteristics and Surface Charge Simulation of Atmospheric Dust Fall in Tianshui City.Acta Scientiae Circumstantiae, 33(12):3386-3390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX201312025.htm [13] Cheng, C., Wang, G., Meng, J., et al., 2015.Size-Resolved Airborne Particulate Oxalic and Related Secondary Organic Aerosol Species in the Urban Atmosphere of Chengdu, China.Atmospheric Research, 161-162:134-142. https://doi.org/10.1016/j.atmosres.2015.04.010 [14] D'Almeida, G.A., 1987.On the Variability of Desert Aerosol Radiative Characteristics.Journal of Geophysical Research of Atmospheres, 92(D3):3017-3026. https://doi.org/10.1029/JD092iD03p03017 [15] Deng, X.J., Wu, D., Bi, X.Y., et al., 2009.The Different Particle Size Spectrum, Composition Spectrum and the Extinction Contribution of the Two Aerosol in the Pearl River Delta.Symposium on Aerosol Technology on Both Sides of the Taiwan Straits, Changchun (in Chinese). [16] Ding, J., Zhu, T., 2003.Heterogeneous Reactions on the Surface of Fine Particles in the Atmosphere.Chinese Science Bulletin, 48(21):2267-2276. https://doi.org/10.1360/03wb0046 [17] Dong, F.Q., Liu, M.X., Geng, Y.X., et al., 2013.Latest Research Advances in Interface Reaction and Biologic Activity of Atmosphere Superfine Particles.China Measurement & Test, 39(2):59-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYCS201302015.htm [18] Dong, L.S., Liu, L., Zhu, D.F., et al., 2011.Distribution and Impact on Reservoir Properties of Authigenic Carbonate Minerals in Pyroclastic Rocks of Beier Depression, Hailaer Basin.Journal of Earth Sciences and Environment, 33(3):253-260 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201103005 [19] Esguerra, C., Santiago, E., Aquino, N., et al., 2003.Drifts and Knudsen Cell Study of the Heterogeneous Reactivity of SO2 and NO2 on Mineral Dust.Atmospheric Chemistry & Physics Discussions, 3(6):2043-2051. https://doi.org/10.5194/acpd-3-4069-2003 [20] Fu, G.P., 2014.Study on the Mechanism of Fine Particulate Matter (PM2.5) in Chengdu City and Human Health Hazards of PM2.5 (Dissertation).Southwest Jiaotong University, Chengdu, 22-23 (in Chinese with English abstract). [21] Fu, S., Li, K., Xia, X.J., et al., 2009.Polycyclic Aromatic Hydrocarbons Residues in Sandstorm Depositions in Beijing, China.Bulletin of Environmental Contamination & Toxicology, 82(2):162-166. https://doi.org/10.1007/s00128-008-9537-z [22] George, I.J., Abbatt, J.P.D., 2010.Chemical Evolution of Secondary Organic Aerosol from Oh-Initiated Heterogeneous Oxidation.Atmospheric Chemistry & Physics Discussions, 10(2):3265-3300. https://doi.org/10.5194/acpd-10-3265-2010 [23] Guo, J., Yin, Y., Wang, Y.W., et al., 2017.Numerical Study of the Dust Distribution, Source and Sink, and Transport Features over East Asia.China Environmental Science, 37(3):801-812 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ201703001.htm [24] Guo, Z.F., Liu, J.Q., Chu, G.Q., et al., 2002.Composition and Origin of Tephra of the Huguangyan Maar Lake.Quaternary Sciences, 22(3):266-272 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200203009.htm [25] Han, L.H., Zhuang, G.S., Sun, Y.L., et