Nanoparticles Features of Groundwater in Kaxiutata Deposit and Its Significance
-
摘要: 采集内蒙古卡休他他矿区附近的地下水微粒进行相关分析,同时也采集远离矿区的井水微粒作为对照,利用高分辨率透射电镜对这些微粒进行单颗粒纳米微粒分析,研究表明:卡休他他矿床地下水中的异常金属微粒主要为含Fe、Cu、Zn微粒,含Zn、Cu微粒原子百分含量分别可达80.3%、22.7%,而背景区井水样品中无Ag、Cu微粒,且矿区地下水中与成矿相关的金属元素含量大大高于井水;含金属微粒与深部矿体成分(磁铁矿、黄铁矿、闪锌矿、黄铜矿等)具有很好的对应性,表明了矿区地下水含金属微粒来自于深部矿体,能携带深部矿体的信息,这为深部隐伏矿体的勘探提供了思路,也能为今后同类型的矿床勘探提供一定的参考.此外,本次研究还表明矿区附近的地下水可能受到了成矿微粒的影响,这可能也会影响到地下饮用水的品质,地下水含金属微粒研究方法也可用于检测地下饮用水的污染.关键字:卡休他他矿床;地下水;含金属微粒;单微粒分析;饮用水污染;环境地质.Abstract: In order to get a better understanding of the deep orebody information of Kaxiutata deposit in the Inner Mongolia, the groundwater particles were collected near the mining area. To have a contrast, the well water particles away from the mining area were also collected. It is found that the samples of groundwater in the mining area contain metal particles, and a high resolution transmission electron microscope was used to study these metal-bearing nanoparticles. The anomalous metal particles in the groundwater of this deposit are mainly Fe, Cu and Zn particles. The contents of Zn and Cu particles in the groundwater of the deposit are up to 80.3% and 22.7% respectively, and there are no Ag, Cu particles in the well samples in the background area, and the metal elements in the mining area are much higher than those in the well water. Metal-bearing nanoparticles and deep orebody (magnetite, pyrite, sphalerite, yellow copper ore, etc.) have a good correspondence. It is also proved that the groundwater containing metal particles from the deep orebody can carry the information of the deep orebody, which provides both a new perspective for the exploration of the deep concealed orebody and reference for the future exploration of the same type of deposit as well. In addition, the study also shows that the groundwater near the mining area may be affected by ore-forming particles, which may also affect the quality of underground drinking water, and the research method of groundwater containing metal particles can also be used to detect contamination of underground drinking water.
-
图 1 内蒙古卡休他他矿区地质图及采样位置
据矿区内部资料及赖新荣(2007).1.矿体;2.岩性分界线;3.断层;4.二长花岗岩;5.辉长岩;6.震旦系千枚岩;7.二长花岗岩;8.矿区地下水样采样点
Fig. 1. Geological map and sampling location of Kaxiutata mining area, Inner Mongolia
图 3 卡休他他背景区地下水纳米微粒的(a)EDS分析结果、(b)TEM高分辨率透射照片、(c)选区衍射图片
a.含Al-Fe-Mg纳米微粒;b.含Fe纳米微粒;c.氧化铁纳米微粒;d, e.BaSO4纳米微粒;f.MnO2纳米微粒;g.Fe-Cr-Mn纳米微粒
Fig. 3. Nanoparticles contained in groundwater in background area: (a) EDS analysis results, (b) TEM high-resolution transmission photographs, (c) selection diffraction pictures