al., 2005.The Distinction between Local and Foreign Sources of Atmospheric Particulate Pollution in Beijing:The Ratio of Mg/Al as an Element Tracer for Estimating the Contributions of Mineral Aerosols from outside Beijing.Science in China (Series B), 35 (3):237-246 (in Chinese). [26] He, H., Wang, Y., Ma, Q., et al., 2014.Mineral Dust and NOx Promote the Conversion of SO2 to Sulfate in Heavy Pollution Days.Scientific Reports, 4(1):4172. https://doi.org/10.1038/srep04172 [27] He, K., Yang, F., Ma, Y., et al., 2001.The Characteristics of PM2.5 in Beijing, China.Atmospheric Environment, 35(29):4959-4970. https://doi.org/10.1016/S1352-2310(01)00301-6 [28] He, K.B., Jia, Y.T., Ma, Y.L., et al., 2009.Regionality of Episodic Aerosol Pollution in Beijing.Acta Scientiae Circumstantiae, 29(3):482-487 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJXX200903002.htm [29] Hōrrak, U., Mirme, A., Salm, J., et al., 1998.Air Ion Measurements as a Source of Information about Atmospheric Aerosols.Atmospheric Research, 46(3).:233-242. https://doi.org/10.1016/S0169-8095(97)00065-3 [30] Huang, K., Zhuang, G., Wang, Q., et al., 2014.Extreme Haze Pollution in Beijing during January 2013:Chemical Characteristics, Formation Mechanism and Role of Fog Processing.Atmospheric Chemistry & Physics Discussions, 14(6):479-486. https://doi.org/10.5194/acpd-14-7517-2014 [31] Huang, X., Liu, Z., Zhang, J., et al., 2016.Seasonal Variation and Secondary Formation of Size-Segregated Aerosol Water-Soluble Inorganic Ions during Pollution Episodes in Beijing.Atmospheric Research, 168:70-79. https://doi.org/10.1016/j.atmosres.2015.08.021 [32] Hueglin, C., Gehrig, R., Baltensperger, U., et al., 2005.Chemical Characterisation of PM2.5, PM10 and Coarse Particles at Urban, near-City and Rural Sites in Switzerland.Atmospheric Environment, 39(4):637-651. https://doi.org/10.1016/j.atmosenv.2004.10.027 [33] Ilyinskaya, E., Schmidt, A., Mather, T.A., et al., 2017.Understanding the Environmental Impacts of Large Fissure Eruptions:Aerosol and Gas Emissions from the 2014-2015 Holuhraun Eruption (Iceland).Earth and Planetary Science Letters, 427:309-322. https://doi.org/10.1016/j.epsl.2017.05.025 [34] Ilyinskaya, E., Tsanev, V.I., Martin, R.S., et al., 2011.Near-Source Observations of Aerosol Size Distributions in the Eruptive Plumes from Eyjafjallajökull Volcano, March-April 2010.Atmospheric Environment, 45(18):3210-3216. https://doi.org/10.1016/j.atmosenv.2011.03.017 [35] Kuang, B.Y., Lin, P., Hu, M., et al., 2016.Aerosol Size Distribution Characteristics of Organosulfates in the Pearl River Delta Region, China.Atmospheric Environment, 130:23-35. https://doi.org/10.1016/j.atmosenv.2015.09.024 [36] Lavalley, J.C., 1996.Infrared Spectrometric Studies of the Surface Basicity of Metal Oxides and Zeolites Using Adsorbed Probe Molecules.Catalysis Today, 27(3-4):377-401. https://doi.org/10.1016/0920-5861(95)00161-1 [37] Leaitch, W.R., Isaac, G.A., 1991.Tropospheric Aerosol Size Distributions from 1982 to 1988 over Eastern North America.Atmospheric Environment:Part A.General Topics, 25(3):601-619. https://doi.org/10.1016/0960-1686(91)90058-F [38] Lei, Y., Zhang, Q., He, K.B., et al., 2011.Primary Anthropogenic Aerosol Emission Trends for China, 1990-2005.Atmospheric Chemistry & Physics, 11(3):17153-17212. https://doi.org/10.5194/acpd-10-17153-2010 [39] Li, H., Ma, Y., Duan, F., et al., 2017.Typical Winter Haze Pollution in Zibo, an Industrial City in China:Characteristics, Secondary Formation, and Regional Contribution.Environmental Pollution, 229:339-349. https://doi.org/10.1016/j.envpol.2017.05.081 [40] Li, J., 2012.Study of Atmospheric Aerosols Based on a Dual Field-of-View Lidar.Wuhan University, Wuhan, 56-58 (in Chinese with English abstract). [41] Li, L., Chen, Z.M., Ding, J., et al., 2004.A DRIFTS Study of SO2 Oxidation on the Surface of CaCO3 Particles.Spectroscopy and Spectral Analysis, 24(12):1556-1559 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/15828326 [42] Li, W.J., 2013.Single Aerosol Particles in Haze and Sand Dust Weather Pollution.Science Press, Beijing (in Chinese). [43] Liang, B.Y., Ma, Y., 1991.An Investigation on Aerosol Size Dutribution-arouad the Area of Xiaguan Powerplant, Nanjing.Environmental Science, 12(2):55-59 (in Chinese with English abstract). http://www.oalib.com/paper/1581308 [44] Liggio, J., Li, S.M., 2007.Reversible and Irreversible Processing of Biogenic Olefins on Acidic Aerosols.Atmospheric Chemistry & Physics Discussions, 7(4):2039-2055. https://doi.org/10.5194/acpd-7-11973-2007 [45] Lin, L., Kong, L.D., Chen, J.M., 2010.Experimental Study of the Effects of Ammonium Nitrate on SO2 Gas-Particle Transfer on the Surface of Atmospheric Aerosols.Chemical Journal of Chinese Universities, 31(4):751-755 (in Chinese with English abstract). [46] Liu, C., Chu, B., Liu, Y., et al., 2013.Effect of Mineral Dust on Secondary Organic Aerosol Yield and Aerosol Size in A-Pinene/Photo-Oxidation.Atmospheric Environment, 77:781-789. https://doi.org/10.1016/j.atmosenv.2013.05.064 [47] Liu, C., Ma, Q., Liu, Y., et al., 2012a.Synergistic Reaction between SO2 and NO2 on Mineral Oxides:A Potential Formation Pathway of Sulfate Aerosol.Physical Chemistry Chemical Physics, 14(5):1668-1676. https://doi.org/10.1039/c1cp22217a [48] Liu, Z., Wu, L.Y., Wang, T.H., et al., 2012b.Uptake of Methacrolein into Aqueous Solutions of Sulfuric Acid and Hydrogen Peroxide.Journal of Physical Chemistry A, 116(1):437-442. https://doi.org/10.1021/jp2100649 [49] Liu, Q.Y., Liu, Y.J., Zhao, Q., et al., 2014.Chemical Characteristics in Airborne Particulate Matter (PM10) during a High Pollution Spring Dust Storm Episode in Beijing, Tianjin and Zhangjiakou, China.Environmental Science, 35(8):2843-2850 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/25338350 [50] Lu, C., Zheng, X.M., Zhou, L.M., et al., 2013.Measurements and Characteristics of Semiquinone Radicals in Urban Atmospheric Particles.Environmental Chemistry, 32(1):1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX201301000.htm [51] Ma, Q., Liu, Y., He, H., 2008.Synergistic Effect between NO2 and SO2 in Their Adsorption and Reaction on Γ-Alumina.Journal of Physical Chemistry A, 112(29):6630-6635. https://doi.org/10.1021/jp802025z [52] Mothes, F., Böge, O., Herrmann, H., 2016.A Chamber Study on the Reactions of O3, NO, NO2 and Selected Vocs with a Photocatalytically Active Cementitious Coating Material.Environmental Science & Pollution Research International, 23(15):15250-15261. https://doi.org/10.1007/s11356-016-6612-6 [53] Moussallam, Y., Tamburello, G., Peters, N., et al., 2017.Volcanic Gas Emissions and Degassing Dynamics at Ubinas and Sabancaya Volcanoes; Implications for the Volatile Budget of the Central Volcanic Zone.Journal of Volcanology & Geothermal Research, 343:181-191. https://doi.org/10.1016/j.jvolgeores.2017.06.027 [54] Naoe, H., Heintzenberg, J., Okada, K., et al., 2003.Composition and Size Distribution of Submicrometer Aerosol Particles Observed on Mt.Fuji in the Volcanic Plumes from Miyakejima.Atmospheric Environment, 37(22):3047-3055. https://doi.org/10.1016/S1352-2310(03)00295-4 [55] Reisen, F., Arey, J., 2005.Atmospheric Reactions Influence Seasonal Pah and Nitro-Pah Concentrations in the Los Angeles Basin.Environmental Science & Technology, 39(1):64-73. https://doi.org/10.1021/es0483589 [56] Roberts, T.J., Vignelles, D., Liuzzo, M., et al., 2017.The Primary Volcanic Aerosol Emission from Mt Etna:Size-Resolved Particles with SO2 and Role in Plume Reactive Halogen Chemistry.Geochimica et Cosmochimica Acta, 222:74-93. https://doi.org/10.1016/j.gca.2017.09.040 [57] Seisel, S., Rensen, C.B., Vogt, R., et al., 2005.Kinetics and Mechanism of the Uptake of N2O5 on Mineral Dust at 298 K.Atmospheric Chemistry & Physics, 5(12):3423-3432. https://doi.org/10.5194/acp-5-3423-2005 [58] Shao, L., Hu, Y., Fan, J., et al., 2017.Physicochemical Characteristics of Aerosol Particles in the Tibetan Plateau:Insights from Tem-Edx Analysis.Journal of Nanoscience & Nanotechnology, 17(9):6899-6908. https://doi.org/10.1166/jnn.2017.14472 [59] Song, X., Shao, L., Zheng, Q., et al., 2014.Mineralogical and Geochemical Composition of Particulate Matter (PM10) in Coal and Non-Coal Industrial Cities of Henan Province, North China.Atmospheric Research, 143(24):462-472. https://doi.org/10.1016/j.atmosres.2014.03.015 [60] Sosso, G.C., Li, T., Davide, D., et al., 2016.Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces:Zooming in on Kaolinite.Journal of Physical Chemistry Letters, 7(13):2350-2355. https://doi.org/10.1021/acs.jpclett.6b01013 [61] Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., et al., 2007.Direct Observations of the Atmospheric Processing of Asian Mineral Dust.Atmospheric Chemistry & Physics, 7(5):1213-1236. https://doi.org/10.5194/acp-7-1213-2007 [62] Sun, Y., Pan, Y.P., Li, X.R., et al., 2011.Chemical Composition and Mass Closure of Particulate Matter in Beijing, Tianjin and Hebei Megacities, Northern China.Environmental Science, 32(9):2732-2740 (in Chinese with English abstract). http://www.oalib.com/paper/1587024 [63] Takayuki, K., Eri, A., Aki, F., et al., 2016.Mineral Dust Aerosols Promote the Formation of Toxic Nitropolycyclic Aromatic Compounds.Scientific Reports, 6:24427. https://doi.org/10.1038/srep24427 [64] Tang, M., Larish, W.A., Fang, Y., et al., 2016.Heterogeneous Reactions of Acetic Acid with Oxide Surfaces:Effects of Mineralogy and Relative Humidity.Journal of Physical Chemistry A, 120(28):5609-5616. https://doi.org/10.1021/acs.jpca.6b05395 [65] Tepe, N., Bau, M., 2014.Importance of Nanoparticles and Colloids from Volcanic Ash for Riverine Transport of Trace Elements to the Ocean:Evidence from Glacial-Fed Rivers after the 2010 Eruption of Eyjafjallajökull Volcano, Iceland.Science of the Total Environment, 488-489:243-251. https://doi.org/10.1016/j.scitotenv2014.04.083 [66] Valavanidis, A., Fiotakis, K., Bakeas, E., et al., 2005.Electron Paramagnetic Resonance Study of the Generation of Reactive Oxygen Species Catalysed by Transition Metals and Quinoid Redox Cycling by Inhalable Ambient Particulate Matter.Redox Report Communications in Free Radical Research, 10(1):37-51. https://doi.org/10.1179/135100001101536274 [67] Virtanen, A., Joutsensaari, J., Koop, T., et al., 2010.An Amorphous Solid State of Biogenic Secondary Organic Aerosol Particles.Nature, 467(7317):824-827. https://doi.org/10.1038/nature09455 [68] Volkamer, R., Ziemann, P.J., Molina, M.J., 2009.Secondary Organic Aerosol Formation from Acetylene (C2H2):Seed Effect on Soa Yields Due to Organic Photochemistry in the Aerosol Aqueous Phase.Atmospheric Chemistry & Physics, 9(6):1907-1928. https://doi.org/10.5194/acpd-8-14841-2008 [69] Vu, T.V., Delgado-Saborit, J.M., Harrison, R.M., 2015.A Review of Hygroscopic Growth Factors of Submicron Aerosols from Different Sources and Its Implication for Calculation of Lung Deposition Efficiency of Ambient Aerosols.Air Quality Atmosphere & Health, 8(5):1-12. https://doi.org/10.1007/s11869-015-0365-0 [70] Wang, F., 2012.Aerosol Size Distribution Measurement under Different Pollution Types in Nanjing Area (Dissertation).Nanjing University of Information Science & Technology, Nanjing, 39-42 (in Chinese with English abstract). [71] Wang, L., Chen, Y., Niu, Y., et al., 2017, Analysis of Atmospheric Turbidity in Clear Skies at Wuhan, Central China.Journal of Earth Science, 28(4):729-738. doi: 10.1007/s12583-017-0756-2 [72] Wang, L., Zhang, F., Chen, J.M., 2001.Catalytic Oxidation of CS2 over Atmospheric Particles and Oxide Catalysts.Science in China (Series B), 31(4):369-376 (in Chinese). http://www.cqvip.com/QK/60113X/200106/1001421854.html [73] Wang, M.X., 1999.Atmospheric Chemistry.China Meteorological Press, Beijing (in Chinese). [74] Watts, S.F., 2000.The Mass Budgets of Carbonyl Sulfide, Dimethyl Sulfide, Carbon Disulfide and Hydrogen Sulfide.Atmospheric Environment, 34(5):761-779. https://doi.org/10.1016/S1352-2310(99)00342-8 [75] Weinzierl, B., Sauer, D., Minikin, A., et al., 2012.On the Visibility of Airborne Volcanic Ash and Mineral Dust from the Pilot's Perspective in Flight.Physics & Chemistry of the Earth, 45-46:87-102. https://doi.org/10.1016/j.pce.2012.04.003 [76] Wittmaack, K., 2002.Advanced Evaluation of Size-Differential Distributions of Aerosol Particles.Journal of Aerosol Science, 33(7):1009-1025. https://doi.org/10.1016/S0021-8502(02)00052-6 [77] Wu, L.Y., Tong, S.R., Ge, M.F., 2015.Synergistic Effect between SO2 and HCOOH on the Surface of CaO.Acta Chimica Sinica, 