图 2 卡休他他矿区地下水纳米微粒群的(a)EDS分析结果、(b)TEM高分辨率透射照片、(c)选区衍射图片、(d)高分辨照片
a.CaSO4纳米微粒;b.CaCO3纳米微粒;c.钾长石纳米微粒;d.BaSO4纳米微粒;e.含Mg纳米微粒;f, g.含Cu纳米微粒;h, i.含Zn纳米微粒;j, k.含Fe纳米微粒;l.含Fe-Cr-Mn纳米微粒;m.NaCl纳米微粒
Fig. 2. The nanoparticles of the groundwater in Kaxiutata mining area: (a) EDS analysis results, (b) TEM high-resolution transmission photographs, (c) selection diffraction pictures, (d) high-resolution photographs
表 1 内蒙古卡休他他矿区地下水(270 m深)纳米微粒(微粒1~22)EDS分析数据(%)
Table 1. Data for EDS analysis of particles (particles 1-22) in underground water of Kaxiutata mine, Inner Mongolia, at a depth of 270 m (%)
元素 纳米微粒号-样品编号 1-B4 2-B3 3-B5 4-B5 5-B4 6-A5 7-A3 8-B5 9-B3 10-B5 11-C2 12-A3 13-A3 14-A3 15-A3 16-A4 17-A4 18-A4 19-A4 20-A5 21-A5 22-A5 OW 79.2 79.6 45.5 49.8 65.3 68.4 24.6 69.1 63.0 14.5 72.5 32.4 70.4 68.7 61.1 62.8 29.7 40.4 67.6 6.7 62.0 70.2 OA 89.7 90.0 61.2 84.3 75.4 85.4 51.1 88.6 82.8 36.2 88.8 44.7 87.7 80.6 74.5 83.6 58.7 64.1 78.4 19.5 82.1 88.8 SiW 1.8 29.9 16.3 4.2 3.1 13.9 2.2 0.8 5.1 12.6 4.7 2.7 6.5 14.3 0.5 1.6 SiA 1.2 22.9 10.7 3.0 3.7 10.4 3.1 0.6 3.6 8.8 3.5 3.0 5.9 9.5 0.9 1.2 AlW 0.5 9.4 8.3 2.9 6.9 0.1 AlA 0.3 7.5 6.0 2.7 4.8 0.2 FeW 0.6 0.1 23.8 30.9 55.8 1.0 24.5 6.4 30.1 53.6 6.1 0.4 86.3 24.7 FeA 0.2 0.0 14.2 11.4 40.0 0.3 8.7 2.2 11.5 30.3 2.8 0.1 72.0 9.0 CaW 12.7 16.2 0.1 3.6 4.6 3.1 10.6 0.7 0.7 3.5 6.3 2.0 CaA 5.7 7.3 0.0 1.8 3.8 1.7 5.0 0.4 0.5 1.6 7.3 1.0 NaW 0.5 0.9 38.3 9.9 5.4 1.3 6.1 NaA 0.4 0.9 36.7 8.1 4.6 1.5 5.0 KW 15.2 KA 8.4 MgW 0.6 18.2 2.3 1.1 0.7 3.1 0.6 3.4 MgA 0.5 13.8 3.1 1.0 0.5 2.5 0.8 2.9 SW 8.2 8.2 3.2 2.5 8.2 0.9 1.0 2.4 SA 4.6 7.0 2.0 1.7 4.8 0.6 0.6 1.6 ClW 0.2 5.4 6.1 4.0 21.8 1.8 1.6 0.5 1.3 6.0 1.4 ClA 0.1 3.0 5.7 2.4 13.5 1.0 0.9 0.4 0.9 3.6 0.8 KW 0.4 0.7 0.1 KA 0.2 0.5 0.1 MnW 2.3 13.1 0.8 1.0 MnA 1.4 9.5 0.3 0.6 PbW PbA ZnW 2.0 33.2 10.5 ZnA 0.8 16.9 5.1 CuW 15.3 22.7 CuA 4.8 7.6 AgW 18.2 AgA 3.5 CrW 14.5 3.7 CrA 11.2 1.4 BaW 40.0 BaA 7.9 TiW 26.5 0.4 0.9 40.1 TiA 10.9 0.2 0.4 21.3 注:下标中:W.Weight,质量;A.Atomic,原子. 表 2 内蒙古卡休他他矿区地下水(270 m深)纳米微粒(微粒23~43)EDS分析数据(%)
Table 2. Data for EDS analysis of particles (particles 23-43) in underground water of Kaxiutata mine, Inner Mongolia, at a depth of 270 m (%)
元素 纳米微粒号-样品编号 23-B2 24-B2 25-B2 26-B3 27-B3 28-B3 29-B4 30-B4 31-B5 32-B5 33-B5 34-B5 35-B5 36-B5 37-C1 38-C1 39-C1 40-C1 41-C1 42-C2 43-C2 OW 72.3 20.6 61.1 62.7 66.5 66.4 74.5 62.7 7.9 19.7 11.2 71.1 83.0 62.1 69.7 61.3 68.6 61.6 75.1 55.1 68.0 OA 87.5 47.5 84.3 77.3 78.6 79.4 84.9 74.1 25.4 50.1 29.9 82 92.5 84.7 82.7 84.3 84.2 81.7 85.4 70.6 79.2 SiW 3.6 2.2 10.2 0.6 18.3 1.8 2.9 9.3 3.8 5.2 2.8 3.0 13.1 SiA 