73(2):131-136 (in Chinese with English abstract). https://doi.org/10.6023/A14120875 [78] Wu, Z.H., 2016.The Evaluation of the Air Quality of the Mount Wutai Scenic Area and the Characteristics of the Atmospheric Particles and the Fractal Characteristics (Dissertation).Shanxi Agricultural University, Taiyuan, 65-67 (in Chinese with English abstract). [79] Xia, L., Gao, Y., 2010.Chemical Composition and Size Distributions of Coastal Aerosols Observed on the U.S.East Coast Marine Chemistry, 119(1):77-90. https://doi.org/10.1016/j.marchem.2010.01.002 [80] Xiao, Z.H., Shao, L.Y., Sun, Q.Z., et al., 2007.Mineral Compositions of Individual Particles in the Inhalable Particulate Matter in the Lanzhou Air during Heating Period.Bulletin of Mineralogy, Petrology and Geochemistry, 26(1):64-69 (in Chinese with English abstract). [81] Xu, L., Duan, F., He, K.B., 2017 Characteristics of the Secondary Water-Soluble Ions in a Typical Autumn Haze in Beijing.Atmospheric Environment, 227:296-305. https://doi.org/10.1016/j.envpol.2017.04.076 [82] Yu, F., 2001.The Origin and Characteristics of Nanomaterials.Industrial Minerals & Processing, 30(8):36-37 (in Chinese with English abstract). https://arxiv.org/pdf/0801.3280 [83] Yu, G., Bayer, A.R., Galloway, M.M., et al., 2011.Glyoxal in Aqueous Ammonium Sulfate Solutions:Products, Kinetics and Hydration Effects.Environmental Science & Technology, 45(15):6336-6342. https://doi.org/10.1021/es200989n [84] Yu, X., Ma, J., An, J., et al., 2016.Impacts of Meteorological Condition and Aerosol Chemical Compositions on Visibility Impairment in Nanjing, China.Journal of Cleaner Production, 131:112-120. https://doi.org/10.1016/j.jclepro.2016.05.067 [85] Yuan, X.Y., Ye, Z.X., Qian, J., et al., 2016.A Preliminary Study on the Heterogeneous Reaction of Sulfur Dioxide on the Surface of Atmospheric Particles in Chengdu.Annual Meeting of the Chinese Academy of Environmental Sciences, Haikou (in Chinese with English abstract). [86] Yue, D.L., Zhong, L.J., Shen, J., et al., 2016.Properties of New Particle Growth-Shrinkage Events in the Pearl River Delta Region.Environmental Pollution & Control, 38(3):1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJWR201603001.htm [87] Zhang, D., Shi, G.Y., Iwasaka, Y., et al., 2000.Mixture of Sulfate and Nitrate in Coastal Atmospheric Aerosols:Individual Particle Studies in Qingdao (36°04'N, 120°21'E), China.Atmospheric Environment, 34(17):2669-2679. https://doi.org/10.1016/S1352-2310(00)00078-9 [88] Zhang, J.N., Dong, H.Y., Bai, Z.P., et al., 2007.Characteristics of Atmospheric Aerosol Particle Size Distribution during Early Summer in Tianjin.Urban Environment & Urban Ecology, 20(5):1-5 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-CHCS200705003.htm [89] Zhang, L.F., Dong, F.Q., Tan, D.Y., et al., 2016.Research on Aqueous Hydroxyl Radical Generated from Minerals of Dust Fall in Tianshui.China Environmental Science, 36(2):370-375 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201602009 [90] Zhang, M., Wang, X., Chen, J., et al., 2010.Physical Characterization of Aerosol Particles during the Chinese New Year's Firework