2.5 1.7 7.0 0.3 12.3 2.8 2.3 6.3 3.0 3.7 2.1 2.2 8.7 AlW 4.3 2.7 6.7 0.8 3.8 0.5 5.3 AlA 3.1 1.9 4.7 0.6 2.7 0.4 3.7 FeW 19.2 79.4 25.4 9.6 0.4 1.6 2.0 68.4 22.1 2.0 29.2 0.8 29.6 3.4 FeA 6.6 52.5 10 3.3 0.1 0.6 3.7 52.2 8.6 0.7 11.5 0.3 11.3 1.1 CaW 0.3 1.0 15.8 9.1 0.5 9.0 0.3 1.6 8.9 17 0.4 12.5 1.2 1.1 10.0 17.5 0.7 CaA 0.2 0.5 7.8 4.3 0.2 4.1 0.2 4.2 4.1 7.5 0.2 5.9 0.6 0.6 4.5 9.0 0.3 NaW 7.8 12.9 3.2 7.6 9.6 10.9 1.0 6.5 4.0 7.4 8.2 2.0 NaA 6.7 10.6 2.7 6.0 7.9 8.8 0.9 5.6 3.7 5.8 7.3 1.6 KW KA MgW 6.3 3.1 6.4 MgA 5.0 2.6 4.9 SW 0.3 0.7 13 6.9 0.4 7.9 8.1 1.5 0.3 5.6 0.6 7.5 13.0 0.5 SA 0.2 0.5 8.0 4.1 0.2 4.5 4.7 1.0 0.2 3.5 0.4 4.3 8.3 0.3 ClW 0.4 4.6 0.5 1.0 0.2 1.0 0.4 0.2 ClA 0.2 2.4 0.3 0.5 0.1 0.5 0.2 0.1 KW 1.2 0.5 KA 0.6 0.2 MnW 0.3 MnA 0.1 PbW 3.2 PbA 0.3 ZnW 1.1 80.3 1.8 0.9 ZnA 0.4 49.9 0.6 0.3 CuW 3.5 3.6 CuA 1.2 1.2 AgW AgA CrW 0.4 18.5 CrA 0.2 15.1 SrW 0.3 1.1 SrA 0.1 0.2 SnW 2.2 SnA 0.4 SbW 1.0 SbA 0.2 ZrW 1.7 ZrA 0.4 BaW 88.5 4.8 9.9 BaA 66.7 0.8 1.4 TiW 1.2 TiA 0.6 注:下标中:W.Weight,质量;A.Atomic,原子. 表 3 背景区井水中纳米微粒EDS分析数据(%)
Table 3. Data for EDS analysis of nanoparticles in well water in background area (%)
元素 纳米微粒号-样品编号 44-C3 45-C4 46-C5 47-C4 48-C4 49-C5 50-C5 51-C4 52-C4 53-C3 54-C3 55-C3 56-C3 57-C3 OW 61.4 71.6 72.0 74.2 70.2 12.8 50.9 73.8 68.1 71.0 72.0 71.6 68.9 56.7 OA 74.9 84.8 89.7 91.0 89.0 32.9 85.8 90.4 87.0 85.1 89.7 84.8 85.9 79.7 SiW 1.4 14.0 4.1 2.5 4.9 2.1 10.8 4.1 14.0 4.6 0.8 SiA 1.0 9.4 2.9 3.6 3.4 1.5 7.3 2.9 9.4 3.3 0.6 AlW 10.5 0.7 2.5 0.7 AlA 7.6 0.5 1.8 0.5 FeW 10.0 10.0 0.5 25.8 56.1 25.6 12.9 0.5 10.0 19.8 36.4 FeA 3.5 3.4 0.2 9.0 41.3 9.4 4.4 0.2 3.4 7.1 14.6 CaW 0.5 0.6 0.5 2.1 0.6 2.1 CaA 0.2 0.3 0.2 1.0 0.3 1.1 Na; W 1.1 4.6 NaA 0.9 4.5 KW 0.7 0.7 KA 0.3 0.3 ZnW 1.6 0.4 1.1 ZnA 0.5 0.1 0.4 MgW 15.8 0.8 1.1 0.8 0.5 Mg 12.7 0.7 0.9 0.7 0.4 PW 0.4 PA 0.3 SW 0.1 7.8 7.1 6.8 0.1 7.8 0.1 0.2 SA 0.1 4.8 6.0 4.2 0.1 4.8 0.1 0.1 ClW 0.4 0.2 0.8 0.4 0.3 ClA 0.2 0.1 0.4 0.2 0.2 MnW 0.4 0.8 29.8 13.0 0.8 0.4 MnA 0.1 0.3 11.0 9.7 0.3 0.2 CrW 15.7 0.7 1.6 CrA 12.4 0.3 0.6 BaW 14.5 42.0 14.5 14.5 BaA 2.1 8.2 2.1 2.1 TiW 0.3 0.3 TiA 0.1 0.1 SrW 1.1 1.1 SrA 0.2 0.2 注:下标中:W.Weight,质量;A.Atomic,原子. -
[1] Chen, K.P., Jiao, J.J., Huang, J.M., et al., 2007.Multivariate Statistical Evaluation of Trace Elements in Groundwater in a Coastal Area in Shenzhen, China.Environmental Pollution, 147(3):771-780. https://doi.org/10.1016/j.envpol.2006.09.002 [2] Du, Y., Ma, T., Deng, Y.M., et al., 2017.Hydro-Biogeochemistry of Hyporheic Zone:Principles, Methods and Ecological Significance.Earth Science, 42(5):661-673 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.054 [3] Edmunds, W.M., Smedley, P.L., 2000.Residence Time Indicators in Groundwater:The East Midlands Triassic Sandstone Aquifer.Applied Geochemistry, 15(6):737-752. https://doi.org/d10.1016/S0883-2927(99)00079-7 [4] Gao, H.L., He, J.G., Zhang, S., et al., 2013.Study on Crustal Stability of Alashan Area.World Nuclear Geoscience, 30(4):237-244 (in Chinese with English abstract).https://doi.org/d10.3969/j.issn.1672-0636.2013.04.009 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD201304010.htm [5] Gong, J.H., Zhang, J.X., Yu, S.Y., et al., 2012.2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications.Chin.Sci.Bull., 57(28-29):2715-2730(in Chinese).https://doi.org/doi: 10.1007/s11434-012-5315-8 [6] Hochella, M.F., Moore, J.N., Golla, U., et al., 1999.A TEM Study of Samples from Acid Mine Drainage Systems:Metal-Mineral Association with Implications for Transport.Geochimica et Cosmochimica Acta, 63(19):3395-3406. https://doi.org/10.1016/S0016-7037(99)00260-4 [7] Hu, X.S., Liu, J.C., Wang, Z.Y., et al., 1993.Geochemical Vegetation Survey in Jindongzi Gold Mine.Geology and Exploration, (1):41-46 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkt199301009.htm [8] Lai, X.R., 2007.Geological Significance of Kaxiutata Iron Deposit in Right-Banner of Alxa in Inner Mongolia(Dissertation).Chinese Academy of Geological Sciences, Beijing, 1-78 (in Chinese with English abstract). [9] Li, X., Wang, F., Luo, D.F., et al., 2015.The Effects of Applying Integrated Geophysical Method to the Prospecting for the Jiangcheng Concealed Lead and Zinc Deposit in Yunnan Province.Geophysical & Geochemical Exploration, 39(6):1119-1123 (in Chinese with English abstract). https://doi.org/10.11720/wtyht.2015.6.06 [10] Li, Y.K., Cao, J.J., Philip, K., et al., 2016.The Discovery of the Metallic Particles of Groundwater from the Dongshengmiao Polymetallic Deposit, Inner Mongolia, and Their Prospecting Significance.Journal of Geochemical Exploration, 161:49-61. https://doi.org/10.1016/j.gexplo.2015.10.013 [11] Liu, M., Jin, Y.T., 2011.Effects of Metal Pollutant on Histone Modifications.Chin.J.Prev.Med., 45(5):449-452 (in Chinese with English abstract). https://doi.org/10.3760/cma.j.issn.02539624.2011.05.015 [12] Liu, Y., Yan, J.Y., Wu, M.A., et al., 2012.Exploring Deep Concealed Ore Bodies Based on Gravity Anomaly Separation Methods:A Case Study of the Nihe Iron Deposit.Chinese Journal of Geophysics, 55(12):4181-4193 (in Chinese with English abstract). https://doi.org/10.6038/j.issn.0001-5733.2012.12.030 [13] Ramesh, R., Kumar, K.S., Eswaramoorthi, S., et