Events.Atmospheric Environment, 44(39):5191-5198. https://doi.org/10.1016/j.atmosenv.2010.08.048 [91] Zhang, R., Suh, I., Zhao, J., et al., 2004.Atmospheric New Particle Formation Enhanced by Organic Acids.Science, 304(5676):1487-1490. https://doi.org/10.1126/science.1095139 [92] Zhang, R.J., Wang, M.X., Dai, S.L., et al., 2000.Preliminary Research on the Size Distribution of Aerosols in Beijing.Climatic and Environmental Research, 5(1):85-89 (in Chinese with English abstract). doi: 10.1007/s00376-001-0015-3 [93] Zhang, X.Y., 2014.Characteristics of the Chemical Components of Aerosol Particles in the Various Regions over China.Acta Meteorologica Sinica, 72(6):1108-1117 (in Chinese with English abstract). http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?doi=10.11676/qxxb2014.092 [94] Zhang, Y., Tong, S.R., Ge, M.F., 2016.A Study about the Influence of the Size of CaCO3 on Heterogeneous Oxidation of Sulfur Dioxide by Ozone.Spectroscopy and Spectral Analysis, 36(10):126-127 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GUAN2016S1061.htm [95] Zhang, Z.F., Zhu, T., Shang, J., et al., 2011.Heterogeneous Reaction of NO2 on the Surface of Kaolinite Particles.Acta Scientiae Circumstantiae, 31(10):2073-2079 (in Chinese with English abstract). http://www.oalib.com/paper/1590284 [96] Zhao, D., Song, X., Zhu, T., et al., 2017.Multiphase Reaction of SO2 with NO2 on CaCO3 Particles.1.Oxidation of SO2 by NO2.Atmospheric Chemistry & Physics, 1-23. [97] Zhao, H.Y., Shao, L.Y., Shi, Z.B., 2003.Research Status and Prospect of Indoor Air PM2.5.Journal of Environment and Health, 20(5):310-312 (in Chinese with English abstract). [98] Zhao, Q., 2010.Characteristics and Formation of Inorganic Fine Particluate Pollution in Typical Regions of China.(Dissertation).Tsinghua University, Beijing, 59-68 (in Chinese with English abstract). [99] Zhu, Z., Shen, Q.H., Zhang, D.N., 1996.Distribution of Particulate Carbon in Aerosol at Pudong New Area.Shanghai Environmental Sciences, 15(2):12-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHHJ199602009.htm [100] 白志鹏, 李伟芳, 2008.二次有机气溶胶的特征和形成机制.过程工程学报, 8(1):202-208. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200801039.htm [101] 陈克正, 王丽平, 刘兴斌, 2000.纳米微粒在生物医药领域中的应用研究.药学进展, 24(4):193-196. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHG200001010.htm [102] 陈天虎, 徐惠芳, 2003.大气降尘TEM观察及其环境矿物学意义.岩石矿物学杂志, 22(4):425-428. http://www.cqvip.com/QK/94932X/2003z1/1000358575.html [103] 陈武, 董发勤, 代群威, 等, 2013.天水市大气降尘组成特征及表面电性模拟研究.环境科学学报, 33(12):3386-3390. http://www.oalib.com/paper/4340350 [104] 邓雪娇, 吴兑, 毕雪岩, 等, 2009.珠江三角洲不同粒径谱、成分谱与二次气溶胶的消光贡献.长春:第十届全国气溶胶会议暨第六届海峡两岸气溶胶技术研讨会. [105] 董发勤, 刘明学, 耿迎雪, 等, 2013.超细大气矿物颗粒物界面反应及生物活性研究新进展.中国测试, 39(2):59-63. http://www.cqvip.com/QK/93607C/201302/46620661.html [106] 董林森, 刘立, 朱德丰, 等, 2011.海拉尔盆地贝尔凹陷火山碎屑岩自生碳酸盐矿物分布及对储层物性的影响.地球科学与环境学报, 33(3):253-260. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201103005 [107] 付高平, 2014.成都市微细颗粒物(PM2.5)形成机理及对人类健康危害研究(硕士毕业论文).成都:西南交通大学, 22-23. [108] 郭俊, 银燕, 王咏薇, 等, 2017.东亚沙尘分布、源汇及输送特征的模拟研究.中国环境科学, 37(3):801-812. http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract15022.shtml [109] 郭正府, 刘嘉麒, 储国强, 等, 2002.