al., 1995.Migration and Contamination of Major and Trace Elements in Groundwater of Madras City, India.Environmental Geology, 25(2):126-136. https://doi.org/10.1007/BF00767869 [14] Shi, X.J., Zhang, L., Wang, T., et al., 2014.Geochronology and Geochemistry of the Intermediate-Acid Intrusive Rocks from Zongnaishan Area in Northern Alxa, Inner Mongolia, and Their Tectonic Implications.Acta Petrologica et Mineralogica, 33(6):989-1007 (in Chinese with English abstract). [15] Shi, Y.Z., Li, K.C., 2014.The Application of Integrated Geophysical and Geochemical Exploration Methods to the Prospecting for Deep and Concealed Orebodies.Geophysical & Geochemical Exploration, 38(5):910-915 (in Chinese with English abstract). https://doi.org/10.11720/wtyht.2014.5.08 [16] Wang, D.S., Gong, J.H., Zhang, J.X., et al., 2016.Tectonic Deformation Characteristics of the Mesoproterozoic Nuoergong Groupin the Alxa Block.Acta Petrologica et Mineralogica, 35(2):306-320 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yskwxzz201602011 [17] Wang, X.Q., Xie, X.J., 2000.Theories and Methods of Exploration Geochemistry of Gold Strategy and Tactics.Shandong Science & Technology Press, Jinan, 114-118(in Chinese). [18] Xu, D.Q., Bai, D.M., Li, R.G., 2006a.Application of Large-Scale High-Precision Magnetic Survey in Iron (Gold, Cobalt) Ore Mining in the Kaxiutata Deposit.Geology and Prospecting, 42(3):76-80 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dzykt200603015 [19] Xu, D.Q., Jiang, S.H., Zhang, J.H., et al., 2006b.Geological and Geochemical Features of Kaxiutata Iron (Gold, Cobalt) Deposit in Alxa Right Banner, Inner Mongolia.Mineral Deposits, 25(3):231-242 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2006.03.002 [20] Yuan, G.Q., Li, F., Zheng, H.S., et al., 2010.Deep Geophysical Prospecting Methods in Metallic Ore Exploration and Application Effect.Computing Techniques for Geophysical and Geochemical Exploration, 32(5):495-499(in Chinese). [21] Zhang, J., Wang, X.S., Jia, F.C., et al., 2015.New Insight into the Flow Direction of Groundwater in Western Alxa, Inner Mongolia.Geoscience, 29(1):213-219 (in Chinese with English abstract). doi: 10.1007/s10040-018-1750-1 [22] Zhang, S., Li, F.L., Gong, J.J., et al., 2012.Application of Hydrocarbons in Concealed Tungsten Ore Prediction in Weijia, Nanling Area.Earth Science, 37(6):1149-1159 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.122 [23] Zhou, F., Zhu, J., Zhang, P., et al., 2017.Effect of Groundwater Components on Hydroxyl Radical Production by Fe(Ⅱ) Oxygenation.Earth Science, 42(6):1039-1044 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.082 [24] Zhu, X.S., Zhu, L., Tian, S.Y., et al., 2008.Aquatic Ecotoxicities of Nanoscale TiO2, ZnO and Al2O3 Water Suspensions.Acta Ecologica Sinica, 28(8):3507-3516 (in Chinese with English abstract). http://eng.med.wanfangdata.com.cn/PaperDetail.aspx?qkid=stxb&qcode=stxb200808003 [25] 杜尧, 马腾, 邓娅敏, 等, 2017.潜流带水文-生物地球化学:原理、方法及其生态意义.地球科学, 42(5):661-673. http://earth-science.net/WebPage/Article.aspx?id=3581 [26] 高洪雷, 何建国, 张松, 等, 2013.阿拉善地区地壳稳定性研究.世界核地质科学, 30(4):237-244. https://www.cnki.com.cn/qikan-GWYD201304010.html [27] 宫江华, 张建新, 于胜尧, 等, 2012.西阿拉善地块~2.5 Ga TTG岩石及地质意义.科学通报, 57(28-29):2715-2730. http://www.oalib.com/paper/4273817 [28] 胡西顺, 刘金成, 汪振洋, 等, 1993.植物地球化学测量及其在金洞子金矿区的应用效果.地质与勘探, (1):41-46. http://www.oalib.com/paper/4320665 [29] 赖新荣, 2007.内蒙古阿拉善右旗铁矿及其地质环境研究(硕士学位论文).北京:中国地质科学院, 1-78. [30] 李星, 王峰, 罗大锋, 等, 2015.综合物探方法在云南江城隐伏铅锌矿勘查中的应用.物探与化探, 39(6):1119-1123. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201506004.htm [31] 刘敏, 金永堂, 2011.金属污染物对组蛋白修饰的影响.中华预防医学杂志, 45(5):449-452. http://www.cqvip.com/QK/90421A/201601/667683724.html [32] 刘彦, 严加永, 吴明安, 等, 2012.基于重力异常分离方法寻找深部隐伏铁矿——以安徽泥河铁矿为例.地球物理学报, 55(12):4181-4193. doi: 10.6038/j.issn.0001-5733.2012.12.030 [33] 史兴俊, 张磊, 王涛, 等, 2014.内蒙古阿拉善盟北部宗乃山中酸性侵入岩年代学、地球化学及构造意义.岩石矿物学杂志, 33(6):989-1007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201406001 [34] 时永志, 李凯成, 2014.综合物化探方法在地质找矿"攻深找盲"中的应用.物探与化探, 38(5):910-915. doi: 10.11720/wtyht.2014.5.08 [35] 王东升, 宫江华, 张建新, 等, 2016.阿拉善地块中元古代诺尔公群的构造变形特征.岩石矿物学杂志, 35(2):306-320. http://www.cnki.com.cn/Article/CJFDTotal-YSKW201602011.htm [36] 王学求, 谢学锦, 2000.金的勘查地球化学理论与方法·战略与战术.济南:山东科学技术出版社, 114-118. [37] 许东青, 白大明, 李荣光, 2006a.大比例尺高精度磁测在卡休他他铁(金、钴)矿生产中的应用.地质与勘探, 42(3):76-80. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dzykt200603015 [38] 许东青, 江思宏, 张建华, 等, 2006b.内蒙古阿右旗卡休他他铁(金、钴)矿床地质地球化学特征.矿床地质, 25(3):231-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200603002 [39] 袁桂琴, 李飞, 郑红闪, 等, 2010.深部金属矿勘查中常用物探方法与应用效果.物探化探计算技术, 32(5):495-499. http://mall.cnki.net/magazine/Article/WTHT201005008.htm [40] 张竞, 王旭升, 贾凤超, 等, 2015.对内蒙古阿拉善西部地下水流向问题的新认识.现代地质, 29(1):213-219. http://mall.cnki.net/magazine/Article/XDDZ201501026.htm [41] 张爽, 李方林, 龚晶晶, 等, 2012.烃气测量在南岭魏家隐伏钨矿区找矿预测中的应用.地球科学, 37(6):1149-1159. http://earth-science.net/WebPage/Article.aspx?id=2319 [42] 周帆, 朱健, 张鹏, 等, 2017.地下水化学组成对Fe2+氧化产生羟自由基的影响.地球科学, 42(6):1039-1044. http://earth-science.net/WebPage/Article.aspx?id=3595 [43] 朱小山, 朱琳, 田胜艳, 等, 2008.三种金属氧化物纳米颗粒的水生态毒性.生态学报, 28(8):3507-3516. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_stxb200808003