湖光岩玛珥湖火山灰的成分及其来源.第四纪研究, 22(3):266-272. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201003009.htm [110] 韩力慧, 庄国顺, 孙业乐, 等, 2005.北京大气颗粒物污染本地源与外来源的区分——元素比值Mg/Al示踪法估算矿物气溶胶外来源的贡献.中国科学(B辑):化学, 35(3):237-246. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200503009.htm [111] 贺克斌, 贾英韬, 马永亮, 等, 2009.北京大气颗粒物污染的区域性本质.环境科学学报, 29(3):482-487. http://www.oalib.com/paper/4341897 [112] 李俊, 2012.双视场激光雷达及大气气溶胶探测研究(博士毕业论文).武汉:武汉大学, 56-58. [113] 李雷, 陈忠明, 丁杰, 等, 2004.SO2在CaCO3颗粒表面转化的DRIFTS研究.光谱学与光谱分析, 24(12):1556-1559. doi: 10.3321/j.issn:1000-0593.2004.12.019 [114] 李卫军, 2013.雾霾和沙尘污染天气气溶胶单颗粒研究.北京:科学出版社. [115] 梁保英, 马英, 1991.南京市下关电厂周围地区气溶胶粒径分布规律研究.环境科学, 12(2):55-448. http://www.oalib.com/paper/4743032 [116] 林立, 孔令东, 陈建民, 2010.硝酸铵对SO2在大气颗粒物表面气-粒转化影响的模拟研究.高等学校化学学报31(4):751-755. http://www.adearth.ac.cn/article/2015/1001-8166-30-2-226.html [117] 刘庆阳, 刘艳菊, 赵强, 等, 2014.2012年春季京津冀地区一次沙尘暴天气过程中颗粒物的污染特征分析.环境科学, 35(8):2843-2850. http://www.cqvip.com/QK/91181X/201408/663132525.html [118] 卢超, 郑祥民, 周立旻, 等, 2013.城市大气颗粒物表面半醌自由基的测定及特征分析.环境化学, 32(1):1-6. doi: 10.7524/j.issn.0254-6108.2013.01.001 [119] 孙颖, 潘月鹏, 李杏茹, 等, 2011.京津冀典型城市大气颗粒物化学成分同步观测研究.环境科学, 32(9):2732-2740. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hjkx201109038 [120] 王飞, 2012.不同污染类型下南京气溶胶谱分布特征的观测研究(硕士毕业论文).南京:南京信息工程大学, 39-42. [121] 王琳, 张峰, 陈建民, 2001.大气颗粒物及氧化物对CS2的催化氧化作用.中国科学(B辑), 31(4):369-376. http://wuxizazhi.cnki.net/Sub/hjzy/a/HJGC2014S1141.html [122] 王明星, 1999.大气化学.北京:气象出版社. [123] 吴玲燕, 佟胜睿, 葛茂发, 2015.大气中SO2和HCOOH在CaO表面的耦合相互作用.化学学报, 73(2):131-136. http://www.whxb.pku.edu.cn/article/2017/1000-6818/WHXB20171213.shtml [124] 武智晖, 2016.五台山景区空气环境质量及大气颗粒物形貌特征研究.(硕士毕业论文).太原:山西农业大学, 65-75. [125] 肖正辉, 邵龙义, 孙珍全, 等, 2007.兰州市取暖期可吸入颗粒物中单颗粒矿物组成特征.矿物岩石地球化学通报, 26(1):64-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200701009 [126] 玉芳, 2001.纳米材料的来源及其特性.化工矿物与加工, 30(8):36-37. http://cdmd.cnki.com.cn/Article/CDMD-10141-1015561075.htm [127] 袁小燕, 叶芝祥, 钱骏, 等, 2016.二氧化硫在成都市大气颗粒物表面非均相反应初探.海口:中国环境科学学会2016年学术年会. [128] 岳玎利, 钟流举, 沈劲, 等, 2016.珠三角地区大气新粒子增长-缩小过程特征.环境污染与防治, 38(3):1-7. http://cdmd.cnki.com.cn/Article/CDMD-80165-1015361518.htm [129] 张金娜, 董海燕, 白志鹏, 等, 2007.天津初夏大气气溶胶粒度谱分布特征.城市环境与城市生态, 20(5):1-5. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015566598.htm [130] 张柳飞, 董发勤, 谭道永, 等, 2016.天水大气降尘矿物与水作用产生羟基自由基研究.中国环境科学, 36(2):370-375. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201602009 [131] 张仁健, 王明星, 戴淑玲, 等, 2000.北京地区气溶胶粒度谱分布初步研究.气候与环境研究, 5(1):85-89. http://www.cqvip.com/QK/84334X/200102/1001447917.html [132] 张小曳, 2014.中国不同区域大气气溶胶化学成分浓度、组成与来源特征.气象学报, 72(6):1108-1117. doi: 10.11676/qxxb2014.092 [133] 张莹, 佟胜睿, 葛茂发, 2016.碳酸钙粒径对SO2非均相反应的影响研究.光谱学与光谱分析, 36(10):126-127. http://www.cjmr.org/CN/abstract/abstract23232.shtml [134] 张泽锋, 朱彤, 尚静, 等, 2011.NO2在高岭石表面的非均相反应研究.环境科学学报, 31(10):2073-2079. doi: 10.7536/PC120636 [135] 赵厚银, 邵龙义, 时宗波, 2003.室内空气PM2.5研究现状及发展趋势.环境与健康杂志, 20(5):310-312. http://wuxizazhi.cnki.net/Sub/JZQY/a/JZCS201308116.html [136] 赵晴, 2010.典型地区无机细粒子污染特征及成因研究(博士毕业论文).北京:清华大学, 59-68. [137] 朱忠, 沈取华, 张大年, 1996.浦东新区大气气溶胶中碳颗粒的分布规律.上海环境科学, 15(2):12-15. http://industry.wanfangdata.com.cn/dl/Detail/Cstad?id=Cstad_97002779&type=Free